Copper complex catalyzed asymmetric monosulfonylation of meso-vic-diols

Yosuke Demizu, Kazuya Matsumoto, Osamu Onomura,* and Yoshihiro Matsumura

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract- Asymmetric desymmetrization of *meso-vic*-diols was performed by tosylation in the presence of copper(II) triflate and (R,R)-Ph-BOX as a catalyst. The method was successfully applied to asymmetric desymmetrization of cyclic and acyclic *meso-vic*-diols in high enantioselectivity with up to >99% ee.

Nonenzymatic asymmetric desymmetrization of *meso-vic*-diols is a practically useful methodology for preparation of optically active compounds.¹ We have exploited an efficient method for kinetic resolution and asymmetric desymmetrization of *vic*-diols **1**, which is based on recognition of the *vic*-diol moiety by a copper(II) ion associated with a chiral ligand (*R*,*R*)-Ph-BOX² to afford the activated *vic*-diol intermediates **2** followed by benzoylation under basic conditions **4** (Eq 1).³

Basic conditions were essential in the benzoylation to remove the generated hydrogen chloride. However, the product sometimes suffered from acyl transfer reaction⁴ under this conditions, decreasing the enantioselectivity of product **3**. To solve this problem, we recently reported an asymmetric desymmetrization of *meso-1* by carbamoylation with phenylisocyanate (PhNCO) under non-basic condition to afford optically active *vic*-diol derivatives (Eq 2).⁵

However, in some cases, the enantioselectivity of monocarbamoylated products did not meet our expectations.⁵ We report herein an asymmetric desymmetrization of *meso-vic*-diols **1** by monosulfonylation⁶ to afford optically active *vic*-diol derivatives with high yields and excellent enantioselectivities.

Key words: asymmetric desymmetrization; meso-vic-diol; sulfonylation, copper complex

^{*}Corresponding author, Tel +81-95-819-2429, Fax +81-95-819-2476, E-mail onomura@nagasaki-u.ac.jp (O. Onomura)

We began by trying the asymmetric tosylation of *meso*-1,2-cyclohexanediol **1a** as a model compound in the reaction with *p*-toluenesulfonyl chloride **5p**, in the presence of copper (II) triflate and (*R*,*R*)-Ph-BOX as a catalyst under different solvents and bases (Eq 3).⁷ The results are summarized in Table 1, which shows a dependence of the yield and % ee of the product **6ap** on the used bases and solvents. The use of CH₂Cl₂ in combination with K₂CO₃ gave both high yield (94%) and high enantioselectivity (97% ee) (entry 1).⁸ Although AcOEt and *i*-PrOH gave high enantioselectivities, their yields were moderate compared to that of CH₂Cl₂ (entries 2 and 3) THF and MeCN gave moderate ees with low yields (entries 4 and 5). On the other hand, screening of bases shows that NaHCO₃ is as good a base for this reaction as K₂CO₃ (entry 8). Other bases fall short either in terms of yield or enantioselectivity (entries 6, 7, 9-11).

Table 1. Asymmetric tosylation of *meso*-1,2-cyclohexanediol (**1a**)^a

Entry	Solvent	Base	Produ	Product 6ap		
			Yield (%)	ee (%) ^b		
1	CH ₂ Cl ₂	K ₂ CO ₃	94	97		
2	AcOEt	K ₂ CO ₃	58	88		
3	<i>i</i> -PrOH	K ₂ CO ₃	73	92		
4	THF	K ₂ CO ₃	25	72		
5	MeCN	K ₂ CO ₃	50	80		
6	CH ₂ Cl ₂	Li ₂ CO ₃	18	92		
7	CH_2CI_2	Na ₂ CO ₃	68	94		
8	CH ₂ Cl ₂	NaHCO ₃	91	95		
9	CH ₂ Cl ₂	Cs ₂ CO ₃	17	22		
10	CH ₂ Cl ₂	DIPEA	55	74		
11	CH_2CI_2	Et ₃ N	39	63		

^a **1a** (0.5 mmol), Cu(OTf)₂ (0.05 mmol), (*R*,*R*)-Ph-BOX (0.05 mmol), *p*-TsCl **5p** (0.6 mmol), base (0.75 mmol) in a solvent (2.0 mL) at rt for 12 h. ^b Determined by HPLC.

In addition to tosyl chloride, a variety of sulfonyl chlorides **5q-t** (entries 1-4) except for mesyl chloride **5u** (entry 5) were usable for asymmetric sulfonylation of **1a** under the same reaction condition as entry 1 in Table 1 (Eq 4). The results are summarized in Table 2.

