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Abstract
In game theory, there are two social interpretations of rewards (payoffs) for decision-making

strategies: (1) the interpretation based on the utility criterion derived from expected utility

theory and (2) the interpretation based on the quantitative criterion (amount of gain) derived

from validity in the empirical context. A dynamic decision theory has recently been devel-

oped in which dynamic utility is a conditional (state) variable that is a function of the current

wealth of a decision maker. We applied dynamic utility to the equal division in dove-dove

contests in the hawk-dove game. Our results indicate that under the utility criterion, the half-

share of utility becomes proportional to a player’s current wealth. Our results are consistent

with studies of the sense of fairness in animals, which indicate that the quantitative criterion

has greater validity than the utility criterion. We also find that traditional analyses of

repeated games must be reevaluated.

Introduction
Recently, game theory has been studied extensively to investigate the reasons why cooperation
evolved in human and animal society, e.g., networks and other spatial structures, heterogeneity
in behavior or rationality, and punishments [1–13]. These developments introduce some com-
plexities in game theory itself such that the game becomes more realistic. Instead, in this work,
we focus on the nature of decision making in game theory. Note that decision theory and game
theory are optimization theories of individual behaviors that have been systematized together.
Decision theory is adopted when individuals face environmental uncertainty, whereas game
theory applies when the behavior of other individuals is uncertain [14–15]. For these reasons,
game theory is a special extension of decision theory.

The core of decision theory is referred to as expected utility theory, which maximizes the
expectation value (average or mean) of utility [14, 16]. Based on the above relationship, the

PLOSONE | DOI:10.1371/journal.pone.0159670 August 3, 2016 1 / 10

a11111

OPEN ACCESS

Citation: Ito H, Katsumata Y, Hasegawa E,
Yoshimura J (2016) What Is True Halving in the
Payoff Matrix of Game Theory? PLoS ONE 11(8):
e0159670. doi:10.1371/journal.pone.0159670

Editor: Cheng-Yi Xia, Tianjin University of
Technology, CHINA

Received: March 3, 2016

Accepted: July 5, 2016

Published: August 3, 2016

Copyright: © 2016 Ito et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This study was supported by a Japan Prize
Foundation award to HI, grants-in-aid from the Japan
Society for Promotion of Science (JSPS) for JSPS
fellows to HI (no. 14J02983), and grants-in-aid from
the JSPS to JY (nos. 22255004, 22370010,
26257405 and 15H04420). The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0159670&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


axioms of expected utility theory are used as the basic axioms of game theory. In this case, util-
ity is a measure of content (satisfaction) if the given wealth (resource) is consumed. The utility
of a given level of wealth is thus highly subjective and individualized; moreover, utility is there-
fore a dimensionless value without a unit, unlike monetary currencies (dollars and yen) and
prison sentences (years). We introduce dynamic utility [17–18], a new concept of utility, in
decision theory into game theory. Specifically, we consider half-sharing among doves in the
hawk-dove game in terms of dynamic utility.

Game theory involves the study of individuals’ behavior in relation to other individuals in a
population. The payoff matrix is the set of benefits for players against opponents. Therefore,
the elements of the payoff matrix are understood as the values of utility. Thus, the social inter-
pretations of strategies are understood to be based on the utility criterion [16, 19–20]. However,
this utility interpretation frequently conflicts with the natural understanding of animal and
human behaviors. Meanwhile, some people in economics actually use the amount of money
(dollar value) in the payoff matrix because the amount of money (rewards) is not known in the
utility criterion [21–30], but we like to know how many dollars we can obtain as a reward for
victory. The main interest of game theory is in how people behave in a real-money game. To
contrast real-money rewards with the utility criterion, we call the latter the quantitative crite-
rion. Recently, several experimental studies have shown that animals behave according to the
quantitative criterion when they are offered rewards after enduring suffering [31–34]. For
example, if the same effort is required, animals complain strongly if the same amount of reward
is not offered. Hence, animals are said to exhibit a sense of fairness, where fair division is
defined as a half share of the resources, e.g., an ultimatum game [31–32, 34]. These observa-
tions seem to indicate that the quantitative criterion is more valid than the utility criterion.

Many techniques have thus adopted the quantitative criterion for payoff elements [21–29],
leaving two alternatives for interpreting the elements of the payoff matrix in game theory: the
utility criterion (dimensionless) and the quantitative criterion (with units, e.g., dollars).

Dynamic programming (DP) involves a numerical algorithm that solves for the optimal
choice in sequential decision making. DP underlies the first true dynamic optimization model
that was developed solely by Richard Bellman [35]. Later, stochastic control (theory) was devel-
oped but found to be mathematically equivalent to DP with additional complexity [21]. DP has
been extensively applied to animal decision-making activity in behavioral ecology and has
helped yield numerical solutions to various dynamic problems [36]. Despite these great
achievements, theoretical understanding of the mechanisms of behavior is not provided by the
numerical solutions yielded by DP.

