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 Interferon regulatory factor-4 (IRF-4), a member of the 

IRF gene family, is a lymphoid-specific transcription factor. 

IRF-4 deficient mice showed severe immunodeficiencies. 

Both B- and T-cell activation were profoundly affected: 

serum immunoglobulin concentrations and antibody re-

sponses were decreased, and cytotoxic and antitumor re-

sponses were absent in IRF-4 knockout mice. Thus, IRF-4 is 

essential for the functions of mature B- and T-lymphocytes. 

 To analyze IRF-4 function, we searched for IRF-4-

interacting factors. A plasmid was constructed to express a 

LexA-IRF-4 fusion protein from the inducible GAL1 pro-

moter in yeast cells. When this low copy plasmid 

(pGilda/IRF-4) was introduced into the yeast strain 

NOY397, cell growth was significantly inhibited. We sup-

posed that this growth inhibition arose from interference 
with cellular factors essential for cell viability. We isolated 

several genes that could rescue the growth inhibition phe-

notype by screening a yeast genomic library. One of the 

clones, encoding the REB1 protein, interacted with IRF-4 in 

vitro. The yeast REB1 protein shares homology with the 

human transcription factor DMP1. IRF-4 was shown to in-

teract in vitro with DMP1, via its DNA binding domain. 

IRF-1 also interacted with DMP1. These results suggest that 

IRF-1 and IRF-4 might regulate target gene expression, via 

interactions with DMP1. 
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 Regulation of gene expression can occur at several 

different levels, but the activation of gene-specific 

transcription factors is considered to be fundamentally 
essential to this process. One family of transcription 
factors, the interferon regulatory factors (IRFs), con-

sists of ten members. All of the members of this fam-
ily share homology in their first 115 amino acids, en-

compassing the DNA binding domain, which contains 
a characteristic repeat of five tryptophan residues 

spaced by 10-18aa' 3 . IRFs modulate the interferon 

(IFN) response by binding to IRF response elements 
within the promoters of IFN genes and interferon-
stimulated genes, which regulate the host response to 

pathogens, cellular proliferation, cytokine signaling, 
and apoptosis. The gene encoding 1RF -4 was cloned as 

a lymphoid-specific IRF (LSIRF) 4' , expressed at all 
stages of B-cell development and in mature T cells. 

Like many other IRF-/- mice, IRF-4-deficient mice ex-
hibited severe immunodeficiencies. A normal T- and B-

cell distribution was observed at 4 to 5 weeks of age, 
but with time, IRF-4-/- mice gradually exhibited se-

vere lymphadenopathy. Both B- and T-cell activation 
were profoundly affected: serum immunoglobulin con-

centrations and antibody responses were decreased, 
and cytotoxic and antitumor responses were absent in 

IRF-4 knockout mice'). Thus IRF-4 appears to be es-
sential for the function and homeostasis of both mature 

B- and T- lymphocytes. IRF-4 and the hematopoietic-
specific Ets protein, PU.1, form complexes in B cells 

on composite elements present in immunoglobulin 
light chain (IgL) gene enhancers 6 '' ). Recently, it was 

reported that macrophages express IRF-4, and to-

gether with PU.1, these factors synergistically activated 
an IL-1 /I reporter gene'-"). IRF-4 interacts with E47, a 
component of the E2A transcription factor. In a re-

porter gene assay, IRF-4 and E47 bound together to 
the immunoglobulin K 3' enhancer region, and they 

synergistically generated a 100-fold increase in
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transcriptional activity"'. 

 DMPI is an unusual, poorly characterized transcrip-
tion factor that can induce ARF-dependent cell cycle 

arrest. DMP1 was isolated in a two-hybrid interactive 
screen using cyclin D2 as bait, and its gene encodes a 

120-130 kD nuclear phosphoprotein, with a central 
DNA-binding domain containing three Myb-like re-

peats flanked by acidic transactivation domains at 
both termini12- 15' . The human and murine orthologs 
share 95% amino-acid sequence identity, and are com-

pletely conserved throughout their Myb-like repeats"'. 
The DMP 1 protein binds to nonameric Ets consensus 

sequences in DNA (CCCG[G or T]ATGT), and competes 
with Ets-family proteins for sites that contain the 