Table 2. Sulfonylation	of 1a with	various sulfonyl	chlorides 5q-u ^a
------------------------	------------	------------------	-----------------------------

	R'	Product	Yield (%)	ee (%) ^b
5q :	Ph	6aq	91	98
5r :	<i>p</i> -NO ₂ Ph	6ar	59	92
5s :	<i>p</i> -ClPh	6as	93	93
5t :	<i>p</i> -MeOPh	6at	61	94
5u :	Me	6au	93	77
	5q : 5r : 5s : 5t : 5u :	R' 5q: Ph 5r: <i>p</i> -NO ₂ Ph 5s: <i>p</i> -CIPh 5t: <i>p</i> -MeOPh 5u: Me	R'Product5q :Ph6aq5r : p -NO2Ph6ar5s : p -CIPh6as5t : p -MeOPh6at5u :Me6au	R' Product Yield (%) 5q: Ph 6aq 91 5r: p-NO2Ph 6ar 59 5s: p-CIPh 6as 93 5t: p-MeOPh 6at 61 5u: Me 6au 93

^a **1a** (0.5 mmol), Cu(OTf)₂ (0.05 mmol), (*R*,*R*)-Ph-BOX (0.05 mmol), sulfonyl

chloride **5q-u** (0.6 mmol), K₂CO₃ (0.75 mmol) in CH₂Cl₂ (2.0 mL) at rt for 12 h.

^b Determined by HPLC

Then, in order to confirm generality and superiority of tosylation to benzoylation or investigated tosylation, phenylcarbamoylation, we the asymmetric benzovlation. and phenylcarbamoylation of various *meso-vic*-diols **1b-l** (Eq 5).⁹ The results are summarized in Table 3. Although *meso*-1,2-cyclopentanediols (1b) was transformed into the benzoylated product 3b in *racemic* form and the phenylcarbamoylated product 4b in moderate enantiomeric exess (72% ee), we succeeded in obtaining the tosylated product 6bp in 91% yield and 95% ee (entry 1). Various meso-cycloalkaneand meso-cycloalkene-diols 1c-g other than 1b were asymmetrically tosylated to afford monotosylated products 6cp-6gp in better yield and higher enantioselectivity than that of monobenzovlated products **3c-g** and monocarbamovlated products **4c-g** (entries 2-6). Important to note is the asymmetric tosylation of nitrogen, oxygen, and sulfur atom-containing five membered diols 1h-j to obtain 6bp,hp-jp were much more effective than that of benzoylation and carbamoylation, respectively (entries 7-9). In the case of acyclic 1,2-diols 1k and 1l, asymmetric tosylation afforded excellent results similar to those of benzovlation but which were better than carbamovlation results (entries 10 and 11).

Entry	y Substrate		Tosylated product		Benzo	oylated product	Carbamoylated product		
		Yiel	ld (%)	ee (%) ^d	Yield	(%) ee (%) ^d	Yield	l (%)	ee (%) ^d
1	1b	ОН 6bp ЮН	91	95	3b 4	47 3	4b	91	72
2	1c	ОН 6ср ОН	81	99	3c 8	38 58	4c	83	83
3	1d	ОН 6dp ОН	96	98	3d 8	35 65	4d	96	86
4	1e	ОН 6ер ОН	>99	97	3e 6	68 93	4e	96	59
5	1f	ОН 6fp ОН	>99	99	3f 8	39 96	4f	88	67
6	1g	ОН 6gp ОН	86	98	3g 9	92 80	4g	86	50
7	1h Bz-N	.ОН 6hp ЮН	99	94	3h 8	32 racemic	4h	91	72
8	1i 0	.ОН 6ір ЮН	80	95	3i 8	31 racemic	4i	99	64
9	1j s	ОН 6јр ОН	93	94	3j 6	63 8	4j	90	52
10	1k	ОН 6kp ЮН	88	>99	3k 7	78 97	4k	94	70
11	11 BnO BnO	ОН 6Ір ЮН	71	93	3 1 3	36 96	41	91	82

Table 3. Asymmetric tosylation^a and benzoylation^b and carbamoylation^c of *meso*-1,2-diols 1b-I

^a **1b-I** (0.5 mmol), Cu(OTf)₂ (0.05 mmol), (*R*,*R*)-Ph-BOX (0.05 mmol), *p*-TsCl **5p** (0.6 mmol), K₂CO₃ (0.75 mmol) in CH₂Cl₂ (2.0 mL) at rt for 12 h.

^b **1b-I** (0.5 mmol), Cu(OTf)₂ (0.05 mmol), (*R*,*R*)-Ph-BOX (0.05 mmol), BzCI (0.5 mmol), K₂CO₃ (0.75 mmol) in CH₂Cl₂ (2.0 mL) at rt for 3 h.