Recently, a theory of dynamic utility optimization (DU) has been developed using the “Prin-
ciple of Optimality,” the core principle of Bellman’s DP, which involves dynamic decision mak-
ing under risk and uncertainty in which the growth rates of individual wealth are random
variables that follow a simple stochastic process [17–18]. Because DU optimizes Markov chains
(stochastic processes) as a form of sequential decision making, it maximizes the geometric
mean of multiplicative growth rates.

Here, we explain the theoretical rationale of the dynamic utility model. The dynamic utility
function is derived as follows [17–18]. Let time t = 0, . . ., T (final time) and wt, the wealth at t,
be the non-negative state variables of a decision maker (independent, identically distributed
random variables). Let rt (>0) denote the multiplicative growth rate of the wealth at t, such
that wt+1 = rtwt. Then, the wealth at t, wt, is expressed as

wt ¼ w0r0r1r2 � � � rt�1 ð1Þ

True Halving in Game Theory

PLOS ONE | DOI:10.1371/journal.pone.0159670 August 3, 2016 2 / 10



We assume that the growth rates rt (t = 0, . . ., T) are independent identically distributed
random variables that represent a stochastic process. The decision maker can optimize this sto-
chastic process by choosing the best option at every time point in Eq (1). We thus maximize
the final wealth at T, wT, such that

wT ! max ð2Þ

This maximization of the final wealth wT (Eq (2)) is equivalent to maximization of the geo-
metric mean growth rates such that

G rð Þ ¼
YT�1

i¼0

ri
1
T :! max ð3Þ

Taking the logarithm of Eq (3), we obtain

logfGðrÞg ¼ 1

T

X
logðriÞ ¼ E logðrÞf g :! max ð4Þ

Eq (4) is rewritten in the form of utility theory in economics and operations research. We
simply define utility function u(r) as

uðrÞ ¼ log r ð5Þ

and we maximize the expected utility E{u} [37]. Note that wt+1 = rtwt. Therefore, we
obtainrt ¼ wtþ1

wt
¼ gtþwt

wt
, where gt is the gain at time t. Therefore, at any time t, we obtain

r ¼ g þ w
w

; ð6Þ

where g and w are the current gain and the current wealth, respectively. The growth utility for-
mula (Eq (5)) is then further rewritten in the form of g (decision variable) given w (state vari-
able) such that

u g;wð Þ ¼ log
g þ w
w

� �
ð7Þ

and we maximize the expected utility E{u(g;w)}, which indicates that the current wealth is the
state variable for maximization of the final wealth. Therefore, this function u(g;w) (Eq (6)) vio-
lates the so-called independent axiom of the axiomatic system of utility theory [16]. Thus, the
principle of optimality developed by Richard Bellman [35] contradicts with the traditional
expected utility theory [16].

Thus, DU yields the following optimization principle:

Maximize : E uðg;wÞf g; where u g;wð Þ ¼ log
wþ g
w

� �
ð8Þ

Thus, the derived dynamic utility is in the form of a logarithmic function (Eq (8)). Note that
the value of g satisfies–w< g. This analytical solution for DU demonstrates that the utility
function depends on the current gain/loss (the decision variable) and the current wealth status
(state variable) at the time of decision making. In the present study, we demonstrate that the
traditional application of expected utility theory and game theory in behavioral studies is valid
only as a static model.
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By combining the maximization of future wealth and the avoidance of bankruptcy (the two
optimization criteria), we obtain the following:

Maximize : E uðg;wÞf g; where u g;wð Þ ¼ 1þ f ðgÞð Þ log g þ w
w

� �
ð9Þ

where

f ðgÞ ¼ 0 if g � 0

cg if g < 0
ð10Þ

(

Here, c is a constant. In the present study, the dynamic utility function (DUF) u(g;w) is
applied to game theory; notably, the DUF avoids the arbitrariness of utility by mathematical
derivation from DP. Using numerical analyses of some examples, we demonstrate that there
are serious contradictions in the social interpretation of strategy when the utility criterion is
used. These results indicate that traditional interpretation of game theory is a static optimiza-
tion model that is valid only when all the players have equal current wealth. It cannot be
applied to any game in which the current wealth of players varies over time; thus, the utility cri-
terion cannot be applied to repeated games in which the current status of a player changes over
time. In contrast, the quantitative criterion does not invoke a sense of unfairness in dividing
the reward for games. Thus, we suggest that the quantitative criterion is more adaptable to the
social interpretation of strategy in game theory than the utility criterion.

