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Abstract- Asymmetric carbon-carbon bond-forming reaction at the 2-position of a pyrrolidine ring was 

achieved. The reaction involved a chiral Ti(IV) catalyzed coupling between 

1-methoxycarboyl-2-methoxypyrrolidine and silyl enol ethers to afford 2-substituted pyrrolidines with up 

to 53%ee.  

 

Asymmetric introduction of carbon nucleophiles (Nu-) onto cyclic N-acyliminium ions A (n=0, 1) has 

been attracting much interest because it provides an efficient route for elaboration of optically active 

piperidine and pyrrolidine derivatives B through easily available prochiral A (Scheme 1).1-3 However, in 

contrast with some reports on the preparation of optically active piperidines B (n=1) by this method,1 

there have been no studies on the successful preparation of optically active pyrrolidines B (n=0).  
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We report herein the result of our effort to achieve asymmetric carbon-carbon forming reaction between 

A (n=0) and Nu- in the presence of chiral catalysts. The basic reaction we first surveyed is shown in Eq. 1 

in which 1-methoxycarbonyl-2-methoxypyrrolidine (1)4 as a precursor of A (n=0), 

1-tirmethylsiloxystyrene (2a) as Nu-, and (R)-BINOL-titanium dichloride complex (3a)5 as a chiral 

catalyst were used (Eq 1).6 
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In this reaction was formed the aimed product (4a) in good yields with low %ee's which were 

dependent on the used solvent (Eq 1). The other chiral catalysts (3b-g)7 in place of 3a were also examined 

in CH2Cl2 but all of them gave disappointed %ee (Fig 1).  
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Fig. 1  Examined chiral catalysts
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Then, we tried the reactions of 1 with 1-trimethylsiloxy-3,4-didehydronaphthalene (2b) in the presence 

of a chiral catalyst 3a to afford 4b as a mixture of diastereomers (Eq 2).  
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Interestingly, both the yield of 4b and the %ee of each stereoisomer were improved by carrying out the 

reaction in mesitylene as a solvent as shown in Eq. 2.8 On the basis of this result, a variety of silyl enol 

ethers 2b-2h was examined as Nu- under conditions using mesitylene as a solvent. The results are shown 

in Table 1. 
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Table 1. The reaction of 1 with nucleophiles  2b-h in mesitylene in the presence of 3aa
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Although there was no data to speculate the absolute stereochemistry of stereoisomers of 4b-4d, chiral 

chromatographic analysis showed the %de's and the %ee's of each stereoisomer as indicated in Entries 

1-3 of Table 1.9 The highest %ee so far obtained was 53% for major isomer of 4b (Entry 1).  



In order to rationalize the reaction mechanism, the absolute stereochemistry of products 4 must be 

clarified. Among 4a-h, only (S)-4a and (S)-4f could be prepared from (S)-prolinol 5 according to the 

reported method (Eq 3).10 
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The enriched isomers of the products in the reaction of 1 with 2a and 2f in the presence of 3a were 

identical with (S)-4a and (S)-4f, respectively.11 On the basis of this result, we propose a mechanism 

shown in Scheme 2 for the enriched formation of (S)-4a,f in the reaction of 1 with 2a,f. 
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Scheme 2.  Proposed Mechanism
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In conclusion, we presented herein the first method for asymmetric carbon-carbon forming reaction onto 

N-acylpyrrolidinium ion A (n=0, R=OMe). Although the observed enantioselectivities were low to 

moderate (up to 53%ee), further study to improve the stereoselectivity is under investigation on the basis 

of the proposed mechanism.  
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