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Abstract— Asymmetric desymmetrization of meso-vic-diols was achieved by 
carbamoylation in the presence of copper triflate and (S,S)-Ph-BOX as a catalyst 
without any use of bases. The method was successfully applied to asymmetric 
desymmetrization of five- to eight-membered cyclic meso-vic-diols in high 
enantioselectivity with up to 93% ee.     .  
 

We recently exploited an efficient method for kinetic resolution and asymmetric 
desymmetrization of vic-diols 1, which is based on recognition of the vic-diol moiety by 
a copper ion associated with chiral ligands such as (S,S)-Ph-BOX (A)1 to afford the 
activated vic-diol intermediates 2 followed by benzoylation under basic conditions (Eq. 
1).2 Basic conditions were essential in the benzoylation to remove the generated 
hydrogen chloride. However, the products sometimes suffered from acyl transfer 
reaction3 under the basic conditions, decreasing the enantioselectivity of the products 3. 
So, it is worthwhile to find conditions in which kinetic resolution of dl-14 or asymmetric 
desymmetrization of meso-15 can be achieved under non-basic conditions. We report 
herein an asymmetric desymmetrization of meso-1 by carbamoylation with isocyanates 
(R’NCO) under non-basic conditions to afford optically active meso-vic-diol derivatives 
4 (Eq. 2). 
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First of all, we tried the carbamoylation of meso-1,2-cyclohexanediol (1a) as a model 
compound in the reaction with phenylisocyanate without using any bases (Eq 3).6  
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The results are summarized in Table 1, which shows a dependence of the yield and % ee 
of the product 4a on the used metal ions, chiral ligands A-D, 7 and solvents. That is, in 
THF as a solvent, the product 4a was obtained in 88-92% yield in the presence of 
copper triflate (Cu(OTf)2) (entries 2 and 4) and with a moderately high % ee (76% ee) 
when both Cu(OTf)2 and A were present (entry 4), while yield of 4a was low (2-11%) in 
the absence of Cu(OTf)2 (entries 1 and 3). On the other hand, no enantioselectivity of 4a 

was observed in a case using Sn(OTf)2 even in the presence of A, though yield of 4a 
was high (entry 11). The zinc ion was not also so effective (entry 10), and the other 
ligands B-D than A were ineffective even in the presence of Cu(OTf)2 (entries 12-14). 
AcOEt and MeCN were usable instead of THF (entries 5 and 6), while CH2Cl2 and 
toluene were ineffective (entries 7 and 8). 

entry ligand
yield (%) ee (%)b

1

92 76

2
3

11

4

11 189
47 2410
91 racemic

metal ion catalyst

Cu(OTf)2

CuCl2
Zn(OTf)2
Sn(OTf)2

56Cu(OTf)2

<1Cu(OTf)2

94Cu(OTf)2 30

racemic

Table 1.  Asymmetric carbamoylation of meso-1,2-cyclohexanediol (1a)a

a 1a (0.5 mmol), metal ion catalyst (0.05 mmol), ligand (0.05 mmol),
   PhNCO (0.5 mmol) in a solvent (2 mL) at rt for 0.5 h. b Determined by HPLC.
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87 796 Cu(OTf)2 A
88 667 Cu(OTf)2 A
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A variety of isocyanates (R’NCO) besides phenylisocyanate were usable for 
carbamoylation of 1a under the reaction conditions similar to entry 4 in Table 1 (Eq. 4, 
Table 2). 
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yield (%) ee (%)b

92 76

50 75

93 76
85 68

68 62

Ph

t-Bu

p-ClPh
p-MeOPh

R'entry

1
2
3
4
5

77 771-Naphthyl
1-Adamantyl

6

Table 2. Carbamoylation of 1a by various isocyanatesa

a 1a (0.5 mmol), Cu(OTf)2 (0.05 mmol), A (0.05 mmol), R'NCO (0.5 mmol) in 
THF (2 mL)  at rt for 0.5 h. b Determined by HPLC.

product

4a
5a
6a
7a
8a
9a

 

With such almost satisfactory results for carbamoylation of 1a in hand, we tried 
carbamoylation of meso-1,2-cyclopentanediol (1b) under the reaction conditions and 
found that the reaction afforded 4b with 72% ee, while 1b was not asymmetrically 
desymmetrized by benzoylation with Cu(OTf)2 and A in the presence of a base (Eq. 
5).8,9  
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Similarly, oxygen or nitrogen atom-containing five-membered diols 1c,d were 
asymmetrically desymmetrized by carbamoylation to afford 4c,d, whereas racemic 
products 3c,d were obtained by benzoylation (Eq. 6). 
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Also, our method was applicable to an acyclic 1,2-diol 1e (Eq. 7), and 1,3-diol 10p (Eq. 
8).8,10,11 
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The reason why 1b-d could not be desymmetrized by benzoylation may be rationalized 
in terms of intramolecular acyl transfer of optically active 3b-d since optically active 
3a12 lost some extent of its optical activity when 3a was subjected to the reaction 
conditions for a long time (12 h) (Eq. 9).13  
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In order to improve % ee in carbamoylation of meso-1, we surveyed the effect of 
temperature on carbamoylation of five- to eight-membered meso-cycloalkanediols 
1a,b,f,g with phenylisocyanate (Eq. 10). The results are shown in Table 3, which 
indicates that the % ee’s were improved with up to 93% ee at -40 oC in comparison with 
those obtained at room temperature. 
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Table 3. Asymmetric monocarbamoylation of meso-1,2-diol 1a,b,f,ga

entry n

1 1 91 72

2 2 92 76

3 3 83 83

4 4 96 86

Substrate

1b

1a

1f

1g

product

4b

4a

4f

4g

yield (%) ee (%)b
rt

82 86

69 86

83 91

72 93

yield (%) ee (%)b
-40 oC

a 1 (0.5 mmol), Cu(OTf)2 (0.05 mmol), A (0.05 mmol), PhNCO (0.5 mmol) in 
THF (2 mL)  for 0.5 h. b Determined by HPLC.  

  
The absolute stereoconfiguration of 4a was determined to be (1R,2S) by transformation 
of (+)-4a (74% ee) to (1R,2S)-(+)-1314 (Eq. 11) which was the enantiomer of (1S,2R)- 
(-)-13 derived from reported (1R,2S)-(-)-3a15 (95% ee) (Eq. 12). 
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The absolute stereoconfiguration of (1R,2S)-4b was confirmed by its conversion to 14 
(Eq. 13), which was found to possess a configuration of (1R,2S) on X-ray analysis.16,17    
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The results shown in this paper are useful for a preparation of optically active 
meso-vic-diol derivatives 4, because our method is very simple, easily operable,18 and 
vic-diol selective.19 The mechanistic study and a kinetic resolution of dl-vic-diols in 
our carbamoylation are now under investigation.  
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