Model and Results
As an example of game theory, we consider the hawk-dove game (V: victory reward; and C:
fighting cost), in which the sense of fairness appears when both players adopt the dove strategy
(D, D) in their payoff matrix (Fig 1A) [14]. Here, the “dove” player against a dove opponent
gains V/2 in every contest.

We apply the analytically derived DUF u(g;w) = log{(g+w)/w} to the case of fair division of
victory reward (V/2) in (D, D). Numerically, we set w1 = 10 and w2 = 5 (unit: dollar). We com-
pare the values of V/2 between the utility and quantitative criteria.

In the case of the utility criterion, both players acquire u = V/2 (unit: utility). The utility of
each player i (i = 1, 2) should satisfy the following relationships between the current gain g and
current wealth w:

u gi;wið Þ ¼ log
gi þ wi

wi

� �
, gi u ¼ V=2;wið Þ ¼ wi e

V=2 � 1
� � ð11Þ

Eq (11) results in the following serious flaws. The face-value of money that each player
obtains depends on the relative wealth of the player, such that

u1 ¼ u2 ¼ V=2ð Þ , log
g1 þ w1

w1

� �
¼ log

g2 þ w2

w2

� �
, g1 ¼

w1

w2

g2 ð12Þ

Therefore, halving the reward depends on the relative amount of the players’ current wealth
w1/w2. For example, if we set V = 2 (utility), such that u1 = u2 = 1 (Fig 1B; case 1 in Table 1),
then we obtain the following:

g1ðu1 ¼ 1;w1Þ ¼ w1ðeu1 � 1Þ ffi 17:18 ½﹩�
g2ðu2 ¼ 1;w2Þ ¼ w2ðeu2 � 1Þ ffi 8:59 ½﹩� ð13Þ

(
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Fig 1. The halving of the victory reward based on the utility and quantitative criteria in the hawk-dove
game. (a) Payoff matrix of the hawk-dove game, where V and C are the victory reward and fighting cost,
respectively. (b, c, d) The halving outcomes of victory rewards (V) by two players adopting the dove strategy
in which the current wealth of player 1 (rich dove; RD) and player 2 (poor dove; PD),w1 andw2, arew1 = 10
andw2 = 5. (b) The utility criterion in which V = 2 (utility) is divided by half, such that u1 = u2 = 1. The amount
gained by each player is proportional to the player’s current wealth, such that gi ¼ wiðeui � 1Þ. The total
amount, G, of victory reward, V, varies based on the sum of the current wealth of both players, such that G =
(w1 +w2)(e– 1). (c) The utility criterion in which the amount of reward G is set constant (G = $2). The gains of
the players depend on the proportion of players’ current wealth, such that g1 = {w1/(w1 +w2)}G. The utilities of
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Thus, the richer the player, the greater the share that he or she should obtain in the equal-
utility division (Fig 1B).

In case 1 (Table 1; Fig 1B), we also face the problem of the total amount G (= g1 + g2) of
competitive resources. From Eq (11), the total resource G becomes proportional to the sum of
the current wealth of both players. Therefore, G is large in games between rich players but
small in those between poor players, which leads to the following logical inconsistency. In
nature, and even in a society, competition occurs for existing resources, which indicates that
the game rewards should be set equal to a constant prior to the beginning of a game. However,
in case 1, the total reward G cannot be determined until who plays the game is determined.
Furthermore, G may increase indefinitely in some repeated games when the sum of the current
players’ wealth increases indefinitely. Thus, G should be a constant that is unaffected by play-
ers’ current wealth. We can avoid this problem of case 1 as follows. By setting a constant G in
the utility criterion (case 2 in Table 1; Fig 1C), we can satisfy u1 = u2. Then, player 1 receives
g1 ¼ w1

w1þw2
G as a reward. However, even in this case, the reward of a player becomes propor-

tional to the current wealth of the players (as with case 1). Therefore, quantitative fairness is
also not satisfied in this case.

In contrast, if we apply the quantitative criterion (Fig 1D; case 3), then each player obtains
the same amount of money, such that g = V/2 (unit: dollar). In this case, the utility of each
player i (i = 1, 2) depends on their current wealth, wi:

ui g ¼ V=2;wið Þ ¼ log
V=2þ wi

wi

� �
ð14Þ

Thus, equal division of money results in a difference in the utility values of the players unless
their current wealth is identical. For example, if we set V = 2 (unit: dollar), then u1 ffi 0.095 and
u2 ffi 0.182 (Fig 1C).

u1ðg1 ¼ 1;w1Þ ¼ log
1þ w1

w1

� �
ffi 0:095

u2ðg2 ¼ 1;w2Þ ¼ log
1þ w2

w2

� �
ffi 0:182

ð15Þ

8>>><
>>>:

