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Abstract- Preparation of azabicyclo-N-oxyls and the electrochemical oxidation of 
alcohols using them as mediators have been exploited. This oxidation was applicable to 
a transformation of sterically hindered secondary alcohols into the corresponding 
ketones in high yields. 
 
The oxidation of primary or secondary alcohols to the corresponding aldehydes or 
ketones is an important transformation in organic synthesis. Recently, from the 
environmental and atom-economical point of view, a lot of catalytic methods using 
clean oxidants have been exploited.1 A versatile organocatalyst 
2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) has been utilized in chemical2 and 
electrochemical oxidation3 of alcohols as a mediator. TEMPO is a stable but sterically 
hindered radical because of the four methyl groups adjacent to the nitroxyl group. 
Therefore TEMPO is not suitable for the oxidation of sterically hindered alcohols. In 
2006, Iwabuchi and co-workers reported an excellent oxidation of sterically hindered 
alcohols using 1-methyl-2-azaadamantane-N-oxyl (1-Me-AZADO), which is one of the 
sterically less hindered class of nitroxyl radicals (Fig. 1).4  
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Figure 1. Structures of some N-oxyls.
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Several azabicyclo-N-oxyls5 (Fig. 1) have been reported. They exist as stable radicals 
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because of Bredt’s rule.6 Although their physicochemical properties were examined, the 
possibility for them acting as mediators for the oxidation of alcohols has hardly been 
known.7 We wish to report herein an efficient electrochemical oxidation of various 
alcohols mediated by azabicyclo-N-oxyls. The azabicyclo skeletons were prepared 
according with the method reported by us as shown in Eq. 1. Namely, the 
electrochemical oxidation of N-methoxycarbonyl-pyrrolidine (1) and -piperidine (2) 
afforded dimethoxylated compounds 3 and 4,8 which were easily transformed into
azabicyclo compounds 5 and 6, respectively, by TiCl4-catalyzed one-pot cyclization 
with allyltrimethylsilane. Finally, reductive dechlorination of 5 and 6 afforded 7 and 8, 
respectively.9  
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Preparation of 3-chloro-8-azabicyclo[3.2.1]octane-N-oxyl (9) is shown in Eq. 2. That is, 
deprotection of 5 by utilizing Me3SiI followed by Na2WO4-catalyzed oxidation using 
urea hydrogen peroxide (UHP) afforded a mixture of 9 and the corresponding 
hydroxylamine 10. Also, a mixture of 8-azabicyclo[3.2.1]octane-N-oxyl (11)5a and the 
corresponding hydroxylamine 1210 was synthesized from 7. In a similar manner, 
3-chloro-9-azabicyclo[3.3.1]octane-N-oxyl (13)11,12 and 9-azabicyclo[3. 
3.1]octane-N-oxyl (14)5f without any generation of the hydroxylamines were 
synthesized from 6 and 8 respectively (Eq. 3). 
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Cyclic voltammograms for a mixture of N-oxyl 9 and hydroxylamine 10 (9+10) showed 
reversible wave pattern similar to that for TEMPO. This strongly suggests that 
azabicyclo-N-oxyls could play the role of an oxidation mediator just like TEMPO (Fig. 
2).13  
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Figure 2. Cyclic voltammograms for 9+10 and TEMPO.
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The electrochemical oxidation of 1-phenyl-2-propanol (15) using azabicyclo-N-oxyls as 



a mediator was carried out under similar conditions used by Torii and co-workers for 
TEMPO (Eq. 4).3c That is, the oxidation was conducted using platinum electrodes in an 
undivided beaker-type cell, containing a catalytic amount of (9+10), sodium halides 
(NaX), and a mixture of CH2Cl2 and sat. aqueous NaHCO3 as solvent, at a constant 
current (50 mA).14 The results are summarized in Table 1. Oxidation of 15 did not 
proceed at all in the absence of (9+10) (Entry 1). In the presence of 0.1 equiv of (9+10) 
together with NaBr, the oxidation of 15 afforded 1-phenyl-2-propanone (16) 
quantitatively (Entry 2). Whereas using NaCl in place of NaBr did not promote the 
oxidation (Entry 3), use of NaI led to poor yield compared to that of NaBr (28%, Entry 
4). These results mean that Br- ion is the most suitable halogen mediator for this 
electrochemical oxidation. Using 0.02 to 0.01 equiv of (9+10) slightly reduced the yield 
of 16 (93%, Entries 5 and 6). 
 