GGA core. DNA binding by DMP 1 can be antagonized 
by the interactions with D-type cyclins, but not with 

other cyclins. DMP 1 expression induces the ARF 
tumor suppressor gene in mouse fibroblasts, leading to 

cell cycle arrest in a p53-dependent manner. Although 
DMPI-null mice did not spontaneously develop can-

cers in their first year of life, they were susceptible to 
carcinogen- and radiation- induced tumors, implying 

that by regulating ARF function, DMP 1 may have 
tumor- suppressing activities"'. Here we show that 

DMP 1 binds to IRF in vitro, and together with IRF, 
DMP1 synergistically activates the IRF target gene 

promoter.

Materials and Methods

Yeast strains and plasmids

 Assays were carried out with the yeast strains 
NOY397 (MATa, MATa, ade2-1, ura3-1, his3-11, trpl-1, 

leu2-3 112, can]-100) and Y153 (MATa, leu2-3 112, 
ura3-52, trpl -901, his3-delta200, ada2-101, gal4delta, 

gal80delta, URA3::GAL1-lacZ, LYS2::GAL-HIS3). The 
plasmid expressing GAL4DB-IRF-4 in S. cerevisiae was 
constructed by ligating the full-length IRF-4 cDNA 

into the EcoRI site of pAS2-1 (2,u origin; ADH1 pro-
moter, CLONTECH Laboratories, USA). The plasmid 

expressing LexA-IRF-4 in S. cerevisiae was constructed 
by ligating the full-length IRF-4 cDNA into the BamHI 

site of pGilda (CEN/ARS origin; GALI promoter, 
CLONTECH Laboratories, USA). Transformations were 

performed by the lithium acetate method. The LexA-
IRF-4 fusion protein was induced in the absence of 

glucose and the presence of galactose.

Complementation of yeast-growth inhibition 

 The LexA-IRF-4 transformant strain was trans-

formed with a yeast genomic library on the 2 ,u m

vector Yep13 (donated by Y. Nogi), and 40 faster-

growing colonies were isolated on minimal medium 
with 2% galactose. Among them, four clones contained 

the region between 339,100 by to 349,101 by on chro-

mosome II. We constructed several subclones from 

this region. An Nhel fragment and an Nhel-Apal frag-

ment from this clone, when cloned into Yep13, could 

not rescue the yeast-growth inhibition by IRF-4. 

However, an Xhol fragment from this clone could res-

cue yeast-growth inhibition by IRF-4. This Xhol frag-

ment contained the entire REB1 gene.

Plasmid constructs

 pcDNA3/REB1 was constructed by PCR amplifica-
tion for in vitro transcription. pGEX/IRF-4 was con-

structed by ligating the full-length IRF-4 gene into 
BamHI-EcoRI cleaved pGEX4T3. The GST-IRF-4 dele-

tion construct, pGEX/IRF-4(1-125), was constructed by 
ligating a BamHI-BsrGI fragment, cleaved from pGEX/ 

IRF-4, into pGEX4T3. pGEX/IRF-4(1-277) was con-
structed by ligating a BamHI-Ncol fragment, cleaved 
from pGEX/IRF-4, into pGEX4T3. pGEX/IRF-4(277-

450) was constructed by ligating an Ncol-EcoRI frag-
ment from pGEX/IRF-4 into pGEX4T3. pGEX/IRF-

4(125-450) was constructed by ligating a BsrGI-EcoRI 
fragment from pGEX/IRF-4 into pGEX4T3. pGEX/IRF-

4(125-277) was constructed by ligating a BsrGI-Ncol 
fragment from cleaved pGEX/IRF-4 into pGEX4T3. 

pGEX/IRF-4(1-125,277-450) was constructed by self-
ligation after BsrGI-Ncol cleavage of pGEX/IRF-4. To 

produce the of GST fusion proteins, DMPI and IRF-1 
were amplified by PCR and subcloned into pGEX-4T2. 
To construct the expression plasmids, DMPI and IRF-
1 were amplified by PCR and subcloned into pcDNA3. 

