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The calculations of the line shapes of the quantum oscillations of the relative sound

velocity in bismuth and tellurium-doped bismuth are carried out using Nagai-

Fukuyama′ theory. The results are compared with experiment and the importance of

the vertex correction in calculations of the polarizability functions for bismuth is

discussed. Discussion on the line shapes for tellurium-doped bismuth is also given.

隻 1. Introduction

The sound velocity in metals, semimetals and semiconductors changes due to the

effect of the magnetic field on the electroユーphonon interaction. To obtain the expres-

sion of the sound velocity, some workers calculated the dispersion of the sound wave

using the electric conductivity, some paid their attention to the thermodynamic rela-

tion of the sound velocity and others calculated the phonon selトenergy.
・「

Blank and Kaner calculated the phonon self-energy in the presence of the magnet-

ic field and obtained the relative sound velocity and the attenuation coefficient from

the real and imaginary parts of the phonon selトenergy, respectively. There, however,

the space charge field resulting from the passage of the sound waves was not taken into

account explicitly and was considered to reduce the electron-phonon coupling constant.

In our previous work , the phonon self-energy was shown to be expressed with the

electron polarizability functions and the electron-phonon coupling constants. The

screening effect was explicitly taken into account. The qualitative agreement in the

renormalization of the sound velocity in bismuth was obtained in the relaxation time

approximation. On the other hand, Nagai and Fukuyamd3'showed in the calculation

of the attenuation coefficients in bismuth that the self-consistent Born approximation

and the vertex correction are really important for the calculation of the phonon selレ

energy in the presence of the impurity scattering.

In this work, using Nagai-Fukuyama's theory, we shall give calculations of the

relative sound velocity and discuss the results comparing with our experimental data

for bismuth and tellurium-doped bismuth.

* This work is based on the thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Science at Kyushu Universityf 1978).
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隻 2. Theory of the renormalization of the ve一ocity of sound in a semimetal

In the quantum theory, the sound waves are treated as phonons with long wave-

lengths. In the second quantized form, the carrier-phonon coupling Hamiltonian is giv-

enby

Heトph -吉fjq&q- bV*V**ォ(2-1)

where V is the volume of the crystal, b^(bi) and c^(c」 ) are the annihilation ( the

creation) operators of the phonons with a wave vector q and those of the #-th carriers

with a wave vector k, respectively. The coupling constant g- is given by

g%- 」i(ti/8p<oq)* (ffjqj + epJA* , (2-2)

where p is the density of the crystal, 」 is the polarization vector of the phonon and

Aij is the deformation potential tensor for the #-th carriers. The deformation po -

tential tensors for bismuth were theoretically calculated by Katsuki'by means of the

pseudopotential method.

The renormalized phonon frequency at a finite temperature is derived from the

thermodynamic phonon selトenergy which can be calculated by using Feynman diagram

techniques. Theoretical calculations have been made by Blank and Kaner in the absence

of the impurity scattering and by Liu and Toxen , and Nagai and Fukuyama in the

presence of the impurity scattering. Their results have been obtained under the condi-

tion of the strong magnetic field and are applicable only to the single carrier case (for

example, a metal). When several groups of carriers are present, the Coulomb interaction

between carriers gives serious effects on the renormalization process. Such investigations

have been carried out by Kobayashi and Yamadd by the method of the quantum-

equation-0トmotion in the absence of the impurity scattering. As will be shown later,

the impurity scattering is important in the quantum oscillations of the sound velocity

in a strong magnetic field. Therefore, we have extended Nagai-Fukuyama′s theory

to the multi-carrier case. In this section we will consider the systbm with two types

of isotropic carriers(electrons and holes) for simplicity.

According to Nagai and Fukuyama, the relative sound velocity and the attenuation

coefficient are given, respectively, by

AⅤ/vo=(1/bq)Re[JIvh(Q,io>λ)];10)λ-ViO

a=-(2!hVO)Im咋),(<7.i<wλ)¥u
lc()λ-(oq+iO

(2-3a)

(2-3b)

where Tlpf^q^wA) is the thermodynamic phonon selトenergy and Vq is the unrenormahzed
sound velocity.

