Subfunctions of a Parabolic Partial Differential Equation

by TAKASI KUSANO

Introduction. The main concern in this paper is tc clarify to a certain extent
the analogous circumstances existing between the first boundary value problem
for parabolic partial differential equations and the Dirichlet problem for elliptic

equations. For simplicity we compare the heat equation:

I =

with the Laplace equation 4du=0. B. PINI (1) and H. MURAKAMI ( 3] have
obtaired considerably remarkable results in counecticn with such a problem and
our considerations will be made by following their ideas.

In order to investigate the problem under weaker assumptions it seems to be
convenient to extend the heat operator and to generalize the concept of the solu-
tion. §1 is dedicated to such an extension and a generalization.

In §2 we shall define and study subfunctions and superfuncticns for the equa-
tion (L), which correspond to subharmonic and superharmonic functions for the
Laplace equation. It will be found that the subfunctions enjoy the properties
quite similar to those of subharmonic functions.

Finally, we shall show in §3 that the Perron’s method may also be applicable
to the existence proof for the parabolic equation. The notion of the barrier will
be introduced as well.

§1. Extension of the heat equation

1. Green's formula. The adjoint equation of (L) is

_ 0% 0% Ov
(D M) b oo b g -250.

Then, for (L) and (M), the Green’s formula holds. It reads as follows :

(1) J‘J‘J' {vL[uj—-uM[v]}de..dxndy:
G
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:Jf > (v %"— —u g;’ )dxx---dx‘_,dxm-ndx,.dy — wvdxi--dzn -
i %

Here G is a domain in the (#+1)-—-dimensional (x1, ----- s Xn, ¥)—space R**' and FG
is its boundary. # and v are two functions defined in G. We assume naturally
that %, v, G and FG guarantee the validity of the formula (1).
2. Fundamental solutions. Let P=(xi, -, %n,y) and Q=(&., -+ y & 7) be
the points in R**'. We define the functions
S (x—80?

1
= -y O>D
o-nt [ 1o-n J

2) vrd =
0 =),

f‘_n(éi"'xi)z

2 V(P,Q)zg (Vi-y)% exp [_%Ty)*’"“] >y

0 =y).
It is clear that U(P,Q) satisfies (I.) with respect to x, ¥y and (M) with respect
to &, 7. Analogous fact for V(P,Q), U(P,Q) and V(P,Q) are called the fundamental

solutions.

3.Normal surfaces. For fixed P, the set of all points @ such that U(P, @)
=1/r?, (#¥>>0 : a constant) forms a hypersurface in R"**!. We call this hypersurface
a normal hy persurface of magnitude » with a pole at P and designate it by S, (P).
The family of these normal surfaces for different » will be found to play an impor-
tant part throughout the present note. It must be noticed that S,(P) can be

represented parametrically by a system of equations:

E1=x1+7f(0) sin®y sin@,..-sine,_,,

Eo=x247f(0) sinQy---Sing, sc08@,_,,

(3){ &=x,+7f(0)SinP1---Sin®, _,c05Pp441,

Sn:xn +7’f(0)605(91 ,

7 =y —r3sin3g,

where f(0)=y" 2n sinbv 'log cosec®6 >
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The set of all points @ such that V(P, )=1/r" for fixed P has also a similar
parametric representation, which we shall omit here. Such a surface is denoted
by 3,(P).

We denote by (S,(P)) and (S,(P)) the interior and the closure, respectively, of
the domain bounded by a normal surface S,(P). We introduce a function G,(P,Q)
defined by G, (P,Q)=U(P,Q)—1/r". G.(P,Q) has the properties :

1) G(P=0 if Q&S (PP ;

2) G.(P,Q) satisfies (L) in (S,(P)) .
For this reason it is sometimes called a Green's function for (S,(P)). We denote
by &', the lower part of S,(P) cut off by a hyperplane 7=y—¢ (0<§<{r*) and
by K; the part of a hyperplane »=y—4§ cut off by S,(P). K; is then a (hyper)
circular disc of radius Az=y/2n5 log(r¢/¢) in R"*'. The domain bounded by the
surfaces S, and K, is denoted by (S8',K;) .

4. An integral formula for the solution of (). Let G be a domain in R"*' and
P a point of G. If (S,(P)) is coatained in G, then such a number 7 is said to be
admissible for G and P.

By C'(G) we denote the class of functions which are continuous with their
first derivatives in G. K'(G) is, by definition, the class of functious which are
continuous with their derivatives appearing in the equation (L).

