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Abstract

Vacuolar proton-translocating ATPase (V-ATPase) is located in fungal vacuolar mem-

branes. It is involved in multiple cellular processes, including the maintenance of intracellu-

lar ion homeostasis by maintaining acidic pH within the cell. The importance of V-ATPase

in virulence has been demonstrated in several pathogenic fungi, including Candida albi-

cans. However, it remains to be determined in the clinically important fungal pathogen Can-

dida glabrata. Increasing multidrug resistance of C. glabrata is becoming a critical issue in

the clinical setting. In the current study, we demonstrated that the plecomacrolide V-

ATPase inhibitor bafilomycin B1 exerts a synergistic effect with azole antifungal agents,

including fluconazole and voriconazole, against a C. glabrata wild-type strain. Furthermore,

the deletion of the VPH2 gene encoding an assembly factor of V-ATPase was sufficient to

interfere with V-ATPase function in C. glabrata, resulting in impaired pH homeostasis in the

vacuole and increased sensitivity to a variety of environmental stresses, such as alkaline

conditions (pH 7.4), ion stress (Na+, Ca2+, Mn2+, and Zn2+ stress), exposure to the calci-

neurin inhibitor FK506 and antifungal agents (azoles and amphotericin B), and iron limita-

tion. In addition, virulence of C. glabrata Δvph2 mutant in a mouse model of disseminated

candidiasis was reduced in comparison with that of the wild-type and VPH2-reconstituted

strains. These findings support the notion that V-ATPase is a potential attractive target for

the development of effective antifungal strategies.

Introduction

Invasive candidiasis is one of the most frequent fungal infections among a wide spectrum of

immunocompromised patients, with the in-hospital mortality rates reported to be as high as

20–40% even among patients who receive antifungal therapy [1]. The therapeutic options
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currently available to treat invasive candidiasis are limited to only four classes of antifungal

agents: azoles, echinocandins, polyenes, and fluoropyrimidines. Further, the incidence rates of

candidemia caused by non-albicans Candida species are increasing and antifungal resistance

of these species has emerged as a serious problem in clinical practice [1–3]. The rise of multi-

drug resistance with unfavorable therapeutic outcome among Candida glabrata infections

became a critical healthcare issue in the last decade [4–6]. Therefore, the development of novel

antifungal strategies is urgently needed.

Recent studies highlight vacuolar proton-translocating ATPase (V-ATPase) as an attractive

target for drug discovery (reviewed in [7]). V-ATPase is an ATP-driven proton pump present

in the endomembranes of all eukaryotic organisms [8, 9]. In particular, this proton pump is

present in fungal vacuolar membranes, where it plays an important role in the maintenance of

intracellular ion homeostasis by maintaining acidic pH within cell [10–12]. The V-ATPase is

composed of 14 subunits that form two domains, a membrane-integral V0 domain and a cyto-

plasmic V1 domain; and assembly factors, including Vph2 (Vma12), Vma21, Vma22, and

Pkr1, are required for the assembly of a functional yeast V-ATPase [9, 13–15]. In Saccharomy-
ces cerevisiae, V-ATPase synthesis and assembly are lost upon deletion of VPH2, leading to

changes in ion sensitivity, including calcium sensitivity [16]. Previously, we demonstrated that

V-ATPase also plays an important role in endogenous and exogenous oxidative stress response

by regulating the expression and activity levels of the superoxide dismutase Sod2 and catalase

Cta1, respectively, in C. glabrata [17].

Previous studies with mutant strains of Histoplasma capsulatum, Cryptococcus neoformans,
and C. albicans lacking specific subunits of V-ATPase demonstrated that loss of V-ATPase

function leads to vacuolar alkalinization and attenuation of in vivo virulence [18–21]. How-

ever, the link between V-ATPase function and virulence in C. glabrata has not been reported.

In the current study, we investigated the effects of V-ATPase defect in C. glabrata on responses

to various environmental stresses, antifungal resistance, and virulence.