The phonon self-energy IIph is a sum of the self-energies due to the interaction

with electrons and holes as diagramatically shown in Fig. la.
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Fig. 1. (a) Diagram for the selトenergy of phonons in the system ofelectrons and holes.

(b) Vertex part of the polarizability for electrons.

* *

″ph πe十ghπh ・
(2-4)

The vertex parts re and p^ contain all the interactions, such as electron(hole)-

phonon, electron-electron(hole-hole), electron-hole and electron(holeトimpurity inter-

actions, asshownin Fig. lb forre. From this and the similar one for/1^, we obtain

the followin equations for π and πh・

π =sePe-Vπe- π,)Pe-

=ehph-Vπ -vph

(2-5a)

(2-5b)

where Pe and P^ are the thermodynamic polarizability function of electrons and that of

holes, respectively, and Vg(-4πe2/e oQ ) is the Coulomb potential. In deriving eqs.

(2-5a) and (2-5b), we made an assumption that the impurity potential is of the form

of the Dirac delta function. Nagai and Fukuyama did not take account of the Coulomb

interaction. In that case, the phonon selトenergy is given by

2

v*ia)λ) - Ig。I K(Q'iQ)λ) + i Ph(<7,*サλ) , (2-6)

Expressing ^e and ^ with Pe and P^, and substituting them into eq. (2-4), we obtain

the expression for the phonon selトenergy zph.

-1

aph-[l+VPe+Ph)] [|g-e再+Igw再+V'- 、 w
(2-7)

Using eqs. (2-3a) and (2-3b), we obtain the expressions for the relative sound velocity

and the attenuation coefficient.
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。V/VQ-(-1/2/jV乙){Ae+¥Re[PePh/(Pe+PJ](2-8a)

-(q/pv'
Q)¥Ae+AIm[PP,/(P
Lehve十phサ(2-8b)

where we used the inequality VqPq ]^>1 which is in general satisfied in the frequency
region of sound wave.

According to Nagai and Fukuyama, when q is small and parallel to the magnetic

field, the vertex corrected polarizability function of the carrier in a strong magnetic

field is given by

p(<7.*> ) - (iNo/V) Jd中q
Q(O

1 - 2cuQ(e)

・吉吉∂z/de

n

-2

-W」- vn^osh t(」+」nV2] (2-9)

where Q(」)-^n^Dneq + γ i iリq). In the above equation, the level broadening of the

energy level is taken into account through the selトconsistent Born approximation and

the meanings of the various symbols are the same as in ref. (3).

§ 3. Experimenta一 Procedure

The single crystal of bismuth was grown from a melt of zone-refined ingots by

the Czochralski vertical pulling technique in an argon atmosphere using a seed crystal.

The direction of the crystallographic axes were determined by the Laue X-ray back

reflection method. The single crystal ingot was cut into a rectangular parallelpiped by

a Servomet cutting machine. The faces of the sample were planed as flat and parallel

as possible by the spark planer. Before being used for measurements, the sample was

annealed at a constant temperature of about 200 -C for more than 120 hours.

The single crystal of tellurium-doped bismuth was obtained by the horizontal zone

levelling technique. The tellurium concentration is above the value where the hole car-

Fag. 2. Blockdiagram of the system for the sound velocity measurement.
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The measurements of small changes of the sound velocity were carried out using

conventional pulse-echo superposition technique. Longitudinal ultrasonic waves of 2 0

MHz were excited by an X-cut quartz transducer with a fundamental frequency of 20

MHz. Bonding was with a silicon grease and was repeated until a good echo pattern

was obtained. A blockdiagram of the arrangement is shown in Fig. 2. The sensitivity

tosmall changes was generally 1 x 10. In this method, further smaller changes of

the sound velocity could be detected using the longer gate time of the universal counter.