In order to obtain a generalized differential eguations of (L) we begin with
writing down the Green's formula with » and G replaced by G,(P,Q) and (§,,K5],
respectively. Here integration has to be carried out with respect to &, 7 instead

of x, y. u is always understood to be a function from K'. Thus we obtain

Gr(PtQ>LEqu$"d$nd7}i

(S, K3
:jff “ 865 G’<P’Q>dE ! '"dgi—LdEiH‘"déndv‘f“'f M(JTCP,Q>G,§1 "'dSn.
Y, K,

For the derivation of the above equality we have made use of the properties of
G.(P,Q). We shall consider the limiting case when ¢§—0, by carrying out the

transformation of variables :



16 RIBEAZHFNRE AR $1% $145
(51, "‘Sn; v) d (pr 0) (pl) R ¢n—1>

which is expressed by the formulas entirely analogous to those of (3).

The first integral will then tend to

G, (P,Q)OLCuIAE 1+ dEnd) =
LS.(P)]

B
2 —1

=20/ 2n )» eV (pr—r)p Msin™0cosl (log cosec*d)

[S,(P)]
« D@y, 0,0 L[uldpdede,--de, ., ,
where ®(@, -, ¥, )=Sin" QSN @2 ---SiNP,_, .

As for the last integral we have
f f uG,(P, Q)¢ dén — (2 7 )'u(P) (5-0),

Ky
by taking into account the continuity of # and the fact that
J‘MJ‘GT(P’ Q)dE - dEy > (2 m ) for §—0.

Ky

Finally, - SYJ.J‘ u"%’fcrcp: Q)d’f 1 "'déi—1d5i+1'”d$nd7)
S’

i=1,

r

tends to

_Z"' fu %G,(P, Q)dE - --dE, dE, - dEdT —

B
2

-A(/Trz_)”‘j‘m (u) sin"0 cos6(log cosec®)? .
S,
S,.(P)
e D@1, 0,0 de, ., .

We have, therefore, for a function # belonging to K' ,

(4) u(P)=— ( an )Tn J."'J‘(“)ST”."VI‘? cosl (log cosec®)® .
S.(P)
e D@1, 0, )d0dP 1 --de,., — .
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—2 ( 27; )V;L J‘f.ujkp—nrr—n)pnﬂsinnﬂﬁ cosf(log COSeczﬁ)ﬂ_—l )

CS.(P)

e ®(@1, -, @, Ddod0de . ---do,_, .

The first term on the right side of (4) may be considered in some sense as a
mean value of a function # on a normal hypersurface S,(P) and is denoted by
ICu; S,(P)), while the second term is denoted by J[L(%); S,(P)]. Thus we
have the following

THEOREM 1. If u &K'(G), then
(5) - u(P)=ICu ; S,(P)) — JCLEu] 5 S,(P))
for every P&G and every admissible r.

As an immediate corollary of THEOREM 1 the following theorem holds.

THEOREM 2. A function u<K'(G) is a solution of (L) in G if and only if
(6) u(P)=ICu ; S,(P)]
for every P=G and every admissible 7.

REMARK : It will be obvious that in THEOREM 2 the condition <« for every
admissible > may be replaced by the condition <« for every sufficiently small
admissible 7>.

5. Generalization of the concept of the solution. Before we extend the differen-
tial ejuation (L) we are now going to generalize in some sense the concept of
the solution of (L).

THEOREM 2 is the key to such a generalization.

DEFINITION : A function defined and continuous in a domain GCR"*' is said

to be a generalized solution of (L) if the relation (6) :
u(P)=ICu ; S,(P))
is valid for every P&G and every sufficiently small admissible 7.

We now show that the principal properties enjoyed by the (true) solution of
(L) are also enjoyed by the generalized solution of (L). From now on we shall
often consider a domain of the type illustrated in Fig.1, namely, a domain bound-
ed from below and from above by pieces of the hyperplanes »==%,, »=%,, and on
the sides by one or a few hypersurfaces with continuously changing tangent planes
nowhere parallel to the §-plane. We agree to call such a domain a fundamental

domain and denote it by D. By @D we denote the boundary of D with the excep-
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tion of an upper base. 7"
0D is called the fundamental boundary of D. d
(See Fig. 2). o
THEOREM 3. (The maximum-minimum theo- b
rem) Every gemnevalized solution of (L) defined 0 . s
on the closure of a fundamental domain D assumes 71 Fig.1
its greatest and least values on the fundamental
boundary.
Proof. Let us assume that # has attained its
greatest value at a point P,&=D\@D. Since, for ) —>3

Fig.f_

an admissible 7,

u(P)=1ICu ; S,(P,)J,
# must be constant on S,(P,) and therefore constant on (S,(P,)). If we consider
the greatest admissible velue #», of  (with respect to D and P,) the normal
hypersurface S, (P,) necessarily touches the fundamental boundary of D. At the

point of the contact u—u(P,)=max{u(P)}. The minimum part of the theorem
P=D

will be proved similarly.