^c **1b-I** (0.5 mmol), Cu(OTf)₂ (0.05 mmol), (*R*,*R*)-Ph-BOX (0.05 mmol), PhNCO (0.5 mmol), in THF (2.0 mL) at rt for 0.5 h.

^d Determined by HPLC.

In some cases, the reason why the tosylated products were obtained with higher enantioselectivity than the benzoylated products may be explained as follows. In the case of benzoylation, intramolecular acyl transfer of optically active 3a occurred for it to lose some extent of its optical activity when 3a was subjected to the basic conditions for a long time (Eq 6).⁴ On the other hand, acyl transfer of the monotosylated product **6ap** did not occur under the basic conditions, so **6ap** was obtained with high optical purity (Eq 7).

The absolute stereoconfiguration of **6ap** was determined to be (1S,2R) by transformation of **6ap** to (1S,2R)-(-)-**7**¹⁰ (Eq 8) which was the same stereoconfiguration of (1S,2R)-(-)-**7** derived from reported **8** (Eq 9).¹¹

It is convenient for chemical transformations of compound 7 into optically active compounds 9-11 that tosyloxy substituent of compound 7 is a good leaving group for S_N2 reaction and E2 reaction. At first, 7 was treated with NaN₃ to obtain the azide compound 9 with complete stereoinversion, followed by reduction and benzoylation to afford the optically active *vic*-amino alcohol 10 (Eq 10).^{12,14} Also 7 was treated with DBU to obtain the optically active α , β -unsaturated alcohol derivative 11 in good yield without any loss of the optical purity of 7 (Eq 11).¹⁵

The results shown in this communication are practical method for a preparation of optically active monotosylated derivatives from *meso-vic*-diols. Asymmetric monotosylation method has generality for various *meso-vic*-diols and is superior to monobenzoylation or monocarbamoylation method. The mechanistic study of this monotosylation and its application to a kinetic resolution of *dl-vic*-diols are now under investigation.

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (B) (No. 17350051) from Japan Society for the Promotion of Science.

This paper is dedicated to the heartfelt memory of the late Professor Yoshihiro Matsumura of Nagasaki University.

References and notes

- Representative literatures for nonenzymatically asymmetric monobenzoylation of *meso-vic*-diols: (a) Oriyama, T.; Imai, K.; Hosoya, T.; Sano, T. *Tetrahedron Lett.* **1998**, *39*, 3529-3532. (b) Mizuta, S.; Sadamori, M.; Fujimoto, T.; Yamamoto, I. *Angew. Chem., Int. Ed.* **2003**, *42*, 3383-3385. (c) Vedejs, E.; Daugulis, O.; Tuttle, N. *J. Org. Chem.* **2004**, *69*, 1389-1392. (d) Mazet, C.; Köhler, V.; Pfaltz, A. *Angew. Chem., Int. Ed.* **2005**, *44*, 4888-4891. (e) Yamada, S.; Misono, T.; Iwai, Y.; Masumizu, A.; Akiyama, Y. *J. Org. Chem.* **2006**, *71*, 6872 - 6880. (f) Nakamura, D.; Kakiuchi, K.; Koga, K.; Shirai, R. *Org. Lett.* **2006**, *8*, 6139-6142. (g) Arai, T.; Mizukami, T.; Yanagisawa, A. *Org. Lett.* **2007**, *9*, 1145-1147.
- For (S,S)-Ph-BOX : (a) Corey, E. J.; Imai, N.; Zhang, H.-Y. J. Am. Chem. Soc. 1991, 113, 728-729; A recent review of chiral bis(oxazoline) ligands: (b) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561-3651.
- 3. (a) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura. O. J. Am. Chem. Soc. 2003, 125, 2052-2053;
 (b) Matsumura, Y.; Maki, T.; Tsurumaki, K.; Onomura, O. Tetrahedron Lett. 2004, 45, 9131-9134.
 (c) Matsumura, Y.; Onomura, O.; Demizu, Y. Yuki Gosei Kagaku Kyokaishi 2007, 65, 216-225.
- 4. Edin, M.; Martín-Matute, B.; Bäckvall J.-E. Tetrahedron: Asymmetry 2006, 17, 708-715.
- 5. Matsumoto, K.; Mitsuda, M.; Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura, Y. *Tetrahedron Lett.* **2006**, *47*, 8453-8456.
- Regioselective sulfonylation of *vic*-diols catalyzed by tin compounds (a) Bucher, B.; Curran, D. P. *Tetrahedron Lett.* 2000, *41*, 9617-9621. (b) Martinelli, M. J.; Vaidyanathan, R.; Pawlak, J. M.; Nayyar, N. K.; Dhokte, U. P.; Doecke, C. W.; Zollars, L. M. H.; Moher. E. D.; Khau, V. V.; Kosmrlj,