In order to attain the low temperature, we evacuated the evaporating gas of liq-

uid helium with an oil rotary pump (4.2 K>T>1.7 K) and with a Kenny pump (1. 7

K>T>1.15 K).

Static magnetic fields up to 23 kOe were provided by an electromagnet with the

pole piece gap of 65 mm. The current stability is about lO‾ The magnetic field

intensity was measured by the Hall probe calibrated against NMR. We could obtaina

strictly linear relationship between the field intensity and the Hall voltage in the range

from 1.5 kOe to 23 kOe.

与4.ExpermentalResults

TherelativesoundvelocityAV/Vqcanbeexpressedas

AⅤ′v0--(1′2pV')Re[2G..P.PJ2P.]

i>j

(4-1)

where k denotes the propagation direction of the logitudinal sound waves and i and ;

denote the types of the carriers. The values of G告are calculated using the bare defor-
mation potential constants obtained by Katsuki and the elastic constants by Eckstein

et al."一and are listed in Table I.

Table I. Values of
Gij calculated using the bare deformation potential constants ob-

tained by Katsuki and the elastic constants by Eckstein et al.

'a b = G G a b 'b h = G c h

q / / x 24 . 9 0 . 3 3 6 .2 0

q′′y 2 2 .0 34 . 3 1 . 3 5

q / / z 0 .0 3 9 .8 3 9 .8

2inunitsofeV.

TheFermisurfaceofbismuthconsistsofthreeelectronellipsoidstiltedinthemir-

rorplanesattheL-pointsandoneprolateholeellipsoidattheT-pointinthefirst

Brillouinzone.Thethreeequivalentright-handedsystemsareshosenassuchinthe

Fig.3a.Wegiveeachoftheelectronellipsoidsanameforconvenience.Theschematic

energyleveldiagramisalsoshowninFig.3b.
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Fig. 3. (a) Schematic diagram of the Fermi surface of bismuth. (b) Schematic energy

level diagrams of electrons and holes.

As shown in the previous work, the quantum oscillations of the relative sound ve-

locity due to the b- and c-electrons are absent for q//y and dominant for q!Ix. These

were explained by the renormalization and the amsotropy of the deformation potential

tensor. We will show and discuss the experimental results for qlly in the following,

in connection with the line shape of the quantum oscillations of the relative sound

velocity.
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Fig. 4. Quantum oscillations of the sound velocity (a) and the attenuation coefficient.

(b) for qllyllHaX T - 1.2 K in bismuth.

In Fig. 4, the quantum oscillations of the sound velocity and the attenuation co-

efficient for qllyllH are plotted using the data recorded with a digital printer.
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The characteristics of the results are summarized as follows:

1. The line shape of the attenuation is spike-like and the spin splittings are clear

even for the 20 MHz sound waves.

2. The peak at ahigher field of the spin-split peaks is larger than the one at a

lower field.

3. The attenuation coeffcient has peaks at higher fields than the velocity oscil -

lations. The magnetic field of the attenuation peak and that of the velocity minimum

do not coincide. The differences between the magnetic fields of the peaks in the attenua-

tion coefficients and those of the corresponding minima of the relative sound velocity are

listed in Table II.

Fig. 5. Quantum oscillations of the sound velocity in tellurium-doped bismuth for -oily

IIH.

(a)T-4.2 K;(b)T-1.2K.

In Fig. 5, the quantum oscillations of the sound velocity in tellurium-doped bismuth

are shown for q//y//H at two different temperatures of T-4.2 K and T-1.2 K. The

Fermi energy was increased by the tellurium doping, because tellurium acts as a donor

in bismuth. The minima of the sound velocity shift to higher magnetic fields. The

period of the velocity oscillations due to the a-electrons, which is proportional to the

inverse of the cross-section of the Fermi surface, has been changed from 8.3 × 10

oe‾ to4.9× 10‾5oe‾l

The line shape of the oscillations became broader and more symmetric because the

Landau levels are broadened due to the tellurium doping. The line shapes less depend

on temperature. The amplitude of the oscillations at high fields is still large and a-

mounts to 7 × 10 larger than 5.5 × 10 in pure bismuth, even though the collision

time should be very short as compared with that of pure bismuth. The fact that the

amplitude of也e oscillations of the sound velocity was not much affected by the lm-

purity scattering suggests the usefulness of the measurement of the sound velocity os-

dilations in studying the electronic structures of compounds and alloys where theimpurity

scatterings are very large.
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隻5.Discussion