OH
CH2Cl2/sat. aq. NaHCO3, rt

-[e], 3.0 F/mol, NaX (4.0 equiv)
O

15 16

(4)
(9+10)

 
 

Equiv of 
(9+10)

0.1

0.02
0.01

Yield of 16 (%)

99

93
93

Entry

0.1 28

1

3
4
5

2

Sodium halide

0 0

0.1 0NaCl

6

NaBr

NaBr
NaBr

NaI

NaBr

Table 1. Electrochemical oxidation of 1-phenyl-2-propanol (15)

 
 
Other N-oxyls (11+12), 13, 14, and 175d,15 were also good oxidation catalysts just like 
TEMPO (Eq. 5). 
 

CH2Cl2/sat. aq. NaHCO3, rt

 -[e], 3.0 F/mol, NaBr (4.0 equiv)
15 16 (5)

  (11+12) : 99%
          13  : 80%

        14  : 99%   
        17  : 99%
TEMPO : 92%
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Moreover, isolated N-hydroxylamine 10 catalyzed the electrochemical oxidation of 15 



as efficiently as N-oxyl (9+10) (Eq. 6). 
 

CH2Cl2/sat. aq. NaHCO3, rt

 -[e], 3.0 F/mol, NaBr (4.0 equiv)
15 16 (6)

93% yield
N-hydroxylamine 10 (0.1 equiv)

 
 
Table 2 shows the electrochemical oxidation of various primary and secondary alcohols 
18-22 using azabicyclo-N-oxyls (9+10), (11+12), 13, 14, 17, and TEMPO as mediators 
(Eq. 7). All N-oxyls had excellent catalytic activity just like TEMPO toward primary 
alcohols 18 and 19 (Entries 1 and 2), and secondary alcohols 20-22 (Entries 3-5) to 
afford the corresponding carbonyl compounds 23-27 in high yield, respectively. 
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Table 2. Electrochemical oxidation of various alcohols 18-22
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Table 3 summarizes the electrochemical oxidation of sterically hindered secondary 



alcohols 28-31 (Eq. 8). In the case of TEMPO, the oxidized products 32-35 were 
obtained in low to moderate yield (23-61%), while N-oxyls (9+10), (11+12), 13, 14, and 
17 played a better role than TEMPO (Entries 1-4). These results prove that 
azabicylo-N-oxyls are efficient mediators for the oxidation of sterically hindered 
alcohols because they are less hindered than TEMPO.  
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Table 3. Electrochemical oxidation of sterically hindered alcohols 28-31
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Azabicyclo-N-oxyls (9+10), (11+12), 13, 14, and 17 were also effective in the chemical 
oxidation (Eq. 9).17-19 That is, l-menthol (29) was almost quantitatively oxidized by 
using these N-oxyls, while in the case of TEMPO the yield of l-menthone (33) was only 
22%. 

CH2Cl2 / H2O,  rt, 24 h

NaIO4 (1.2 equiv), NaBr (0.1 equiv)
(9+10), (11+12), 13, 14, 17, or TEMPO (0.1 equiv)

OH O
(9)

29 33

  (9+11): 99%
(11+12): 92%
     13  :   99%
     14  :   99%   
     17 :    99%
TEMPO: 22%  

In summary, azabicyclo-N-oxyls (9+10), (11+12), 13, 14, and 17 were applicable to 



electrochemical oxidation of various alcohols as mediators. Especially in the oxidation 
of sterically hindered secondary alcohols to the corresponding ketones, these N-oxyls 
were much more effective than TEMPO. Preparation of chiral azabicyclo-N-oxyls and 
enantiospecific oxidation of secondary alcohols using them as mediators are now 
underway. 
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