The GS T-DMPI deletion construct, pGEX/DMPI (1-172), 
was constructed by ligating a BamHI-AfIII fragment 

from pGEX/DMPI into pGEX-4T2. pGEX/DMPI (1-313) 
was constructed by ligating a BamHI-Kpnl fragment 

from pGEX/DMPI into pGEX-4T2. pGEX/DMP1(173-
458) was constructed by ligating an AfIII-Ncol frag-

ment from pGEX/DMPI into pGEX-4T2. pGEX/DMPI 

(173-756) was constructed by ligating a fragment from 
BamHI-AfIII cleaved pGEX/DMPI into pGEX-4T2. 

pGEX/DMPI (458-756) was constructed by ligating an 
Ncol-BamHI fragment from pGEX/DMPI into pGEX-
4T2. The 2'-5'OAS-Luci and GBP(-216)-Luci reporter 

plasmids were both donated by Dr. T.Yamagata26'. The 
PU.1 expression plasmid (pCMV5/PU.1) and the pIL-1 

(3 -Luci reporter plasmid were both donated by Dr. 
M.J.Fenton 9 ' 10'
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Protein expression

 Protein synthesis by in vitro transcription and trans-

lation was carried out with the TNT-coupled 
reticulocyte lysate system (Promega, WI), according to 

the manufacturer's recommendations. Newly synthe-
sized [35S]labeled proteins were analyzed by SDS-

PAGE, followed by visualization by phosphoimager 
analysis (Fuji BAS2000 phosphoimager).

In vitro protein protein interaction assay

 Escherichia coli BL21 cells harboring the various 
GST fusion constructs were grown to an OD600 of 0.5 

at 30°C, and were induced with 2 mM isopropyl fl-D-
thiogalactopyranoside (IPTG) for an additional 2h. 

Cells were harvested in PBS and lysed by sonication, 
and the lysate was cleared by centrifugation at 8,000 
X g for 10min. Cell lysates containing fusion proteins 

were incubated with 300 1 of 50% glutathione-

Sepharose beads (Pharmacia Biotech, Piscataway, NJ), 
in a final volume of 1000 ,ol, for 1 h at 4°C with gen-

tle rotation. The beads were then washed three times 
with DBT buffer (20 mM Hepes-KOH (pH 7.9), 100 

mM KC1, 0.5 mM EDTA, 20% glycerol, 0.2% Triton X-
100, 0.5 mM PMSF and 1 mM DTT), and subse-

quently, a 60 , l aliquot of IVT [35S]methionine-labeled 
target protein was added for an additional 3h. The 

beads were washed three times with 200 pl of DBT-
0.3 buffer (20 mM Hepes-KOH (pH 7.9), 300 mM KCI, 

0.5 mM EDTA, 20% glycerol, 0.2% Triton X-100, 0.5 
mM PMSF and 1 mM DTT), and the bound proteins 

were eluted and separated by 12% SDS-PAGE, fol-
lowed by visualization by phosphoimager analysis.

Madison, WI), in which the relative luciferase activi-

ties were calculated by normalizing the transf ection 
efficiency according to the renilla luciferase activities. 

All transfection experiments were performed at least 3 
times, and similar results were obtained.

Results

IRF-4 severely inhibits yeast cell growth

 To characterize the IRF-4 function, we searched for 
IRF-4-interacting factors. A plasmid was constructed 

to express GAL4-IRF-4 from the constitutive ADH1 

promoter in vivo. When this high copy plasmid (pAS2-
1/IRF-4) was introduced into the yeast strain Y153, 
cell growth was strongly inhibited (Fig.1 A). A plasmid 

was constructed to express the LexA-IRF-4 fusion pro-
tein from the inducible GALL promoter in yeast cells.

GAL4DB GAL4DB-IRF-4 

Glu+ Glu-

Cell lines, transfections, and luciferase assays

 For transfections, all plasmids were prepared by the 

alkaline-SDS method, followed by purification with 

Qiagen columns (Qiagen, Valencia, CA). HeLa and N-
Tera2 cells were cultured in Dulbecco's modified 
Eagle's medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS). For luciferase reporter assays, 
HeLa or N-Tera2 cells were seeded at a density of 2 
X 105 per 6-cm plate. Cells were transfected 18 hours 

after seeding with the effector plasmids, along with 

the reporter plasmids and pRL- f3 actin, an expression 
vector of renilla luciferase, using the FUGENETM6 