Inthissection,wewilldiscusstheobservedquantumoscillationsofthesound

velocityasquantitativelyaspossible.Incalculatingthepolarizabilityfunction,we

usedbandparameters,baredeformationpotentialconstants,andelasticconstantsけ一

givenintheliteratures.

a.Bismuth

Theelectronicenergystateofcarriersinbismuthdependsonthespinquantum

numbersaswellasontheorbitalquantumnumbern.Ifweassumethatthespin-flip

transitiondoesnotoccurinthecourseoftheimpurityscattering,theimportantpart

ofthepolarizabilityfunctiongivenbyNagaiandFukuyamacanberewritteninthe

followingform.

ーos1-2
P(<7,*>)=(No/V)君主adE¢(6)手osh[(e+e)/2]
ns(5-1)

wheretheenergyJismeasuredfromtheFermilevelandisnormalizedbykgT.The

quantityJrepresentsthebottomoftheLandaulevelwiththequantumnumber(n,
ns
s).Wedefinedthelineshapefunction¢・(0瑚票(O+i<*>-(Oby

S 2

¢ (0 -^l>ns(O + iリ^Qns(O/{l - 2cu Q,(O}]
n

(5-2)

Thefactor1/{1-2cuQ(」)}isthevertexcorrectionduetotheimpurityscattering

andQ{」)isdefinedby

Q^>-*QM(0-2*ns<0/[Dn8<0ォ1γs-iJV(5-3)

nn

22
wheree-7iq!2mzkgTand〟-%<*>/kr>T.Thecollisionrate
qqy>γisrelatedtothe
densityofstatespby

2 2

γs = 2cu ps(e) = 2cu 2"pns(e)

刀

(5-4)

Equation(5-4)meansthat,fortheshortrangeimpuritypotential,thecollisionrate

isafunctionofenergyandisindependentofthequantumnumbern.Thismaybedue

tothefactthattheshortrangepotentialallowsforalltheinter-Landauleveltransi-

tionswithequalprobabilities,sothatthecollisionratedoesnotdependontheinitial

stateofthecarriers.

Thenormalizeddensityofstatesp(e)=
s君i-nc-(O*srelatedtotheimaginarypart
ofthez--functiondefinedby

-Vz

=^ns--^[-(e- ns)+cu+cu z。]
i l ^^^^^^Htl

(5-5)
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The diffusion constant D in eq. (5-3) is defined by

Dns(」) - Im 'ns/Re jns (5-6)

When the magnetic field is so strong that the separation between the successive

Landau levels is wide enough to neglect the overlap of the density of states due to the

different Landau levels, we can drop the summation over n and s. This is the case that

Nagai and Fukuyama have applied their theory to the quantitative analysis of the line

shape of the giant quantum oscillations of the attenuation coefficient in bismuth and

may be called as the single level approximation (SLA). By this approximation, we can

see how the vertex correction works in the quantum oscillation of the polarizability

function. The line shape function is now simply given by (dropping the spin quantum

numbers)

2 2 2

¢(*)-[D +iRD]/[D +R], (5-7)

vq /」q. The energy dependence of ¢ is largely determined by the diffusion

constant D which is monotonically increasing funciton of e. The positions of the maxima

of the line shape functions depend on the value of R which is estimated to be 10 for

the 20 MHz sound wave. In Fig. 6, we show也e density of states and the line shape

i
,
.
世
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1
)

115 -10 -5 10

8

Fig. 6. Calculations of the density of states and the line shape function of the a-electrons

in bismuth as a function of energy e for qlIylIH, H - ll.5 kOe and T - 1.2 K.

function as a function of energy. It can be seen that the maximum of ¢r(」) occurs

always at higher energy than that of ¢・(e) which explains the shift of the position of

the minima of the sound velocity with respect to the attenuation peak as observed in
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the experiments.