The maximum-minimum theorem is important because it is possible to deduce
from it the uniqueness and the continuous dependence on the boundary data of
the solution of the first boundary value problem for the equation (L). By the
first boundary value problem for (L.) we mean the problem of finding a solution
of (L) in D which assumes the given boundary values prescribed on the funda-
mental boundary 9D of D. By the generalized probiem is meant the problem of
finding a generalized solution of (L).

CORDLLARY 1. The solution of the generalized first boundary value problem is
untque.

In fact, let two generalized solutions #:, %2 coincide on the fundamental boun-
dary 9D. Then, #:.—u- is a generalized solution and equals zero on §D. By
THEOREM 3, u:—u-. must be identically zero on the whole domain.

COROLLARY 2. The solution of the generalized first boundary value problem
depends continuously on the boundary data.

Proof. Let # and v be two generalized solutions of (L) whose boundary values

f and g, respectively, satisfies the inequality |f—g|<{e for arbitrarily small e
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Then, [4—v|<e ia view of THEOREM 3.

Another important corollary is the following

THEOREM 4. (Harnack'’s first theorem) Lef {u,} be a sequence of generalized solu-
tions of (L) on D. [If{u,}converzes uniformly on the fundamental bowndary oD,
then {u,} conver ges uniformly to a generalized solution in the whole dowain D.

Proof. Uniform convergence of {#,}is obvious. We have only to prove that the
limit function # is a generalized solution. In the relation

u,(P)=ICu, ; S,(P)3 (n=1,2,8,-),
where P&D\§D and 7 is any admissib’e number, let # tend to iufinity. Thern,
u(P)=ICu ; S,(P)), for every PE&D\pD and every admissible 7. This shows that
limit function # is a generalized solution.

5. Extension of the differential equation (L.).

In view of THEOREM 2 we can extend the equation (L). Let # be a function
bzlonging to K' in a domain GCR™'. For a point PEG and an admissible » the
rela-tion (5) holds. So we have

ICu ; S,(P)I—u(P)=J(LLu] ; S,.(P)I.
Paying attention to the continuity of L(#) 2t P and to the fact that

Jﬂ:&(PDZ( ” )‘ e

i
Wwe obtain

o 1’277 LY . I [u 5 STCP\)th<P> R
7 L[uj_( n+z )2 l,Z_T - /2 at P.

We now define the operators L and L by

— ” T o ICu; S,(PYY—u(P)
(8) L) y< n+{> lszjup — at P,
and by
. n N\Zw L ICu; S.(P))—u(P)
(9 Lf[ujf( n—I—Z) lzmrjnnf = Z at P,

respectively. Here # is supposed to be a function from C'(G).
When L(x) and L(u) coincide at P a new operator L*[ujrff[ujziﬁuj can be

defined at that point. The fact thus establishel is stated in the following theorem.
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THEOREM 5. If u belongs to the class K'(G), then
L*(u)—L(u) in G.
We can assert, therefore, that the operator L* is an extension of the heat operator
L. The equation
(L*) L*(u)=0
is called the generalized heat equation. It is clear that a generalized solution of
(L) is a solution of (L*).

Let D be a fundamental domain, f be a function prescribed on the fundamental
boundary @§D. Hereafter we shall be concerned with the problem of finding a solu-
tion # of (L*) satisfying #=—f on @D. Sucha problem is referred to as the first
boundary value problem for (L*) and the main theorem in §3 establishes the exist-
ence of the solution of this problem.

The maximun-minimum theorem and Harnack’s first theorem are also valid for
the solutions of the equation (I*). This follows immediately from the considera-
tion of subfunctions and superfunctions in the next paragraph.

THEOREM 6. Let {u,} be a sequence of functions in K'(G). If{u,}and {L(u,D}
converge uniformly in G to functions u and v, respectively, them L*(u) exists and
L*(u)=v in G.

THEOREM 7. Let u and v be the functions from C'(G) such that L*(u) and

L*(v) exist and remain finite. Then,

* Tk * L 0w 0v
(10) L*Cuv)=—vL*(u)+ul (1)j+2;§i ox, 0%,

The proofs are omitted.

82. Subfunctions and superfunctions.

1. Definition. As was stated in the introdution we shall in this paragraph
confine ourselves to the study of subfunctions and superfunctions of (L), the
definition of which is suggested by THEOREM 2 of §1.