Transfection Reagent (Roche Molecular Biochemicals, 
Tokyo, Japan). The total amounts of DNA for each 

transfection were equalized by the addition of an 
empty vector. Luciferase assays were performed by 

using the Dual-Luciferase Reporter System (Promega,

LexA LexA-IRF-4 LexA LexA-IRF-4

Figure 1. IRF-4 severely inhibits yeast cell growth. A 
plasmid was constructed to express GAL4-IRF-4 from the 
constitutive ADHI promoter in vivo. When this high copy 
plasmid (pAS2-1/IRF-4) was introduced into the yeast strain 
Y153, cell growth was strongly inhibited (Fig.1 A). A plasmid 
was constructed to express a LexA-IRF-4 fusion protein from 
the inducible GALL promoter in yeast cells. When this low 
copy plasmid (pGilda/IRF-4) was introduced into the yeast 
strain NOY397, cell growth was severely inhibited (Fig. 1B). 
The LexA-IRF-4 fusion protein was induced in the absence of 
glucose and the presence of galactose.
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When this low copy plasmid (pGilda/IRF-4) was intro-
duced into the yeast strain NOY397, cell growth was 
severely inhibited (Fig. 1B). We concluded that this 

growth inhibition occurred from the interference with 
cellular factors essential for cell viability.

REB 1

CBB stain

The yeast REBI protein rescues the IRF-4 mediated 

growth inhibition

 We supposed that the yeast growth inhibition with 

IRF-4 was a consequence of interference with cellular 

factors essential for cell viability. To confirm our hy-

pothesis, the LexA-IRF-4 transformant strain was 
transformed with a yeast genomic library on a Yep l 3 

vector. We screened approximately 5 X 105 yeast 

transformants. Among 40 faster-growing colonies that 

were isolated, four clones contained the region be-

tween 339,100 by to 349,101 by on chromosome II. 

We constructed several subclones from this clone. The 

only subclone that could rescue the growth inhibition 

phenotype by IRF-4 contained the REBI gene (data 
not shown).

The REBI protein interacts with IRF-4 in vitro

 In vitro glutathione S-transferase (GST) pull-down 

experiments were carried out using full-length REBI 
and a GST-IRF-4 fusion protein (Fig. 2). The REBI 

protein interacted with IRF-4. In order to map the 
REB I -interaction domain on IRF-4, a series of deletion 

proteins was tested for their ability to interact with

1.REB1 input 

2.GST 

3.GST-IRF-4 FL 

4.GST-IRF-4 277-450 

S.GST-IRF-4 1-277

Figure 2. The REBI protein interacts with IRF-4. The 
REBI protein was prepared by in vitro transcription and 
translation in the presence of [35S]-labeled methionine. GST 

pull-down analyses of full-length REBI with GST and the 
GST-IRF-4 fusion proteins. Eluted proteins were subjected to 
SDS-PAGE. Lane 1 shows aliquots of the input radioactive 

proteins, corresponding to 10% of the amount actually used 
in each of the subsequent binding reactions.

REB 1. The N-terminal DNA binding domain contained 

in GST-IRF-4 1-277 was sufficient to mediate this in-

teraction.

DMPI interacts with IRF-4 in vitro

 The Yeast REB 1 protein shares homology with the 

human transcription factor DMPI (Table 1). Therefore, 
we sought to determine whether DMP 1 interacts with

Table 1. Protein sequence comparisons between REB 1 and hDMP 1

 Identities = 27/106(25%), positives = 57/106 (53%) 

REB1 691 INWTIVSERMGGTRSRIQCRYKW1 K: VKREAI K QT` KDDDMLWI 'EKLRDLGITEDS 
               ++ + + + + + + ++ ++ + + +++ 

hDMP1 304 VSWAAVAERVG-TRSEKQCR SKWLL YLNWK SGGTE TKEDEIN .AIL-RIAELDV. DEND 

REB1 751 VDWDELAALKPGMKLNGLELKLCYERMKKKVKGYKQKSINEISKEL 
               ++ ++ + + + +++ + + 

hDMP1 362 INWDLLAEGSSVR-SPQWLRSKWWT IKRQIANHKDVSFPVLIKGL 

 Identities = 31/89(34%), positives = 44/89 (49%) 