It should be noted that without the vertex correction the real part of the polar-

izability function is almost completely determined by the density of states because γS

In the SLA the vertex correction becomes very large because the complete cancel -

lation takes place in the denominator

2

γ-2cu 〟. (5-8)

However,thedensityofstatesoftheparticularLandaulevelhasalongtailonthe

higherenergyside,sothatthetransitiontothelevelswithlowerquantumnumber,

evenifitsdensityofstatesisverysmall,breakstheconditionofthecompletecanceレ

Iationandmayaffectthelineshapefunction.Forthisreason,wecalculatedthepo-

larizabilityfunctionintheapproximationinwhichthesummationovernineqs.(5-1)

through(5-5)aretakenoverallthelevelsbelowtheFermilevel(e->0).Weshall

callthisapproximationthemulti-levelapproximation(MLA).

Incalculatingzaccordingtoeq.(5-5)(self-consistentBornapproximation),we

neglectedcuandtherealpartofzintherighthandsideoftheequation.Thisneglect
s
isusuallymadeintheimpurityscatteringproblems.Then,randDaresimply

given,respectively,by

2221/22γ8-2cu」[*-ォns+{(*-ォns)γ./4}"]′2[(牀-」)γ/4]-9a)

n

i
n
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e
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l
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O
l
)
d
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∝
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Fig. 7. Polarizability functions for the a-electrons in bismuth for qlIylIHat T - 1.2 K.

The solid lines are calculated with the vertex correction and the dotted ones with-

out it by the MLA. The dash-dot ones are obtained by the SLA.
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22y2
D=(2/
nsvγS)[いns+{(*ns'γS!4}].

(5-9b)

First, we calculated γ from eq. (5-9a) self-consistently. Then theline shape

function was calculated for the given value of e. The polanzability function was ob-

tained by integrating the line shape function numerically.

In Fig. 7, the calculated polarizability functions of the a-electrons are shown for

Q//y//H. The solid curves, the dotted ones and the dash-dot ones correspond, respec-

tively, to thoes calculated by the MLA with the vertex correction, the MLA without

vertex correction and the SLA. The vertex correction affects the line shape and the

absolute value of both the real and imaginary parts, especially near the extrema. The

peak of the imaginary part is seriously enhanced, while the peak in the real part is

reduced by the vertex correction. The difference between the MLA and SLA consists

most significantly in the relative height of the two split-off peaks in the imaginary

part. The peak at the lower field is due to the (0,+l) level, so that there is no inter-

Landau level transition, while the peak due to the (1,-1) level suffers the inter-Landau

level transition to the (0,-1) level. Therefore, the (1,-1) peak may be more enhanced

in the MLA than in the SLA by the vertex correction.

If the vertex correction is not taken into account, the peaks in the imaginary part

of p is rather density of states-like in contradiction with experiment and the (0,+l)

peak is higher than the (1,-1) peak. Thus, the vertex correction is important at a strong

magnetic field near the quantum limit. In the following, we shall show the calculations

of the polarizability functions by the MLA. In Fig. 8, and Fig. 9 are shown the calcu-

MAGNETIC FIELD ( kOe )

Fig. 8. Real parts of the polarizability functions of the electrons and holes in bismuth

for qllyllHat T - 1.2 K.
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Fig. 9. Imaginary parts of the polarizability functions of the electrons and holes in bis-

muth for ql7'y17Hat T - 1.2 K.
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Fig. 10. Calculated curves of the quantum oscillations of the sound velocity and the attenua-

tion coefficient in bismuth for qlIylIH at T - 1.2 K together with the experimen-

tal curves. The bare deformation potential constants by Katsuki and the elastic

constants by Eckstein et al. were used.
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lated real and imaginary parts of the polarizability functions of electrons and holes for

qllylIH. It is seen that the polarizability function of holes are modulated by the

magnetic field dependence of the Fermi energy.

