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Abstract- Asymmetric oxidation of 1,2-diols using N-bromosuccinimide (NBS) in the 
presence of copper(II) triflate and (R,R)-Ph-BOX has been exploited. This oxidation 
was applicable to asymmetric desymmetrization of meso-hydrobenzoin and kinetic 
resolution of dl-hydrobenzoin and racemic-cycloalkane-cis-1,2-diols to afford optically 
active α-ketoalcohols with good to high enantiomeric excess. 
 
The oxidation of a hydroxyl group into a carbonyl group is a basic and important 
organic reaction.1 Selective oxidation of 1,2-diols to the corresponding α-ketoalcohols 
was reported in 1974 by utilizing a stoichiometric amount of dibutyltinoxide (Bu2SnO) 
which forms dibutylstannylenes followed by brominolysis,2 and the method has been 
applied to fine chemistry as exemplified by the synthesis of (+)-spectinomycin3 and the 
oxidation of unprotected sugars.4,5 From the standpoint of green chemistry, we have 
recently reported efficient oxidation of 1,2-diols 1 by electrochemical method using a 
catalytic amount of Bu2SnO and bromide ion to afford α-ketoalcohols 2 in high yield 
without 1,2-diketones 3 (Eq. 1).6 Also, chemical oxidation of 1 using 
N-bromosuccinimide (NBS) (1 equiv) and Bu2SnO (0.1 equiv) in the presence of K2CO3 
(1 equiv) proceeded to afford 2.7 To the best of our knowledge, catalytic asymmetric 
oxidation8 of 1 to 2 has not been known except for two examples using semi-catalytic 
amount of chiral dioxiranes9 or chiral hypervalent iodine.10 
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We wish to report herein a catalytic asymmetric oxidation of (meso or dl)-1,2-diols 
meso- or dl-1, or cis-1,2-diols 4 to afford the corresponding optically active 
α-ketoalcohols chiral-2 or chiral-6 in good to high yield and enantioselectivity, which is 
based on recognition of the diol-moiety by a copper(II) ion associated with 
(R,R)-Ph-BOX complex11,12 to form the activated intermediates 5 followed by oxidation 
with NBS13 as an oxidant (Eq. 2). 
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We began by trying an oxidation of meso-hydrobenzoin (meso-1a) using NBS as an 
oxidant to see whether meso-1a was recognized by the Cu(II)−(R,R)-Ph-BOX complex 
under the above stated oxidation condition or not. The oxidation of meso-1a in the 
presence of Cu(OTf)2 and (R,R)-Ph-BOX predominantly afforded mono-oxidized 
product 2a (83% yield) along with small amount of di-oxidized product 3a (17% yield), 
while there was almost no oxidation in the absence of Cu(OTf)2 and (R,R)-Ph-BOX (Eq. 
3). These results suggested that meso-1a is recognized by the Cu(II)−(R,R)-Ph-BOX 
complex under these oxidation conditions. Acceleration of the oxidation was also 
observed in the presence of Cu(OTf)2 without (R,R)-Ph-BOX to afford 2a in high yield 
(91%).14 
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Then, we tried competitive reaction between diol meso-1a and monool 7 (Eq. 4). In the 
absence of Cu(OTf)2 and (R,R)-Ph-BOX, meso-1a and 7 were oxidized to 2a and 8 with 
almost same ratio. On the other hand, in the presence of Cu(II)−(R,R)-Ph-BOX, 2a was 
predominantly obtained. This result indicates that meso-1,2-diol was more 
preferentially-recognized with the Cu(II)−(R,R)-Ph-BOX catalyst than monool. 
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Next, we investigated effect of solvents and bases so as to optimize reaction conditions 
for the asymmetric oxidation of meso-1a (Eq. 5).15 The results are summarized in Table 
1. CHCl3 is the best solvent for the reaction in terms of enantiomeric excess (entry 1). 
CH2Cl2, THF, CH3CN and AcOEt give high yield of product (R)-2a although the 
enantioselectivity is very low or sometime racemic mixture (entries2-5). MeOH gives 
very low yield with moderate enantioselectivity (entry 6). In the case of bases, K2CO3 
emerged as the best base especially when used in combination with CHCl3 (entry 1). 
Na2CO3 and NaHCO3 give comparable results to that of K2CO3 (entries 8 and 9). Other 
bases fall short in terms of yield or enantioselectivity (entries 7, 10, 11). 
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Table 1. Asymmetric oxidation of meso-hydrobenzoin (meso-1a)a

a meso-1a (0.5 mmol), Cu(OTf)2 (0.05 mmol), (R,R)-Ph-BOX (0.05 mmol), NBS 
(1.0 mmol), base (1.0 mmol) in a solvent (5.0 mL) at rt for 3 h.
b Determined by HPLC.