REB1 437 SSDRPKDNFWINIYKVLPYRSS SSIYKHMRRKYT-IFEQRGKWTAEEEQELASLC.EKEGQ 
                           + ++ + + + ++ + 

hDMP1 188 SKDERKD-FYRTI.A.IGLN-RPLFAVYRRVLRMYDDRNVGKYTPEEIEKLKELRIKHGND 

REB1 497 WAEIGKTLGRIPEDCRDRRNYVK--CGTNR 
                                  + + + 

hDMP1 246 WATIGAALGR SASSVKDRCR-LMKDTCNTGK

(+ denotes conservative amino acid substitution)
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1.input 

2.GST 

3.GST-IRF-4 FL 

4.GST-IRF-4 277-450 

5.GST-IRF-4 1-277 

6.GST-IRF-4 1-125 

7.GST-IRF-4 125-277 

8.GST-IRF-4 125-450 

9.GST-IRF-4 1-125, 

           277-450

Schematic diagram of various GST-IRF-4 fusion protein binding to DMPI

       1 450 

 GST + 

       1 125 

 GST + 

       

1 277 

 GST + 

                            277 450 

 GST -

                125 450 

 GST -

               125 277 

  GST 

       1 125 27 

  GST I I -

I.IRF-1 input 

2.GST 

3.GST-DMPI FL 

4.GST-DMP 1 1-238 

5.GST-DMPI 1-458 

6.GST-DMPI 458-761 

7.GST-DMPI 238-761 

8.size marker 

9.1RF-4 input 

1O.GST 

11.GST-DMPI FL 

12. GST-DMPI 1-238 

13. GST-DMP 1 1-458 

14.GST-DMPI 458-761 

15.GST-DMPI 238-761

Schematic diagram of various GST-DMPI fusion protein binding to IRF-1, IRF-4

Figure 3. The DMPI protein can physically interacts with 
IRF-4. (A) Schematic illustration of the domain structures of 
the fusion proteins. (B) The DMP 1 protein was prepared by in 
vitro transcription and translation in the presence of [35S]-
labeled methionine. GST pull-down analyses of full-length 
REB1 with GST and the GST-IRF-4 fusion proteins. Eluted 

proteins were subjected to SDS-PAGE. Lane 1 shows aliquots 
of the input radioactive proteins, corresponding to 10% of the 
amount actually used in each of the subsequent binding re-
actions.

IRF-4. The full-length IRF-4 and its deletion proteins 

were fused to GST, and we analyzed the ability of 
these fusion peptides, bound to glutathione-Sepharose 
beads, to retain 35S-labeled DMPI prepared by IVT 

(Fig. 3). The DMPI protein interacted with IRF-4, and 
the N-terminal DNA binding domain contained in 

GST-IRF-4 1-125 was sufficient to mediate this inter-

action. In order to map the IRF-4-interaction domain on 
DMPI, a series of DMP-1 deletion proteins was tested 

for their ability to interact with IRF-4 (Figure. 4). The 
DNA binding domain contained in GST-DMP 1 238-458 

was sufficient to mediate this interaction.

DMPI interacts with IRF-1 in vitro 

 IRF-4 shares homology with IRF-1, another IRF 

family transcription factor, and therefore we wished

       1 761 

  GST + 

       1 238 

 GST 

       

1 458 

 GST + 

                             458 761 

GST D -

                238 761 

 GST +

Figure 4. DMPI interacts with IRF-1 and IRF-4 through 
the DNA binding domain. (A) Schematic illustration of the 
domain structures of the fusion proteins. (B) The IRF-1 and 
IRF-4 proteins were prepared by in vitro transcription and 
translation in the presence of [35S]-labeled methionine. GST 
pull-down analyses of full-length IRF-1 and IRF-4 with GST 
and GST-DMP1 fusion proteins. Eluted proteins were sub-
jected to SDS-PAGE. Lane 1 shows aliquots of the input ra-
dioactive proteins, corresponding to 10% of the amounts actu-
ally used in each of the subsequent binding reactions. 

to determine whether DMPI also interacts with IRF-1. 
In vitro GST pull-down experiments, carried out using 

full-length IRF-1 and a GST-DMP1 fusion protein, re-

vealed that DMP1 also interacts with IRF-1 (Fig. 4). In 
order to map the IRF-1-interaction domain on DMP1, 
a series of deletion proteins was tested for their abil-

ity to interact with IRF-1. The DNA binding domain 
contained in GST-DMP1 238-458 was sufficient to me-

diate this interaction.

