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Abstract

The typical nonparametric method of pattern recog-
nition “k-nearest neighbor rule (kNN)” is carried out
by counting the labels of k-nearest training samples
to a test sample. This method collects the k-nearest
neighbors without taking into account a class, and it
outputs the class of the test sample by using only the la-
bels of neighborhoods. This paper presents a classifier
that outputs the class of a test sample by measuring the
distance between the test sample and the average pat-
terns, which are calculated using the k-nearest neigh-
bors belonging to individual classes. A kernel method
can be applied to this classifier for improving recogni-
tion rates. The performance of the proposed method is
verified by experiments with benchmark data sets.

1. Introduction

The nonparametric method of pattern recognition k-
nearest neighbor rule (kNN) has been implemented on
pattern recognition systems because of its good perfor-
mance and simple algorithm. In £NN, test samples are
classified by counting the labels of k-closest training
samples [1, 2]. This approach includes the following
features: 1) It has been proved that the error rate of
kNN approaches the Bayes error when both the num-
ber of training samples and the value of % are infinite.
2) We can design the classifier by kNN even if train-
ing samples are few. 3) We can implement kNN when
classes are overlapped with each other. 4) kNN can be
implemented easily due to its simple algorithm. The
main drawback to kNN is that recognition rates dete-
riorate when the dimensionality of feature vectors is
large [3]. For example, Figure 1 shows the example
of a test sample from the MNIST dataset and the five
nearest training samples, which are evaluated using the
Euclidean distance. Because the selected five training
samples include the three samples of class 8, so the test
sample has been misclassified to ‘8’.

For reducing this type of misclassification, it is ef-
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Figure 1. A test sample (leftmost) and its
five nearest training samples.

fective to use the classification method based on com-
parison between the test sample and the global data dis-
tribution of individual classes such as Linear Subspace
Method (LSM) [4]. In LSM, the data distribution of
each class is represented by subspaces. The class of
a test sample is determined by computing the norm of
the projected test sample on the subspace. The weak-
ness of this method is that it cannot represent the local
distribution of patterns, so recognition rates decrease
when the data distribution is not normal distribution.

This paper presents an alternative approach similar
to kNN that classifies a test sample by measuring the
distance between the test sample and the average pat-
terns, which are calculated using the k-nearest neigh-
bors of each class. This approach can be easily imple-
mented due to its simple algorithm and can overcome
the difficulty of NN that recognition rates deteriorate
when the dimensionality of feature vectors increases.
In addition, we show how to apply kernel methods to
the proposed method. The performance of the pro-
posed method is verified by experiments with hand-
written digit patterns and the benchmark data sets of
binary classification problems.

2. Classification using average patterns of
categorical £-nearest neighbors

In this section, we observe the nature of the k-
nearest neighbors of a test sample for overcoming the
difficulties found in kNN and LSM. Figure 2 illustrates
the five nearest training samples of each class (only
classes 3, 5 and 8 are shown). They consist of various
size and line-thickness images. Note that the training
samples of the classes 3 and 8 contain the patterns that
are not similar to the test sample. To evaluate the rela-
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Figure 2. The five nearest training sam-
ples of each class. At the right column
are the average samples of them.
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Figure 3. Relation between . and dis-
tance.

tionship of the test sample and its neighboring ones, we
computed the average patterns of the k-nearest neigh-
bors for each class (see the rightmost in Figure 2). It
seems that the average pattern for the class 5 is sim-
ilar to the test sample, but other average patterns are
not. Hence, we measured the distance between the test
sample and the average patterns. Figure 3 shows the re-
lationship between the number of k-nearest neighbors
and the distance from the test sample to the average
patterns. This figure indicates that the average pattern
for the class 5 is closest to the test sample, and the val-
ues of distance for the classes 3 and 8 never drop as
low as that of the class 5. In other words, the distance
between the test sample and the average pattern of the
class 5 becomes smaller than the other classes because
the training samples belonging to the class 5 are uni-
formly distributed around the test sample.

According to the above observation and discussion,
we propose a classifier that outputs the class of a test
sample by measuring the distance between the test
sample and the average patterns, which are calculated
using the k-nearest neighbors of each class.