DEFINITION : We shall call a function », defined and continuous in a domain
G, a subfunction (superfunction) of (L), if it satisfies
11 v(P)=1I(v; S,(P)) (u(P)=Iw; S.(P)I)
for every P&G and every admissible #» (or what amounts to the same thing <« for
every sufficiently small admissible »>).

THEOREM 8, A function v is a subfunction (superfunction) in G if and only if
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(12) L*(v)=0 (L*(v)=0)
in G.

This theorem follows immediately from the definition itself.

2. Properties of subfunctions and superfunctions. We now prove several ele-
mentary but fundamental properties of subfunctions and superfunctions quite
analogous to those of subharmonic and superharmonic functions.

THEOREM 9. (1) Every solution of (L*) is a subfunction as well as a suter-
Sunction.

(2) It v is a subfunction and u is a solution of (L*), then v+u is a subfunction.
(38) If vy and v> are subfunctions, ki and k2 are positive constants, then kv, +kz02
ta a subfunction.

(4) If vis a subfunction and w is a superfunction, then v—w is a subfunciion.

Analogous theorem holds for superfunctions.

The proof of the theorem will be almost obvicus; for example, (3) follows
from the relation

ICk v +kov2 5 S,(P))=kI(v: ; S,(P))+k1{v2 ; S,(P))
=k (P)+k02(P).

THEOREM 10. A subfunction v defined in a fundamental dowain D assumnes :ts
greatest value on the fundamental boundary 9D. A superfunction assumes its least
value on the fundamental boundary.

Prcof. Let v assume its greatest value M at some pcint P, of L\@D. Draw a
normal surface S,(P,) as large as possible in D so that it necessarily touches gD.
It is obvious that » must be constant on S,(P,). Otherwise, we should have

M=v(P)=I(v; S,(P)I<M=v(P,),
contrary to the definition of ». Therefore, v assumes its greatest value M at a
certain boundary point Q&aD.

COROLLARY. Let v be a subfunction and u be a solution of (L*) such that v<<u
on the fundamental boundary 9D of D. Then, v=u in the whole domain D.

Consider the difference v—u and apply THEOREM 9 and THEOREM 10.

THEOREM 11. If v1,v2, -+, v, are subfunctions in G, then v, defined by

u,( P =max{v.(P)p(P),v.(P)}, PG,
is a subfunction in G.

In fact, if v,(P)=0.(P), say, then,

21



22 REBAFHETCE ARFE 1% $15

V,(P)=v:(P)=ICv: 5 S,(PI=ZICo, ; S,(P)I.
' Here we made use of the fact that if v'<<v"" in G then
I 5 S.(POIZI" ;5 S.(P)).

THEOREM 12. If {u,}is a sequence of subfunctions in G and

v.(P)>v,(P)  (n—>o0),
uniformly on each compact subset of G, then, v, is a subfunction in G.

Proof. W have
0, (P)=ICv, ; S,(P)] (n=1,2,3--)

for every PG and every admissible r. Going over to the limit n—co, we obtain
finally

0,(P)=1Cv, 5 S.(P)),
which is to be proved.

Let D be a fundamental domain and L’ be a subdomain of D with an upper
base in common. Let a subfuncticn v be defined in D. We derote by (v)p’ a
function, if any, which is equal to v in D\D’ and satisfies (L*) in D’. Such a
function (v)p’ is always supposed to be continuous in D.

THEOREM 13. (v)p’ is a subfunction in D.

Proof. We put v*=(v)p’ aud show that
*) v*(PH<ICv* ; S.(P)3
is valid for every P&D\@D and every sufficiently small . And it is obvious that
we have only to prove the validity of (*) for the points P on @#D’. On account of
the fact that #*=v in D’ (COROLLARY of THEODREM 10) we shall obtain the
desired inequality as follows : if PCgD’, then

*(P)=0v(P)<Iv; S,(P)J=T"wv; S,(P)+1'w; S,(P)I=
=I'Cv; S, (P)+1"(v*; S,(P))=IC*; S,(P)).
I’ and I” mean the integrals extended on the parts of S, (P) lying in D\L' aud
in D', respectively.

THEOREM 14. If v is a continuous function defined in a fuwvdamental domain D
such that (v p'=v for every subdomain D' which has an upper base in common with
D, then, v itself is a subjfunction in D.

§3. Generalized Perron’s method for the existence proof.

1. Lower and upper functions.

DEFINITION : We fix a fundamental domain D and let a continuous functiop
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f be given on the fundamental boundary §D. A function v is a lower function, pro-
vided that the following conditions are satisfied :

1) v is continuous in D,

2) v is a subfunction in D,

3) v satisfies v<<f on 9D.