DMPI enhances IRF transcriptional activity 

 Since DMPI has the potential to bind to both IRF-1 

and IRF-4, we investigated its effect on the various 

promoters of IRF target genes. A number of 
cotransfection experiments were performed with N-
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   IRF-1 + + 
  DMP 1 + + 

C

Figure 5. DMP 1 enhances the transcriptional activities of 
IRF-1 and IRF-4. (A) HeLa cells were cotransfected with the 
IL-113 promoter-Luci reporter plasmid, with an internal con-
trol luciferase vector, together with various combinations of 
the PU.1, IRF-4, and DMP1 plasmids. Cells were harvested 48 
hours after transfection. (B) HeLa cells were cotransfected 
with the 2' 5'OAS-Luci reporter plasmid, with the internal 
control plasmid, together with various combinations of the 
IRF-1 and DMPI plasmids. (C) N-Tera2 cells were cotransfected 
with the GBP-Luci reporter plasmid, with the internal control 

plasmid, together with various combinations of the IRF-1 and 
DMPI plasmids. All transfection experiments were performed 
at least 3 times, and representative results are shown.

Tera2 cells and HeLa cells. The transcription factor 
PU.l and IRF-4 synergize to mediate transcriptional 

activation of the human IL-I9 gene. As shown in 
Fig.5, coexpression of PU.1, IRF-4, and DMPI 

synergized to induce a high level of IL-1p promoter 
activity in HeLa cells. We cotransfected HeLa cells 

with the 2'-5'OAS-Luci reporter plasmid and the IRF-1 
and DMPI expression plasmids. As shown in Fig.5, 

overexpression of IRF-1 enhanced the 2'-5'OAS(-159) 

promoter activity up to 10-fold over the basal activity. 
When DMP1 was coexpressed, the promoter activity 
was stimulated up to 20-fold over the basal activity. 

We cotransfected N-Tera2 cells with the GBP-Luci re-

porter plasmid and the IRF-1 and DMPI expression 

plasmids. IRF-1 activated the GBP(-216) promoter up 
to 6-fold over the basal activity in the N-Tera2 cells 

(Fig. 5). When DMPI was coexpressed, the promoter 
activity was stimulated up to 10-fold over the basal 
activity.

Discussion

 To clarify the function of IRF-4, we searched for 
IRF-4-interacting factors. A plasmid was constructed 

to express a LexA-IRF-4 fusion protein from the 
inducible GAL] promoter in yeast cells. When this 

low copy plasmid (pGilda/IRF-4) was introduced into 
the yeast strain NOY397, cell growth was severely in-

hibited. Our results are similar to those obtained by 
Berger et al."', who reported that the expression of 

high levels of GAL4-VP16 strongly inhibited the 

growth of yeast cells. They showed that this inhibi-
tion resulted from the trapping of essential, general 
transcription factors at genomic sites to which GAL4 

would bind. We supposed that the yeast growth inhi-
bition by IRF-4 was a consequence of interference 

with cellular factors essential for cell viability. To 
confirm our hypothesis, we screened a yeast genomic 

library, using the methods for complementation of 

yeast-growth inhibition. This method is a newly devel-
oped genetic strategy. 

 We isolated the REB1 gene, which could rescue the 

IRF-4-mediated growth inhibition phenotype. REB 1 
not only rescued the growth inhibition by IRF-4, but 

also in vitro-translated REB 1 bound directly to the 
GST-IRF-4 fusion protein. The Saccharomyces cerevisiae 

REB 1 is a DNA binding protein that has been impli-
cated in the activation of transcription by RNA 

polymerase II, the termination of transcription by 
RNA polymerase I, and the organization of nucleosomes. 