2.1. Formulation

Let :13‘27 = [x‘gl, ...,x‘gd]T(i = 1,...,n;) be the d-
dimensional training sample belonging to class wj,
where n; is the number of the training samples be-
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longing to the class w;. When a test sample ¢ =
[q1, ..., q4]" is given, the class of the test sample (de-
noted by w) is determined by

2
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where X; is the set of the k-nearest samples which be-
long to the class w;. The following relationship is es-
tablished between the individual samples of X;:

o] — all” < ||z} —ql* < ... <[z}, —all”. (@)

This classification approach employs % as a parameter.
In this paper, we call this method CAP (classification
using Categorical Average Patterns). When &k =1, CAP
coincides with the nearest neighbor rule (1-NN).
2.2. Kernel CAP

In recent years much research has been conducted
on kernel methods (e.g. [5, 6]), to which CAP de-
scribed above can be applied. When we apply the ker-
nel method to CAP, the class of the test sample is de-
termined by

2

. 1 j
w= argnbm HE Z;; S(x]) — P(q) , 3

where ®(-) is a mapping function that maps sam-
ples from an input space to a high-dimensional space.
We represent an inner product in the high-dimensional
space (®(x;), ®(2;)) by an appropriate Mercer kernel
K(@;,x;). Hence, the square of the Euclidean dis-
tance between the test sample g and the training sample
! in the high-dimensional space is written as

() = @ (a)] |
= (®(af), b)) = 2(x]). 9(a)) + (¥(a). P(q)

= K(2],2]) — 2K (2], q) + K(q,q)- )
In the same way, the equation (3) can be expanded as

1 o 9 o i
@ 2 K@heh)-7 ) Kl g+Kaq.
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In this equation and the equation (4), the factor K (q, q)
can be ignored, because it is the common term in
all classes. In short, CAP that uses kernel meth-
ods is conducted in the following manner: First,
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Figure 4. Relation between % and errors.
Table 1. Results on MNIST.

method test [%] | training [%] | time [s]
ENN (k = 5) 2.39 1.43 0.73
DWANN (k =4) | 2.16 0 0.78
CLAFIC (k = 30) | 3.68 3.87 0.002
CAP (k = 11) 1.28 0.50 0.71
KCAP (k = 11) 1.27 0.37 0.87
dl = K(z!, a]) — 2K (a?, q) is calculated for each

class, and the k-nearest training samples x!(i =
1,...,k) are selected for each class. Second, the
class of the test sample is determined by measuring
the distance between the test sample and the average
patterns of each class in a high-dimensional space:
Zl,mexj K(xf,a,)/k* — QZier K(x{,q)/k. In
this paper, we call this method KCAP (Kernel CAP).
Throughout this paper we use the Gaussian kernel with

width parameter o: K (27, q) = exp(—a|la? — q|%).
3. Experiments

We tested the proposed method on the handwritten
digit datasets MNIST and USPS. Firstly, the proper-
ties of the proposed method were examined using the
MNIST dataset. The MNIST dataset consists of 60,000
training and 10,000 test images. For feature extraction,
we use for peripheral direction contributivity feature
[7, 8] with 256 dimensions.

3.1 Influence of parameter % on error rates

First, the relationship between % and error rates was
examined. Figure 4 shows the results of XNN and CAP.
The result of KCAP was not included in this figure, be-
cause it was almost same as that of CAP. As shown in
the figure, the error rates of kNN against test and train-
ing samples increase as the & increases. In contrast, the
test error of CAP decreases while % is less than or equal
to about 10. In addition, the increasing rate of the train-
ing error of CAP is smaller than that of XNN. Hence,
selection of £ on CAP is easier than that on £NN.
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Figure 5. Relationship between the num-

ber of dimensions and error rates.
Table 2. Results on USPS.

method test [%] | training [%] | time [s]
ENN (k = 1) 5.2 0 0.08
DWEKNN (k = 3) | 5.13 0 0.09
CLAFIC (k = 15) 4.73 1.71 0.001
CAP (k = 12) 3.54 0.59 0.08
KCAP (k = 12) 3.44 0.43 0.13

Table 1 lists the lowest error rates and average
query-time (i.e., execution time per one test sam-
ple) of each method: kNN, Distance-Weighted £ANN
(DWENN), the basic LSM method CLAFIC [4], CAP
and KCAP. For CLAFIC, the % indicates the dimen-
sionality of subspaces. For KCAP, o = 70 was used
for the parameter of the Gaussian kernel. The average
query-time was obtained using a Pentium 3.06 GHz
with 1.0 GB of RAM memory. From the above table,
we conclude that the computational costs of CAP and
KCAP are high, but the error rates of them significantly
are lower than those of other methods.