DEFINITION : A function w is said to be an upger function, provided that fol-
lowing conditions are satisfied :

1) w is continuous in D,

2) w is a superfunction in D,

3) w satisfies w=f on §D.

THEOREM 15. If v is a lower function and w is an upper function, then v=w
in D.

THEOREM 16. If v., vz, -, v, are lower functions, then

v,(P)=max{v:(P), -, 0,(P)},  PE&D,

is a lower function.
THEOREM 17. If a sequence {v,}of lower funciions converges uniformly in D,

then v=I[im v, is also a lower function.

n—00

THEOREM 18. If v is a lower function in D, then (v)p ts a lower function.

These theorems can be verified so easily that the proofs are omitted.

2. Perron's method. Let a fundamental dorrain D and a continuous function f
on 9D be given. We denote the class of all lower functicns by V(). V(f) is not
empty, for a function »=M=min f, say, belongs to V(f).

THEOREM 19. (The main theggm). The function, def ined by
(13) u(P)=sup{o(F)}, v&V(S),
is a solution of the generalized heal equation (L*) in D.

Proof. 1i is clear that # is continuous and is a lower function in D: «(P)<
ICu ; S,(P)J, for every P&D\@D and sufficiently small #. This means that L(«)
=0 in D.

Given and >0, v(P)<u(P)+e for each v&=V(f). By the continuity of » there
exists a neighbourhood N(P) of P such that

v(Q)<u(P)+e, for all QEN(P).

Moreover we can choose N(P) such that the above inequality is valid for al]l o,
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Consider an admissible » for N(P) and integrate the above inequality on S,(P).
Then,

u#(P)+e=I(u(P)+e; S,(PI=1v; S,(P))  for all »&V(Sf).
Hence we have I(x ; S, (P))<u(P)+e. This leads to L{x)<e and in view of
the arbitrariness of ¢ we have L{#)<0 in D. Therefore L*(#)=0 in D. Q.E.D.

THEOREM 20. Let W(f) denote the class of all upper functions in D. Then,
the function u(P), defined by
(14 u(P)=inf{w(P)}, w&W(Sf)
is a solution of (L*) in D.

The first half of the first boundary value problem for (L*) was thus solved.
The function #(P) obtained in THEOREM 19 (or in THEOREM 20) may be con-
sidered as an approximate solution of the problem in question. The remaining
half is to investigate the behaviour of #(P) at the fundamental boundary 9D,
that is, to examine under what conditions on the boundary @D u(P) assumes the
prescribed boundary values. The notion of barriers will be introduced for this
purpose. It will b2 se2n that the situation is entirely similar to that of the ellip-
tic case.

DEFINITION : Let a point @ be fixed on the fundamental boundary @¢D. A
function B(P,Q) is called a barrier subfunction at Q if the following conditions
are satisfied :

i) B(P,Q) is a subfunction of (L) as a function of P in D,

ii) B(Q.Q)=0,

iii) B(P,Q)<0 for all points P&D other than Q.

DEFINITION : A function B*(P,Q) is said to be a barrier superfunction at Q if
the following conditions are satisfied :

i) B*(P,Q) is a superfunction of (L) as a function P in D,

i) B*(Q,Q)=0,

ili) B*(P,@)>0 for all points PED other than Q.

We now show that the existence of a barrier function at @ permits #(P) to
assume the prescribed boundary value at Q. In fact, since f is continuous we can
find a neighbourhood N(Q) of @ such that

fQ)—ef(P)f(Q)+e, for each PSIDNN(Q),

where ¢ is any positive number.
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Define two functions ¢(P) and ¢(P) by
¢(P)=f(Q)—e¢+KB(P,Q),
¢(PO)=f(Q)+e¢—KB(P,Q)
respectively, where K is a positive number. It is easily seen that ¢(P)&SW(f)
and ¢(P)E&V(f), for sufficiently large K. For example, ¢(P) is a subfunction
in D for K>0. On @DNN(Q) we have clearly f=¢. As for the points on
dD\NNPD the same inequality is seen to hold by choosing K sufficiently large.
Hence, ¢(P) belongs to V(f). In view of the inequalities
e(PH=u(P)=¢(P)
we have, by letting P tend to @,
f (@)~ e=0(Q=u(@=¢(Q)=f(@)+¢
As ¢ is arbitrary we have in the long run that #(Q)=f(Q). Therefore we have
the following
THEOREM 21. Suppose that there exists a barrier subfunction (or a barrier super-
function) at every point of the fundamental boundary @D. Then the solution u(P)
of (L*) defind by (13) (or by (14)) really assumes the prescribed boundary data.
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