(R)-2a 3a

Yield (%)

83

87

88

92

87

9

88

96

97
79

72

29

0

26

23

46

59

66

15
29

17

13

12

8

13

25

12

4

3
21

11

NaHCO3CHCl3 91 67 9

2

 
 
Utilizing the conditions optimized in Table 1, we screened other halogen compounds as 
oxidants in this reaction (Eq. 6). The results are shown in Table 2. In addition to NBS, 
N-bromophthalimide (entry 4) was usable for asymmetric oxidation, while other 
oxidants (entries 1-3) were less effective. The use of 1.5 equiv of NBS or 
N-bromophthalimide gave (R)-2a in high yield and moderate enantioselectivity, 
respectively (entries 6 and 8). Using 1.5 equiv of NBS, 0.05 or 0.2 equiv of Cu(OTf)2 
and (R,R)-Ph-BOX afforded almost similar results to that using 0.1 equiv of chiral 
Cu(II) catalyst (entries 9 and 10). Whereas using 0.01 equiv of chiral Cu(II) catalyst 
slightly reduced the enantioselectivity (entry 11), use of the same amount of Cu(OTf)2 
and slightly excess amount of (R,R)-Ph-BOX was effective (entry 12). In case of using 
0.1 equiv of Cu(OTf)2, varying the amounts of (R,R)-Ph-BOX showed no effect on the 
yields and the enantioselectivities (entries 13 and 14).  
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Table 2. Oxidation of meso-1a by some oxidantsa

a meso-1a (0.5 mmol), oxidant (0.5-1.0 mmol), Cu(OTf)2 (0.005-0.1 mmol), (R,R)-Ph-BOX 
(0.005-0.1 mmol), K2CO3 (1.0 equiv to oxidant) in CHCl3 (5.0 mL) at rt for 3 h.
b Determined by HPLC.
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Then, we applied this methodology to the kinetic resolution of cis-cyclohexane-1,2-diol 
derivative 4ap (Eq. 7). Compound 4ap was enantioselectively oxidized with NBS and 
the Cu(II)−(R,R)-Ph-BOX complex to afford α-ketoalcohol (S)-6ap17 with moderate 
yield (30%) and selectivity (s) value of 14.19 
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Asymmetric oxidation of other cycloalkane-cis-1,2-diols 4bp-at is summarized in Table 
3 (Eq. 8).20 The chemical yield of 6bp-dp and s value varied significantly depending on 



the ring size. That is, the larger the ring size, the better the yield and s value obtained 
(entries 1-3). R substituent also influenced the s value (entries 4-7). Compound 4at with 
a cyclohexyl substituent was asymmetrically oxidized to afford 6at in higher 
enantioselectivity (85% ee, entry 7) than 6aq with a methyl substituent (5% ee, entry 4), 
6ar with an isopropyl substituent (74% ee, entry 5) and 6as with a benzyl substituent 
(48% ee, entry 6). 
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3
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23

42
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Table 3. Asymmetric oxidation of cis-1,2-diols (4bp-at)a

a 4bp-at (0.5 mmol), Cu(OTf)2 (0.05 mmol), (R,R)-Ph-BOX (0.05 mmol), NBS (0.25 
mmol), K2CO3 (0.25 mmol) in CHCl3 (5.0 mL) at rt for 3 h.
b Determined by HPLC using chiral columns: Daicel Chiralcel OJ-H for 4bp, 4cp, 
4as, 6bp, 6cp, 6dp; Chiralpak AS for 4dp, 4ar,d 6ar; Chiralpak AD for 4at,d 6as, 
6at; Chiralcel OC for 6ap.
c Not determined.
d Ee of the corresponding 2-phenylcarbamoylated compound.
e Cyclohexyl.
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This method was then applied to the kinetic resolution of dl-hydrobenzoin (dl-1a), 
where (S)-benzoin ((S)-2a) was obtained with 43% yield and 73% ee (Eq. 9). 
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Scheme 1 shows our proposed mechanism for asymmetric oxidation of meso-1a 
catalyzed by Cu(II)−(R,R)-Ph-BOX. Possibly, Br+ approaches the less crowded alkoxide 
OA compared with OB of the activated intermediate meso-5a which is generated from 1a 
with Cu(II)−(R,R)-Ph-BOX, to afford (R)-2a. 
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Scheme 1. Plausible stereochemical course for desymmetrization of meso-1a.
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Scheme 2 shows our proposed mechanism for kinetic resolution of dl-1a catalyzed by 
Cu(II)−(R,R)-Ph-BOX. Although the activated intermediate (R,R)-5a might be formed 
more easily than (S,S)-5a, Br+ predominantly approaches the less crowded intermediate 
(S,S)-5a to afford (S)-2a. 
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The results presented in this communication are novel for asymmetric oxidation of 
1,2-diols to afford enantiomerically enriched α-ketoalcohols. Its synthetic application 
and mechanistic study are underway. 
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