REB1 is an essential protein for yeast cell growth, and 
contains an unusual DNA binding region, consisting
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of two Myb-like domains separated by nearly 150 

amino acids","). 
 The yeast REB 1 protein shares homology with the 

human transcription factor DMP 1. DMP 1 was isolated 
in a two-hybrid interactive screen using cyclin D2 as 

bait, and it encodes a 120-130 kD nuclear 

phosphoprotein, with a central DNA-binding domain 
containing three Myb-like repeats flanked by acidic 

transactivation domains at both termini. 
 We have demonstrated that the DMP1 interacts 

with IRF-4. From a deletion mutant analysis, we 
found that the N-terminal DNA binding domain (1-

125) of IRF-4 and the DNA binding domain (238-458) 
of DMP1 were sufficient to mediate this interaction. 

Since IRF-4 shares homology with IRF-1, another IRF 
family transcription factor, we postulated that DMP 1 

also interacts with IRF-1. Using GST pull-down ex-

periments, we confirmed that DMPI indeed interacts 
with IRF-1. In order to map the IRF-1-interaction do-
main on DMP1, a series of deletion proteins was 

tested for their ability to interact with IRF-1. Similar 
to the results with IRF-4, the DNA binding domain 

(238-458) of DMP 1 was sufficient to mediate this in-
teraction. 

 Recent studies have further established the role of 
IRF-1 as a tumor suppressor. IRF-1 expression reverts 

the tumorigenic phenotype exerted by the c-myc and 
fosB oncogenes21. The IRF-1 gene maps to chromo-

some 5q31.1, a region that was consistently deleted at 
one or both alleles in each of 13 cases of leukemia 

and preleukemic myelodysplasia22'. Furthermore, bone 
marrow and peripheral mononuclear cells from pa-

tients with myelodysplastic syndrome (MDS) or leuke-
mia secondary to MDS preferentially express an exon-

skipped IRF-1 mRNA, which lacks exons 2 and 323, 24' 
The tumor suppressor function of IRF-1 was further 

assessed in IRF-1 knockout mice. Cells from mice defi-
cient in IRF-1 are susceptible to transformation by the 
ras oncogene. The DMP1 gene is located on chromo-

some 7g21, which is often deleted as a part of the 7q-
minus and monosomy 7 abnormalities characteristic of 

human acute myelocytic leukemia and MDS. When 
DMP1-null MEFs were infected with viruses encoding 

oncogenic Ha-Ras, they formed numerous transformed 

foci25a. IRF-1 and DMPI are important genes that are 
involved in the proliferation and differentiation of 
normal cells. Our data suggest that both proteins in-

teract with each other, and together they may control 

the expression of genes involved in cellular prolifera-
tion and differentiation. IRF4 is constitutively ex-

pressed in adult T-cell leukemia (ATL)-derived cell 
lines, which were infected with human T-cell leukemia 

virus type-I26, 27) . The relationship between IRF-4

expression and oncogenicity is further highlighted by 

the observation of chromosomal translocations at (6; 
14) (p25; q32), in some patients with multiple myeloma. 

The translocation juxtaposes the immunoglobulin heavy-
chain (IgH) locus to MUMI (multiple myeloma 

oncogene 1); the MUM-1 locus at 6p25 is virtually identi-
cal to IRF-4. As a result, the IRF-4 gene is overexpressed. 

IRF-4 was suggested to be involved in tumorigenesis, 
because the overexpression of IRF-4 caused the trans-
formation of Rat-1 fibroblasts in vitro23'. 

 Since DMPI could bind to IRF-1 and IRF-4 in vitro, 
we reasoned that DMP1 could bind IRF family mem-

bers in vivo as well. However, we could not detect the 
association of either IRF-1 or IRF-4 with DMPI in vivo. 

Given the co-stimulatory activity of DMP 1 on the IRF 
target gene in vivo, we could exclude the possibility 

that we merely detected an artifactual association of 
DMP 1 in vitro. Instead, our inability to detect in vivo 

association could be due to the lack of suitable anti-
bodies against IRF members or DMP 1. Another possi-

bility is the presence of another associated protein 
that hinders the accessibility of antibodies to the IRF-

DMP1 complex in vivo. Since the importance of IRF 
family members in many biological settings is gaining 

recognition, the factors that associate with and modify 
IRF members should be elucidated in the near future. 

We suggest that DMPI is one of the indispensable fac-
tors involved in the function of IRF family members.
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