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Abstract

Modeling and simulation of a cellular system on com-
puters are now becoming an essential process in biologi-
cal researches. However, modern PCs can’t provide enough
performance to simulate large-scale biochemical networks.
ReCSiP is the alternative FPGA-based solution for bio-
chemical simulations. In this paper, the novel method of bio-
chemical simulation with multiple reaction models on an
FPGA is proposed. The method generates optimal circuit
and its optimal schedule for each simulation models writ-
ten in SBML, the standard markup language in systems bi-
ology. ReCSiP has a Xilinx’s XC2VP70 and achieved over
20-fold speedup compared to Intel’s PentiumIII 1.13GHz.
Keywords: Biochemical simulation, FPGA, SBML, Multi-
model, ODE

1. Introduction

Biochemical simulation, or the simulation of a cellu-
lar system is one of the major applications in bioinformat-
ics. Various biochemical simulators were developed since
KINSIM[1] was developed in 1983. Some of recent simula-
tors like E-Cell[9] and Virtual Cell[4] are called “whole-cell
simulator” because their targets are large-scale networks
such as whole cell models.

The whole-cell simulation is a major challenge in both
biology and computer science because it requires large
computational resources and detailed description of the tar-
get system. Computers are getting faster and faster, how-
ever, it’s not sufficient to analyze the behavior of biochem-
ical models in detail. For example, 2 seconds simulation of
a nerve cell require 2 days on Virtual Cell using a worksta-
tion with MIPS R8000[8].

ReCSiP[5] is an FPGA-based, compact, high-throughput
computing platform to address the problem about computa-
tional time.

1.1. Biochemical Simulation

The purpose of biochemical simulation is to know the
behavior of the target reaction pathway. The behavior is ex-
pressed as the change of concentration of substances in time
series.

Before starting the simulation, the following things have
to be known:

• the reaction pathway map of the target system, as the
example in Fig.1. This includes the list of substances
and reactions in the system,
• initial concentration of all substances in the target sys-

tem, and
• kinetic parameters of all reactions in the target system.

It’s a kind of initial-value problem, which solves a set of
kinetic formulas (usually expressed as ODEs: an example is
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Figure 1. An Example of Reaction Pathway
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described in 3.2.2) which correspond to the set of reaction
models. By the repetition of numerical integration at every
timestep, the concentration curve in the time series can be
obtained.

1.2. SBML/SBW

Software infrastructure to enable integration of model-
ing, simulation and analysis is essential in modern biol-
ogy. As the solution of this problem, SBML (Systems Bi-
ology Markup Language)[2] and SBW (Systems Biology
Workbench)[7] have been developed.

SBML is an open, XML-based language for represent-
ing biochemical reaction networks. It’s now supported by
more than 65 software tools1 such as modeling tools, simu-
lators, analyzers and databases. SBML-compliant tools can
share the models with each other.

SBW is a modular, broker-based, message-passing
framework for simplified intercommunication between ap-
plications. This enables communication among software
tools. For example, simulators can be invoked from mod-
eling tools. There are many SBW-enabled modules2, in-
cluding ODE-based simulator, stochastic simulator, Matlab
translator, bifurcation analysis tool and optimization mod-
ule.

1.3. ReCSiP

ReCSiP is an FPGA-based high-throughput biochemical
simulation platform. Some prototype modules for biochem-
ical simulations are already implemented on FPGAs[6][10],
and they achieved about 10 to 200-fold speedup compared
to modern microprocessors.

It runs the modules called “solvers” which calculate the
velocity of biochemical reactions. By connecting the solvers
with communication switches, it’s possible to simulate bio-
chemical systems with some different types of reaction.
ReCSiP achieves the best performance by generating op-
timal set of solvers for each target system.

2. Software Organization

Although ReCSiP is an FPGA-based system, the soft-
ware components, especially the optimizer and scheduler il-
lustrated in Fig.2 take major roles. They import SBML de-
scription, then generate the circuit on FPGA and dataset to
be loaded in the circuit. These components are called from
SBW interface of ReCSiP.

1 SBML-compliant tools are listed on http://www.sbml.org/.
2 SBW-compliant tools are listed on http://www.sbw-sbml.org/.
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Figure 2. Overview of the FPGA-based Simula-
tor

2.1. Optimizer and Scheduler

As illustrated in Fig.2, the optimizer generates a set of
solvers which is capable of processing all kinetic formulas
in the target system. The optimizer has 2 approaches to do
this: to generate the “Optimal Set” of solvers, or select the
“Best One” from pre-defined sets of solvers.

Optimal set consists of only the necessary solver mod-
ules. Some of them are placed two or more in the set to
improve the throughput by parallelization. In this case, the
optimizer passes the RTL description of solver set to CAD
tools. However, not all biologists have CAD tools for FPGA
on their computers. Moreover, CAD tools consume too long
time for synthesis, placement and routing. To avoid these
problems, the optimizer can select a solver set from the
solver set repository. The solver set repository is a pool
of pre-defined, pre-placed-and-routed set of solvers on the
web.

The scheduler generates the list of reactions and param-
eter set for the set of solvers given by the optimizer. It also
generates the control code for the communication switch in
the set of solver.