Materials and methods

Strains, culture conditions, and compounds

C. glabrata strain CBS138 [22] was used as a wild-type control. C. glabrata Δvph2 deletion

mutant lacking the entire VPH2 open reading frame (NCBI accession no.: XP_448720, Can-
dida genome database ID: CAGL0K11594g) and a VPH2-reconstituted strain, in which an

intact VPH2 was reintroduced at the native locus in the genome of the Δvph2 mutant, were

constructed previously [17]. C. glabrata cells were propagated in yeast peptone dextrose (YPD)

medium [1% (wt/vol) yeast extract, 2% (wt/vol) peptone, and 2% (wt/vol) glucose] or synthetic

complete medium (SC) [0.67% (wt/vol) yeast nitrogen base with amino acids and 2% (wt/vol)

glucose] at 30˚C, unless otherwise specified. Media were solidified by the addition of 1.5% (wt/

vol) agar. Fluconazole, voriconazole, amphotericin B, and FK506 were purchased from Sigma-

Aldrich (St. Louis, MO). Bafilomycin B1 was purchased from Santa Cruz Biotechnology (Dal-

las, TX). Desferrioxamine (DFO) was purchased from EMD Chemicals (San Diego, CA) and

bathophenanthroline disulfonate (BPS) was from MP Biomedicals (Solon, OH). Voriconazole,

bafilomycin B1, and FK506 were dissolved in dimethyl sulfoxide and other compounds were

dissolved in distilled water. Cell growth was not affected by exposure to the quantities of

dimethyl sulfoxide used in the current study.

Drug susceptibility assays

Susceptibility to fluconazole, voriconazole, and the V-ATPase inhibitor bafilomycin B1, alone

or in combination, was examined by using broth microdilution test, essentially according to
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the Clinical and Laboratory Standards Institute (CLSI) M27-S4 protocol [23] and the previous

report [24] with minor modifications. Briefly, C. glabrata cells were incubated in SC at 35˚C

for 48 h. The minimum drug concentration that inhibited cell growth by more than 80% rela-

tive to drug-free control was defined as the minimum inhibitory concentration (MIC). Frac-

tional inhibitory concentration (FIC) was calculated by using the following formula: FIC for

drug A = (MIC of drug A in combination with drug B)/(MIC of drug A alone). The sum of

FIC for drug A and FIC for drug B was defined as the FIC index (FICI). Drug interaction was

classified as synergistic if FICI was�0.5 [25].

Spot dilution test was performed as described previously [26]. Briefly, the density of loga-

rithmic-phase cultures in SC was adjusted to the concentration of 2 × 107 cells/ml. Serial

10-fold dilutions in SC were then prepared, and 5 μl of each dilution was spotted onto SC

plates containing the test compound at the desired concentrations. Plates were incubated at

30˚C for 48 h and photographed.

All sensitivity tests were performed on at least three separate occasions to ensure

reproducibility.

Staining of fungal cells

Vacuolar staining with the styryl dye N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)

phenyl)hexatrienyl)pyridinium dibromide (FM4-64; Thermo Fisher Scientific, Molecular

Probes, Eugene, OR) and the pH-sensitive fluorophore 2N,7N-bis-(2-carboxyethyl)-5-(and-6)-

carboxyfluorescein acetoxymethyl ester (BCECF-AM; Thermo Fisher Scientific, Molecular

Probes) was performed as described previously [27, 28] with few modifications. Briefly, loga-

rithmic-phase cells of C. glabrata were washed and resuspended in SC broth (pH 5.0). FM4-64

was added to cell suspensions (final concentration: 5 μM) and the mixtures were incubated at

30˚C for 15 min to stain vacuole membranes. Cells were washed in SC with agitation for 90

min and resuspended in SC. BCECF-AM was added to cell suspensions (final concentration:

18 μM) and incubated at 30˚C for 60 min. Cells were washed twice in SC, and microscopic

examination was performed immediately after washing. Images were acquired using a Carl

Zeiss LSM780 confocal laser-scanning microscope and processed using ZEN 2011 software

(Carl Zeiss, Jena, Germany). The excitation and emission parameters were as follows: 560 and

605 nm, respectively, for FM4-64; and 470 and 535 nm, respectively, for BCECF-AM.

