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Quantum Oscillations of Relative Sound Velocity

in Bismuth and Tellurium—doped Bismuth*

Masao KOGA
(Received April 25, 1980)

The calculations of the line shapes of the quantum oscillations of the relative sound
velocity in bismuth and tellurium—doped bismuth are carried out using Nagai—
Fukuyama’s theory. The results are compared with experiment and the importance of
the vertex correction in calculations of the polarizability functions for bismuth is
discussed. Discussion on the line shapes for tellurium—doped bismuth is also given.

§ 1. Introduction

The sound velocity in metals, semimetals and semiconductors changes due to the
effect of the magnetic field on the electroa—phonon interaction. To obtain the expres—
sion of the sound velocity, some workers calculated the dispersion of the sound wave
using the electric conductivity, some paid their attention to the thermodynamic rela—
tion of the sound velocity and others calculated the phonon self—energy.

Blank and Kaner' calculated the phonon self—energy in the presence of the magnet—
ic field and obtained the relative sound velocity and the attenuation coefficient from
the real and imaginary parts of the phonon self—energy, respectively. There, however,
the space charge field resulting from the passage of the sound waves was not taken into
account explicitly and was considered to reduce the electron—phonon coupling constant.

In our previous work” the phonon self—energy was shown to be expressed with the
electron polarizability functions and the electron—phonon coupling constants. The
screening effect was explicitly taken into account. The qualitative agreement in the
renormalization of the sound velocity in bismuth was obtained in the relaxation time
approximation, On the other hand, Nagai and Fukuyama‘y showed in the calculation
of the attenuation coefficients in bismuth that the self—consistent Born approximation
and the vertex correction are really important for the calculation of the phonon self —
energy in the presence of the impurity scattering.

In this work, using Nagai—Fukuyama’s theory, we shall give calculations of the
relative sound velocity and discuss the results comparing with our experimental data

for bismuth and tellurium—doped bismuth.

*  This work is based on the thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Science at Kyushu University(1978).
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§ 2. Theory of the renormalization of the velocity of sound in a semimetal

In the quantum theory, the sound waves are treated as phonons with long wave—
lengths. In the second quantized form, the carrier—phonon coupling Hamiltonian is giv-

en by
21 a _ Lot @ _
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where V is the volume of the crystal, bq(bg) and cﬁ(c,‘f‘*’) are the annihilation ( the
creation) operators of the phonons with a wave vector ¢ and those of the a—th carriers
with a wave vector k, respectively., The coupling constant gg is given by

o
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where o is the density of the crystal, ¢ is the polarization vector of the phonon and
Ai‘f is the deformation potential tensor for the @—th carriers. The deformation po —
tential tensors for bismuth were theoretically calculated by Katsuki* by means of the
pseudopotential method.

The renormalized phonon frequency at a finite temperature is derived from the
thermodynamic phonon self—energy which can be calculated by using Feynman diagram
techniques. Theoretical calculations have been made by Blank and Kaner in the absence
of the impurity scattering and by Liu and Toxen®, and Nagai and Fukuyama in the
presence of the impurity scattering. Their results have been obtained under the condi-
tion of the strong magnetic field and are applicable only to the single carrier case (for
example, a metal). When several groups of carriers are present, the Coulomb interaction
between carriers gives serious effects on the renormalization process. Such investigations
have been carried out by Kobayashi and Yamada® by the method of the quantum —
equation—of—motion in the absence of the impurity scattering. As will be shown later,
the impurity scattering is important in the quantum oscillations of the sound velocity
in a strong magnetic field. Therefore, we have extended Nagai—Fukuyama's theory
to the multi—carrier case. In this section we will consider the system with two types
of isotropic carriers(electrons and holes) for simplicity.