By using these results, we calculated the relative sound velocity and the attenuation

coefficient according to the relations

Jv/VO)y--(l/2^VpRegG^.RP^R]

1

α=(q′pvy)lm[芸i]iJi

ji 1

(5-1Oa)

(5-1Ob)

The numerical values of CS- are listed in Table I. In Fig. 10, the calculated results are

shown together with the experimental data. It can be seen that the relative sound

velocity is well reproduced by the theoretical calculation. The slight discrepancies may

be due to the inadequate choices of the pand parameters. It should be noted,,however,

that we could not fit the last (1,-1) peak to the theoretical curve by changing the

parameter 2cU The agreement between theory and experiment in the attenuation

coefficient is not so satisfactory. The difference of the amplitudes of the spin-split

peaks is too large, though the main features could be reproduced, especially, the line

shapes are spike-like even at 20 MHz, which proves the importance of the vertex cor-

rection. Another evidence of the necessity of the vertex correction is the shifts of the

positions of the attenuation peaks relative to the positions of the minima of the sound

velocity. The reason is clear in Fig. 6. The numerical values of the shifts are compared

with experimental values in Table II.

( n , s 1
AH

Experiment Theory

C l ,-i ) 325 Oe 150 O e

C o ,+i ) 300 Oe 250 Oe

-∴
→iAH卜

,-1)

(1,-1)

Table II. Differences between the p-eak positions of the attenuation coefficient and the

corresponding minima of ttie relative sound velocity.
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Fig. ll. Calculated sound velocity oscillations in bismuth for qllylIHat T - 1.2 K. (b)

together with the experimental result (a).

Figure ll shows the experimental (a) and the theoretical (b) velocity changes at 4. 2

K for qllylIH. The agreement between theory and experiment seems good except for

the fact that the absolute amplitude of the oscillation of the theoretical curve is slightly

smaller than that of the experimental curve.

From the above considerations, we conclude that the quantum oscillations of the

velocity of sound in pure bismuth are quantitatively explainable by Nagai-Fukuyama′ s

theory. The vertex correction to the polarizability function is found to be important.

It should be noted,, however, that the above calculations were made with the value

of 2cu which is 0.1 times as large as the one used by Nagai and Fukuyama..With larger

values of 2cU2, the line shapes become unrealistic irrespective of the SLA or MLA. The

above value corresponds to the zero magnetic field scattering time r-6 × 10‾ sec which

is too long as compared with the experimental value. Because R ineq. (5-7) is very

large at 20 MHz, we must use such an unrealistic scattering time to get the quanti -

tative agreement between theory and experiment. The vertex correction in Nagai-

Fukuyama s theory, though it is important, seems to become overcorrection at low

frequencies.

b. Tellurium-doped bismuth

The same method is applied to calculate the line shapes of the relative sound velocity

oscillations for the tellurium-doped sample. The impurity concentration in the d⑬ped

sample may be two or three orders of magnitude higher than that in bismuth.



Quantum Oscillations of Relative Sound Velocity in Bismuth and Tellurium-doped Bismuth i r

I
Dd

d

(
i
e
o
i
)
む
∝
(
l
J
O
l
)
d
u
u
i

MAGNETICFIELD(kOe)

Fig.12.Calculationsofthepolarizabilityfunctionsofthea-electronsintellurium-doped

bismuthbytheSLAfor2cuasaparameterforqllylIH&tT-1.2K.

Figure12showsthepolarizabilityfunctionsofthea-electronscalculatedbythe

SLAwith2cu,normalizedwiththevalueusedbyNagaiandFukuyamaforbismuth,as

aparameterforqllyllH.Ascanbeseenthere,therealpartofthepolarizability

functionrapidlydecreaseswithincreasingimpurityconcentration.Whenleu2isabout

400timesaslargeasthatinbismuth,thepeakinRePaalmostdisappears.Contrary

tothetheoreticalcalculations,weobservedratherenhancedamplitudeinthedopedsample,

thoughthelineshapesareratherbroad.Thereasonforthereductionoftheamplitude

inthetheoreticalcalculationscanbeunderstoodfromtheSLAlineshapefunction,eq.