Virulence assay

Specific pathogen-free 8-week-old female BALB/c mice, weighing approximately 20 g, were

purchased from Charles River Laboratories Japan (Yokohama, Japan). All mice had free access

to food and water and were housed in a light–and temperature–controlled room at the Bio-

medical Research Center, Life Science Support Center, Nagasaki University. The health status

of all mice was monitored at least daily throughout the experiments. All animal experiments

were performed in full compliance with the Guide for the Care and Use of Laboratory Animals

[29] and all institutional regulations and guidelines for animal experimentation, after pertinent

review and approval by the Institutional Animal Care and Use Committee of Nagasaki Univer-

sity (protocol number 1407281164).

Logarithmic-phase cells of C. glabrata wild-type, Δvph2, and VPH2-reconstituted strains

were harvested, washed, and resuspended in sterile saline, and cell density was adjusted to

4 × 108 cells/ml. The actual colony forming units (CFUs) used were confirmed by plating serial

dilutions of the cell suspensions on YPD plates and incubating at 30˚C overnight. Mice (n = 7

for wild-type, n = 9 for Δvph2, and n = 8 for Δvph2 + VPH2, per experiment) were inoculated

with 0.2 ml of each cell suspension via the lateral tail vein. Mice were euthanized by carbon
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dioxide-induced asphyxia 7 d after the injection, and the spleen, liver, and both kidneys were

excised. The organs were homogenized in sterile saline using a Shake Master NEO (Bio Medi-

cal Science, Tokyo, Japan). The homogenates were appropriately diluted in sterile saline and

plated on YPD agar. Colonies were counted after 48 h of incubation at 30˚C and CFUs per

organ were calculated. A P-value of<0.05 (Kruskal-Wallis test with Dunn’s post-test) was con-

sidered to represent statistical significance.

Results

Synergistic effects of azoles and the V-ATPase inhibitor bafilomycin B1

against C. glabrata
Azole antifungals, including fluconazole and voriconazole, inhibit the biosynthesis of ergos-

terol, the major component of fungal cell membrane, by targeting lanosterol 14α-demethylase

encoded by ERG11 [30]. V-ATPase is pharmacologically inhibited by the plecomacrolide bafi-

lomycin B1, which binds to the V0 subunit of V-ATPase, and simultaneously interferes with

ATP hydrolysis and proton transport [31, 32]. To examine the effect of bafilomycin B1 on

azole susceptibility of C. glabrata wild-type strain, we performed a checkerboard assay using

serial 2-fold dilutions of the drugs. In the assay, MICs of fluconazole, voriconazole, and bafilo-

mycin B1 were determined to be>64, 4, and>32 μg/ml, respectively (Fig 1). FIC indices of

the combination of fluconazole and bafilomycin B1, and the combination of voriconazole and

bafilomycin B1 were 0.375 and 0.313, respectively, indicating synergistic effects of these azoles

and bafilomycin B1 against C. glabrata.

Deletion of the V-ATPase assembly factor gene VPH2 leads to impaired

vacuole acidification in C. glabrata
To investigate the role of V-ATPase in C. glabrata in detail, we analyzed the phenotype of the

Δvph2 mutant, by comparing it with that of the wild-type and VPH2-reconstituted strains.

First, C. glabrata cells were incubated with FM4-64, which selectively stains yeast vacuolar

membranes and may be detected by red fluorescence [33, 34]. The wild-type and VPH2-recon-

stituted strains exhibited the typical ring-staining pattern of the vacuole membrane, while

FM4-64 accumulated within the vacuole lumen in the Δvph2 mutant (Fig 2). The impaired

trafficking of FM4-64 to the vacuolar membrane in the Δvph2 mutant was consistent with

Fig 1. Synergistic effects of azole antifungals and the V-ATPase inhibitor bafilomycin B1 against C. glabrata wild-

type strain. Checkerboard assay was performed using serial 2-fold dilutions of drugs. (A) Data for the combination of

fluconazole and bafilomycin B1. (B) Data for the combination of voriconazole and bafilomycin B1. Plates were

incubated at 35˚C for 48 h and the optical density at 600 nm (OD600) was determined. The graphs are representative of

three independent replicate experiments.

https://doi.org/10.1371/journal.pone.0210883.g001
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endocytosis defects demonstrated by C. albicans vma mutants [21] and C. albicans cells treated

with fluconazole [28].