B. J. Am. Chem. Soc. 2002, 124, 3578-3585.

- 7. A typical procedure for asymmetric monotosylation: Under an aerobic atmosphere, a solution of Cu(OTf)₂ (18.1 mg, 0.05 mmol) and (*R*,*R*)-Ph-BOX (16.7 mg, 0.05 mmol) in CH₂Cl₂ (2 mL) was stirred for 10 min. Into the solution were added *meso*-1a (0.5 mmol), K₂CO₃ (103.7 mg, 0.75 mmol) and *p*-TsCl **5p** (114.4 mg, 0.6 mmol). After being stirred for 12 h at rt, the solution was poured in water and extracted with AcOEt (20 mL x 3). The combined organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (*n*-hexane : AcOEt = 3 : 1) to afford (1*S*,2*R*)-6ap (94% yield, 97% ee) as a colorless oil. [α]¹⁹_D-8.1 (*c* 1.0, CHCl₃). IR (neat) 3530, 2942, 1599, 1356, 1175 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J* = 8.7 Hz, 2H), 7.35 (d, *J* = 7.8 Hz, 2H), 4.68-4.58 (m, 1H), 3.88-3.78 (m, 1H), 2.45 (s, 3H), 2.10-1.20 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 144.6, 134.0, 129.7, 127.5, 83.0, 68.8, 30.1, 27.5, 21.5(2C), 20.6. MS [LR-FAB(+)]: *m/z* 271 [M+H]⁺. The optically purity of 6ap was determined by chiral HPLC: Daicel Chiralcel OJ-H column (4.6 mmφ, 250 mm), *n*-hexane : *i*-PrOH = 10 : 1, wavelength: 220 nm, flow rate: 1.0 ml/min, retention time: 15.2 min ((1*R*,2*S*)-(+)-6ap), 16.9 min ((1*S*,2*R*)-(-)-6ap).
- 8. The use of CuCl₂ instead of Cu(OTf)₂ reduced the yield and % ee of the product **6ap** (69% yield, 88% ee, respectively).
- 9. Monotosylation, monobenzoylation, and monophenylcarbamoylation of *meso-vic*-diols in the presence of (R,R)-Ph-BOX occurred at the same position. The absolute stereoconfiguration of **6bp-6lp** shown in Eq 5 and Table 3 was deduced on the basis of that of **6ap**.
- 10. Chiral HPLC condition: Daicel Chiralcel OJ-H column (4.6 mmφ, 250 mm), *n*-hexane : isopropanol = 5 : 1, wavelength: 220 nm, flow rate: 1.0 ml/min, retention time: 12.3 min ((1*S*,2*R*)-(-)-7), 19.5 min ((1*R*,2*S*)-(+)-7).
- 11. Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169-3170.
- 12. Compound (1R,2R)-(-)-**10**: mp 149–151 °C. $[\alpha]^{21}_{D}$ –89.2 (*c* 1.0, CHCl₃) [lit.¹³ (1*S*,2*S*)-(+)-**10**; $[\alpha]^{12}_{D}$ +60.5 (*c* 1.0, CHCl₃)]. HPLC chiralcel OD column (4.6 mm ϕ , 250 mm), *n*-hexane : *i*-PrOH = 20 : 1, wavelength: 220 nm, flow rate: 1.0 ml/min, retention time: 11.1 min ((1*S*,2*S*)-(+)-**10**), 14.8 min ((1*R*,2*R*)-(-)-**10**).
- 13. Nishida, A.; Shirato, F.; Nakagawa, M. Tetrahedron: Asymmetry 2000, 11, 3789 3806.
- Compounds 9, 10 and/or their enantiomers might be good precursors for antiarrhythmic agents: Plouvier, B.; Beatch, G. N.; Jung, G. L.; Zolotoy, A.; Sheng, T.; Clohs, L.; Barret, T. D.; Fedida, D.; Wang, W. Q.; Zhu, J. J.; Liu, Y.; Abraham, S.; Lynn, L.; Dong, Y.; Wall, R. A.; Walker, M. J. A. J. Med. Chem. 2007, 50, 2818-2841.
- 15. The absolute stereoconfiguration was determined by comparing with specific rotation of authentic sample. See, ref. 16. Compound (*R*)-**11**: $[\alpha]^{21}{}_{D}$ +224.9 (*c* 1.0, CHCl₃). [lit.¹⁶ (*S*)-**11** (86% ee); $[\alpha]^{25}{}_{D}$ -157.0 (*c* 0.45, CHCl₃)]
- 16. Sekar, G.; DattaGupta, A.; Singh, V. K. J. Org. Chem. 1998, 63, 2961-2967.

Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or alte