5-7combinedwitheqs.5-9aand5-9b.Thecollisionrateγbecomeslargewithin-

creasingimpurityconcentration,sothattheenergydependenceofDbecomesweak.

BecauseRisverylarge(-103)at20MHz,themaximaofthelineshapefunctionare

locatedatenergyfarapartfrome-ewherethedensityofstatesisconsiderably

small.Thus,weconsideredthatthevertexcorrectionis,bysomeunknownreasons,

ineffectiveinthedopedsample.Thismaybepartlyduetothelongrangenatureof

theimpuritypotentialofthescreenedCoulombtypewiththescreeninglengthofabout

040A.Bythisassumption,wecanapproximatetherealpartofthelineshapefunction

bythedensityofstatesandobtain

1ReP(q,a>)-(No/V)2"Jd^ns(」)を2
cosh[(e+sns)/2]
ns-I

(5-ll)
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Fig. 13. Calculations of the polarizability functions according to eq. 5-ll.

In Fig. 13, we show the real part of thepolarizability function calculated according to

the above expression. It is seen that the density of states itself does not so much depend

on the parameter 2cm. The observed enhancement of the amplitude of the oscillation

may be due to the cancellation of the reduction of the peak in the density of states by the

increase of the Fermi energy. In order to get the more realistic line shape, it is also

necessary to take account of all the higherorder terms in Fig.ユ4 in calculating the den-

sity of states of electrons.
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Fig. 14. (a) Selトenergy function of electrons in the selトconsistent Born approximation.

( b) T一matrix approximation.
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隻 6. Conclusion

The line shapes and amplitudes of the velocity oscillations in bismuth could be well

reproduced by the calculation of the real part of the phonon selトenergy using Nagai-

Fukuyama's theory. The vertex correction to the polarizabihty function is found to

be important expecially at strong magnetic fields near the quantum limit.

In the case of a tellurium-doped sample, however, the line shapes and amplitudes

of the velocity oscillations could not be reproduced. Despite of the short collision time

due to the tellurium doping, the amplitude of the oscillation is still large. The line

shapes are rather symmetric. The vertex correction seems to be unnecessary in the doped

sample by unknown reasons. Thus, the quantum oscillations of the sound velocity may

be solely determined by the density of states. The density of states should be calculated

by the T-matrix approximation where the infinite series of the scattering terms are

summed.
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Appendix

Thesemiclassicalequation-oトmotionmethodcaneasilytakeaccountoftheCoulomb

interactionbetweencarriers,theanisotropyofthedeformationpotentialtensoraswellas

thatoftheelasticpropertiesofthecrystal.Theexpressionfortherelativesoundvelocity
22isobtainedusingthelongitudinalconductivity.Thenusingtherelationieo)P{q,Q))-qa{q,

(v)theexpressionisobtainedintermsofthepolarizabilityfunctions.

ForqllylIH,therelativesoundvelocityofthequasi-longitudinalmodeisexpressed

aS

2
AⅤ′VQ).y--(l/2/oVy).Re[_貫G..P.P./」P.]
i!Ji3ix

where&蝣・aredefinedby

abαt-Q現+M<-4>

ahα(右話2+mv-γ42や・

1

Gbh-α>M+<+メ121p2γ|/(3/+

。41Al十4A・44841∠1

Theparametersα,βandγaredefinedby

α-[i+(c,,-cj/dc,,-c
'ii44''11'44'十4C,V′2]!2,

-[1-(Cu-C'44'/{(Cll-'44y+<J
14'′2]!2,

γ-2C14/{Cl了'44'+4C?,}1
W′2,

whereC--arethecomponentsoftheelasticmodulustensor.
lJ
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