The cells were then labeled with the pH-sensitive fluorescent dye BCECF-AM. The dye

labeled the vacuoles of the Δvph2 mutant but not those of the wild-type and VPH2-reconsti-

tuted strains (Fig 2). This indicated impaired vacuolar acidification in the Δvph2 mutant, as

would be expected after loss of proton pump capacity.

Loss of Vph2 results in increased fungal sensitivity to various

environmental stresses

The phenotype of the Δvph2 mutant was further examined by spot dilution assays. In agree-

ment with the notion of impaired vacuole acidification even under acidic conditions (Fig 2),

the Δvph2 mutant exhibited a growth defect at pH 5.0 and was unable to grow at pH 7.4 (Fig

3). The Δvph2 mutant also displayed increased sensitivity to ion stress induced by excess of

NaCl, CaCl2, MnCl2, and ZnCl2 in the growth medium.

The Ca2+/calmodulin-dependent protein phosphatase calcineurin plays a critical role in

maintaining intracellular ion homeostasis and cell integrity. Further, simultaneous loss of cer-

tain subunits of V-ATPase and calcineurin is synthetically lethal in S. cerevisiae [35, 36]. In

agreement with the findings for S. cerevisiae, the C. glabrata Δvph2 mutant was unable to grow

in the presence of the calcineurin inhibitor FK506 (Fig 3). In addition to fluconazole and vori-

conazole, the Δvph2 mutant displayed increased susceptibility to fenpropimorph, which inhib-

its C-8 sterol isomerase (Erg2) and C-14 sterol reductase (Erg24) in the ergosterol biosynthesis

Fig 2. Vacuole staining. Logarithmic-phase cells of C. glabrata were prepared in SC broth. Vacuolar membranes were first stained

with FM4-64. After washing, the pH-sensitive fluorophore BCECF-AM was added to cell suspensions. Note the accumulation of FM4-

64 and BCECF-AM within the vacuole lumen of the Δvph2 mutant. Scale bars, 5 μm. The images are representative of three

independent replicate experiments.

https://doi.org/10.1371/journal.pone.0210883.g002
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pathway [37, 38], and amphotericin B, which directly targets ergosterol [39]. Finally, the Δvph2
mutant also exhibited growth defects under iron-limited conditions induced by the inclusion

of the bacterial siderophore DFO or the Fe2+-chelator BPS in the growth medium.

Loss of Vph2 results in reduced fungal virulence in a murine model of

disseminated candidiasis

The effect of VHP2 deletion on the virulence of C. glabrata was examined using a mouse

model of disseminated candidiasis. No mice died prior to euthanasia in the experiments. Fun-

gal burdens in the examined organs of immunocompetent mice infected with the Δvph2
mutant were significantly lower than those in mice infected with the wild-type or VPH2-

reconstituted strains (Fig 4). This suggested that V-ATPase plays an important role in the viru-

lence in C. glabrata.

Discussion

Overcoming the antifungal resistance of C. glabrata in the clinical setting is a pressing issue. In

the current study, we demonstrated the synergistic effect of the V-ATPase inhibitor bafilomy-

cin B1 and azole antifungals against a C. glabrata wild-type strain. Azole antifungals exert an

antifungal effect partly by impairing vacuolar acidification, since ergosterol is required for

V-ATPase to function efficiently [28]. The concurrent disruption of ergosterol and V-ATPase

was induced by exposing the Δvph2 mutant to ergosterol inhibitors, leading to the severe

growth impairment of the Δvph2 mutant (Fig 3). Some C. glabrata Δvph2 phenotypes were

anticipated based on the published findings in S. cerevisiae and C. albicans. However, in the

current study, we demonstrated for the first time that the loss of Vph2 in C. glabrata results in

a V-ATPase defect, which leads to impaired vacuolar pH homeostasis and increased sensitivity

to a variety of environmental stresses, as well as attenuated virulence in mice. The growth

defect of the Δvph2 mutant could contribute to the enhanced susceptibility to diverse drugs

tested and decreased virulence.