All three cases are summarized in Table 1.
Now, we compare the quantitative differences between case 1 and case 3 (Table 1). The

observed discrepancies in terms of both the utility (case 1) and quantitative (case 3) criteria
increase with the difference in current wealth between the players (Fig 2). In the utility criterion
(Fig 2A), the difference in the current gain Δg (= g1 –g2) depends linearly on the difference in
current wealth Δw (= w1 –w2) (Fig 2B and 2C). In the quantitative criterion (Fig 2D), the

the two players are equal, but the amounts of gains differ based on the ratio of current wealth, as in (b). (d)
The quantitative criterion in which V = G = 2 dollars. The utility of players depends on the current wealth of
players, such that ui = log {(gi +wi)/wi}.

doi:10.1371/journal.pone.0159670.g001

Table 1. Comparison of variables among three cases.

case Criterion Utility u Gain g Total gain G Fig 1

1 utility u1 = u2 g1 6¼ g2 variable (b)

2 utility u1 = u2 g1 6¼ g2 constant (c)

3 quantitative u1 6¼ u2 g1 = g2 constant (d)

doi:10.1371/journal.pone.0159670.t001
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difference in utility Δu (= u1 –u2) increases with the ratio of the multiplicative growth rates Δr
(= r1/r2) of the two players, where r = (g + w) / w (Fig 2E and 2F). Note that if the current
wealth of all players is equal, then we can preserve equality in both g and u, such that g1 = g2
and u1 = u2 simultaneously.

Discussion
The current results demonstrate the drastic difference between the utility criterion and the
quantitative criterion. Under the utility criterion, equal division means that the rich should
obtain more than the poor. In contrast, under the quantitative criterion, both the rich and poor
obtain the same amount of money (dollars), but their utility becomes different. Recent studies
have shown that animals (e.g., human adults [32], human babies [33], and chimpanzees [34])
express a sense of fairness only when the reward is divided quantitatively in half. These studies
suggest that these animals use the quantitative criterion in equal division.

This discrepancy in social interpretations could not have been resolved for more than a cen-
tury because no utility can be derived unambiguously. From empirical studies of preferences in
humans, utility (considered as perceptional quantity or psychophysical quantity) is known to
correlate with the logarithm of the input (the stimulus quantity); this relationship is known as
the Weber-Fechner Law [38–39]. Recent studies have also demonstrated that utility also
depends on the current wealth of an individual decision maker [40], as in the analytically
derived utility function applied in the current game. However, in traditional decision theory,
the only method of estimating the utility function is to compare the preferences between two
choices. Therefore, as Poincaré noted a century ago, we cannot even derive an approximate
utility function mathematically [41]. The arbitrariness of utility thus cannot be avoided in any
proposed utility functions. To avoid this problem, utility functions are treated as a black
box without referring to the resources actually gained (rewards). Based on this problem, the
resource dividends in traditional utility theory that are based on the utility criterion cannot be
translated into actual amounts of resources.

The current results highlight a serious problem in repeated games. In a strict sense, tradi-
tional analyses of game theory are valid only when all players’ current wealth is equal. However,
in any type of repeated games, players’ current wealth inevitably varies after each game. Thus,
the utility function of a player varies in any sequential decisions, as long as his/her current
wealth varies over time. Furthermore, the utility criterion is not applicable if the current wealth
of players varies significantly. Therefore, traditional analyses are applicable only to the case of
one-time decisions (games) in which the wealth of all players is equal. Note that the traditional
equilibrium analyses become invalid even when the quantitative criterion is adopted. Thus, tra-
ditional analyses of game theory should be reevaluated in terms of DU. We should note that
the utility criterion in game theory is still valuable because we have no alternative to estimate
dynamic games. The traditional utility and game theory should be used as guidance for deter-
mining the exact (true) dynamic games. The definition of Nash equilibrium is still valid, and
we expect that its analytical solution is also approximately true as long as the current wealth of
players does not differ substantially.

Fig 2. Comparison between the utility criterion and quantitative criterion. (a, b, c) The relationship between the gain and current wealth under the utility
criterion (case 1, when u1 = u2 = 1). (d, e, f) The relationship between the utility and current wealth under the quantitative criterion (case 3). (a) The gain
versus utility for both players, such that gi ¼ wiðeui � 1Þ. Δg indicates the difference in g between the two players. (b) The difference in gain Δg (= |g1 –g2|)
versus the difference in current wealth Δw (= |w1 –w2|). (c) Phase plane of Δg againstw1 andw2. The dashed line indicate Δg = 0. (d) The utility versus both
players’ gain, such that ut = log{(gt +wt)/wt}. Δu indicates the difference in u between the two players. (e) The difference in utility Δu (= |u1 –u2|) versus the
difference in growth rate Δr (= r1/r2). (f) Phase plane of Δu versusw1 andw2. The dashed line indicates Δu = 0.

doi:10.1371/journal.pone.0159670.g002
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