The selected solver set by the optimizer is loaded as the
configuration data for the FPGA, then the dataset gener-
ated by the scheduler is loaded on the memory blocks in
the solver set on the FPGA before running simulation.
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Figure 4. Concept of Pathway RAM

3. Hardware Organization

3.1. ReCSiP-2 Board

The hardware part of ReCSiP, or the ReCSiP-2 board is a
PCI board which has a Xilinx’s XC2VP70 as its core, and 8
chips of 18Mbit QDR-I SRAM. Two multi-gigabit serial in-
terfaces, a DDR-SDRAM SO-DIMM socket and a physical
random number generator are on the board as well.

3.2. Structure of Solvers

As illustrated in Fig.3, each solver consists of a solver
core, a controller, a set of memory blocks and an adder. The
solver core is the reaction-specific circuit to solve the ki-
netic formula, and the other components, including mem-
ory set, are the controlling facilities to run a simulation.

3.2.1. Solver Controller The role of Solver Controller is
managing the input/output of the solver core.

There are 4 sets of memory blocks in a solver and are im-
plemented on the BlockRAM in Xilinx’s FPGAs. The de-
tails are as bellow:

• [X] RAM, to store the concentration of reactants,
• k RAM, which has the rate constants,
• d[X] RAM, to store the derivatives of [X], and
• Pathway RAM, which has the list of reactions.

The functionality of the controller is realized by “Path-
way RAM” which is an array of pointers for the list of reac-
tions, as illustrated in Fig.4. [X] RAM is read by the order

described in Pathway RAM, and the data is sent to Solver
Core. By this simple mechanism, a set of reactions can be
solved3.

Solver Controller also manages the output of its core,
and its process is divided into 2 phases. In phase 1, the re-
sult from core is accumulated in d[X] RAM. In phase 2 the
derivatives in d[X] RAM are added to [X] RAM, to go to
the next timestep.

3.2.2. Solver Core Solver cores are the modules to calcu-
late the reaction rates from concentrations of reactants. Usu-
ally they’re consisting of some IEEE-754 compliant single-
precision pipelined FP arithmetic units.

For example, MM-Euler is a solver core that is based
on irreversible Michaelis-Menten reaction model and Eu-
ler’s method of numerical integration. This is a very sim-
ple model of enzyme kinetics as used in Fig.4, and it can be
written as Scheme (1).

E + S
k1−−−→←−−−
k2

ES
k3−−−→E + P (1)

From this scheme, the velocity of concentration change can
be expressed as the following ODEs.

d[S ]
dt

= −k1[S ][E] + k2[ES ] (2)

d[P]
dt

= k3[ES ] (3)

d[E]
dt

= −k1[S ][E] + (k2 + k3)[ES ] (4)

d[ES ]
dt

= k1[S ][E] − (k2 + k3)[ES ] (5)

MM-Euler has 2 FP multipliers and 1 FP adder to solve
these kinetic formulas. Implementation of other solver cores
for reaction models which are defined as “predefined func-
tions” in SBML level 1[3] are now going on.

3.2.3. Evaluation MM-Euler occupies about 5% of the
total slices and 8% of the dedicated multipliers. Its maxi-
mum operating frequency was 112.56[MHz], without any
additional circuits. The solver requires 4 clock cycles for
each reaction, so the throughput is 28.14[Mreactions/sec.],
which is about 2.8 times faster than Intel PentiumIII run-
ning at 1.13GHz.

3.3. Solver-to-Solver Communication

When the target pathway has some different kind of re-
actions, or the number of reactions is too large, the path-
way have to be divided onto some solvers. The solvers have
to communicate with each other to keep the consistency of
the contents in [X] RAM, since some reactants are shared
among some solvers (S3, S6, S7, S8 in Fig.1) in such cases.
This communication facility is the key of the multi-model
simulation on an FPGA.

3 Note that this figure is simplified for description.
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Figure 5. Structure of the Switch

# of Total SW ratio
Solvers (%) (%)

3 17.89 3.60
4 24.21 5.09
5 30.24 4.85
6 36.35 6.78
7 42.74 6.61
8 48.94 6.35
9 54.71 6.58

10 62.19 6.69

Table 1. Resource Utilization

3.3.1. Implementation The solvers are connected to
the crossbar switch with transceiver modules, as shown
in Fig.5. Transceivers send and receive data between the
solver and crossbar. It can access [X] RAM or d[X] RAM
without any interruption on solver’s process itself, be-
cause the memory blocks are dual-ported. The crossbar is a
bi-directional, multicast-capable switch.

Each transceiver has Code RAM, which programs the
transaction between solver and crossbar, based on the same
idea to Pathway RAM.

3.3.2. Evaluation The communication facility was also
written in Verilog-HDL, and was synthesized, placed and
routed with several MM-Euler based solvers. “Total” in ta-
ble 1 is the area ratio of total design (including the solvers
and the switch) in the FPGA, Xilinx’s XC2VP70. “SW ra-
tio” in the table is the area percentage of the switch in the
design. It’s about 4 to 6% of overall circuit size, and quite
reasonable in size.

Maximum operating frequency of these circuits were
around 90 to 93MHz, and the system with 10 solvers
achieved 230[Mreaction/sec.]. It’s about 22 times faster
than Intel Pentium III running at 1.13GHz.

4. Summary and Future Works

The overview and preliminary evaluation of the FPGA-
based biochemical simulator, ReCSiP was described. It
achieves more than 20 times as fast as software-based sim-
ulators by generating optimal circuit and optimal schedule
of solvers for each target system models.

The front-end part of ReCSiP, to support SBML/SBW is
now under development, and will be available April 2005.
The back-end part of ReCSiP, the solvers and solver-to-
solver communication facility is already available, and the
solver library is continuing to grow up.
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