The Δvph2 mutant was unable to grow under iron-limiting conditions. Requirement of

V-ATPase for iron homeostasis was also demonstrated in H. capsulatum [19]. Iron acquisition

and iron homeostasis are important virulence factors in pathogenic fungi. For example, C.

albicans must obtain hemoglobin iron to survive under the iron-limiting conditions in host tis-

sues, and functional V-ATPase is required for iron acquisition in the microorganism [40].

Fig 3. Spot dilution assay. Serial 10-fold dilutions of logarithmic-phase cells of C. glabrata were spotted onto SC plates containing the indicated

compounds at the specified concentrations. Plates were incubated at 30˚C for 48 h and photographed. The images are representative of three

independent replicate experiments. BPS, bathophenanthroline disulfonate; and DFO, desferrioxamine.

https://doi.org/10.1371/journal.pone.0210883.g003
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Targeting a conserved protein that plays an essential role in human and fungal cells is chal-

lenging as it entails averting host toxicity. For instance, V-ATPase is present in the renal

tubules and osteoclasts in mammals, including human [8]. However, although V-ATPase is

highly conserved in eukaryotes, some major differences between mammalian and fungal

V-ATPases exist, particularly with respect to the isoform composition of subunits and in the

regulation of complex disassembly [41–45]. The different numbers and types of isoforms have

been developed for most subunits of the mammalian V-ATPase [7]. The sequence conserva-

tion between S. cerevisiae and human V-ATPase subunits is 51–60% similarity and 31–41%

identity, depending on the subunit and isoform [44]. C. glabrata VPH2 encodes a putative pro-

tein of 209 amino acids, with a molecular mass of 23.4 kDa. The deduced amino acid

sequences of C. glabrata VPH2 share 61.8% similarity and 41.9% identity with those of S. cere-
visiae VPH2 (NCBI Gene ID 853741, NCBI accession no. CAA81960), but only 32.6% similar-

ity and 18.1% identity with those of a human homolog (TMEM199: NCBI Gene ID 147007,

NCBI accession no. NP_689677) (S1 Fig). These different features could potentially be

exploited to selectively target V-ATPase of pathogenic fungi.

In conclusion, in the current study, we provided evidence that disruption of C. glabrata
V-ATPase function by deleting VPH2 impairs the fungal response to various environmental

stresses and results in the attenuation of virulence of this clinically important fungal pathogen,

supporting the notion that V-ATPase is an attractive antifungal target.

Supporting information

S1 Fig. Sequence alignment of the deduced amino acids of C. glabrata VPH2 with those of

S. cerevisiae VPH2 and a human homolog TMEM199. Identical and similar amino acids are

Fig 4. Fungal virulence in a mouse model of disseminated candidiasis. Eight-week-old female BALB/c mice were intravenously inoculated with 8 × 107

cells of each C. glabrata strain (wild-type, n = 7; Δvph2, n = 9; and Δvph2 + VPH2, n = 8; per experiment). The mice were sacrificed 7 d after inoculation and

CFUs per organ in specific organs were determined. The geometric mean is shown as a bar. Data representative of two independent experiments are shown.

The C. glabrata strains used were: wild-type (CBS138), filled circles; Δvph2 mutant, squares; and VPH2-reconstituted strain, triangles. �P< 0.05, ��P< 0.01,
���P< 0.001 (Kruskal-Wallis test with Dunn’s post-test).

https://doi.org/10.1371/journal.pone.0210883.g004
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shown as darkly shaded and lightly shaded regions, respectively. GenBank accession number:

C. glabrata VPH2, XP_448720; S. cerevisiae VPH2, CAA81960; and TMEM199, NP_689677.

(TIF)
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