3.2. Influence of dimensionality on error rates

Next, the relationship between the dimensionality
of features and error rates was examined. In this exper-
iment, dimension reduction was applied to the train-
ing set (60000) using the Karhunen-Loéve expansion
technique. The variation in error rates was examined
with the dimensionality ranging from 8 to 256. Fig-
ure 5 shows the results. As shown in the figure, CAP
achieved lower error rates than KNN across all the
range. Also note that the test error rate of sNN reaches
its minimum when the number of dimensions is 32,
while that of CAP decreases after it. This empirical
analysis showed that CAP is effective for processing
high-dimensional patterns.

3.3. Experimental results on USPS

Secondly, we tested the proposed method on the

USPS dataset. This dataset is more difficult to recog-
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Table 3. Error rates [%].

dataset kNN CAP KCAP
Banana 11.34+0.6 | 11.8£05 | 10.7+0.5
B.Cancer | 25.3+4.0 | 26.5+4.5 | 259444
Diabetes | 25.14£1.7 | 2454+1.8 | 23.7+1.9
German | 25.242.3 | 246£23 | 244425
Heart 15.74+3.3 | 159434 | 16.1£3.5
Image 3.44£0.5 33+£06 | 33406
Ringnorm | 35.0+ 1.4 | 12.0£0.8 | 1.4+£0.1
FSonar | 34.84+1.9 | 344417 |3444+1.7
Splice 262421 | 13.5+£0.8 | 12.9+0.7
Thyroid 44422 44422 42421
Titanic 228+1.1 | 23.1+£19 | 228£1.5
Twonorm 2.5+£0.2 244+0.1 24+0.1
Waveform | 10.74+1.0 | 10.24£05 | 9.9+0.6

nize than MNIST. The USPS dataset consists of 7,291
training and 2,007 test images. Table 2 lists the low-
est error rates and average query-time of each method.
For KCAP, o = 130 was used for the parameter of the
Gaussian kernel. The result showed that the proposed
method outperformed all the other investigated tech-
niques. Furthermore, the errors of KCAP were lower
than those of CAP, i.e., CAP with kernel methods im-
proved its classification abilities.

3.4. Experimental results on other benchmarks

Finally, we tested the proposed method on the
benchmark data of binary classification problems (see
[9, 10] for more details). Table 3 lists the lowest av-
erage test error rates and its standard deviations. Due
to lack of space, we showed the results of kNN, CAP
and KCAP only (for comparison to other methods cf.
[9, 10]). The best values of each set are depicted
in boldface type. This table showed that the results
of CAP and KCAP are better than those of 4NN in
many cases. In addition, the error rates of KCAP were
lower than those of CAP, i.e., the use of kernel methods
helped improve the recognition performance of CAP.

4. Conclusions

This paper has presented an algorithm that outputs
the class of a test sample by measuring the distance be-
tween the test sample and the average patterns of the
k-nearest neighbors of each class. It was verified by
the experiments using benchmark data sets that the pro-
posed method achieved higher recognition rates than
other nonparametric method such as kNN and LSM.

The computational cost of the proposed method is
high as well as that of kNN. For instance, the com-
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putational costs of kNN and CAP are approximately
O((enj)?d) and O(cn;?d) respectively, where c is the
number of classes. However, the proposed method
can compute the distance between test samples and the
average patterns of individual classes independently.
Hence, it is able to reduce the number of candidate
classes by performing rough classification. In addition,
when training samples are added, LSM and neural net-
works such as Support Vector Machine require recalcu-
lating the subspace and re-learning support vectors re-
spectively, but the proposed method only needs to add
them. In other words, there is no need to reconstruct
systems when training samples are added.

In short, the proposed method includes the follow-
ing advantages: 1) Our methods can achieve lower
error rates than other nonparametric methods such as
kNN and LSM. 2) The proposed method can achieve
low error rates even if the dimensionality of feature
vectors is large. Hence, it is possible to improve recog-
nition rates by employing kernel methods to CAP. 3)
We can implement CAP and KCAP easily because of
its simple algorithms. 4) There is no need to recon-
struct systems when samples are added.
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