According to Nagai and Fukuyama, the relative sound velocity and the attenuation

coefficient are given, respectively, by

AV/IVy = (l/hmq)Re[IIph(q,im&)] (2—3a)

i(oA"wq*"iO ’
o :_(Z/hVO)Im[th(q’i("/\”irox"wq‘*'io , (2—3b)

where th(q,iwﬁ) is the thermodynamic phonon self—energy and Vy is the unrenormalized
sound velocity.
The phonon self—energy pp is a sum of the self—energies due to the interaction

with electrons and holes as diagramatically shown in Fig. la,
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Fig. 1. (a) Diagram for the self—energy of phonons in the system of electrons and holes.
(b) Vertex part of the polarizability for electrons.
% *
”ph:gene+gh”h- (2_4)
The vertex parts I'y and I'p, contain all the interactions, such as electron(hole)-
phonon, electron—electron(hole—hole), electron—hole and electron(hole)—impurity inter-
actions, as shown in Fig. 1b for I',. From this and the similar one for '}, we obtain

the followin equations for 7, and =,

nezgePe—Vq(ne—rrh)Pe, - (2—5a)
”h:ghPh—.Vq(nh—ze)Ph , (2—5b)

where P, and Py, are the thermodynamic polarizability function of electrons and that of
holes, respectively, and Vq(=47re2/s Oqz) is the Coulomb potential. In deriving eqs.

(2—5a) and (2—5b), we made an assumption that the impurity potential is of the form
of the Dirac delta function. Nagai and Fukuyama did not take account of the Coulomb

interaction. In that case, the phonon self—energy is given by
] 2. . 2 .
th(quwx) = | ge ' Pe(quw x) + gh ] Ph (qvlw /{) ’ (2—86)

Expressing 7, and =, with F, and A, and substituting them into eq. (2-4), we obtain
the expression for the phonon self—energy Toh:

-1 2 2 2
th=[1+vq(Pe'+Ph)] [lege! Pot g | Py +Vylgetg | PPyl

(2—17)

Using eqs. (2—3a) and (2—-3b), we obtain the expressions for the relative sound velocity

and the attenuation coefficient.
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BVIVg (~1/20V() 14, + 4, | "Re[P P, /(P + )], (2—8a)

h

a

(a/0Vg) 14 + 4, | “Im[P P, /(P, + PP)]T, (2—8b )

h
where we used the inequality Vqu,h>>1 which is in general satisfied in the frequency
region of sound wave.

According to Nagai and Fukuyama, when g is small and parallel to the magnetic
field, the vertex corrected polarizability function of the carrier in a strong magnetic
field is given by

. Q(e) 1
P(q,wq) = (1N0_,/V) fdf[uq : + E,rzl‘a zn./af
1 — Zeu” Q(e)
- iﬁ?pn(e - uq)]%cosh—z[(e +e )/2], (2—9)

where Q(5)=5,0n/(Dn5q + 7= di). In the above equation, the level broadening of the
energy level is taken into account through the self—consistent Born approximation and

the meanings of the various symbols are the same as in ref. (3).
§ 3. Experimental Procedure

The single crystal of bismuth was grown from a melt of zone—refined ingots by
the Czochralski vertical pulling technique in an argon atmosphere using a seed crystal,
The direction of the crystallographic axes were determined by the Laue X-ray back
reflection method. The single crystal ingot was cut into a rectangular parallelpiped by
a Servomet cutting machine. The faces of the sample were planed as flat and parallel
as possible by the spark planer. Before being used for measurements, the sample was
annealed at a constant temperature of about 200 °C for more than 120 hours.

The single crystal of tellurium—doped bismuth was obtained by the horizontal zone
levelling technique. The tellurium concentration is above the value where the hole car—
riers disappear.

FREQUENCY REPETITION C
COUNTER RATE
BCD OSCILLATOR AMPLIFIER
PHASE
DIGITAL D/A FREQUENCY AF SENSITIVE
PRINTER CONVERTER DIVIDER OSCILLATOR SETECTOR
[ *
DIGITAL XY DC PULSE GATED
VOLTMETER RECORDER GENERATOR INTEGRATOR
20 R‘}jﬂz WIDE BAND
GENDFRATOR AMPLIFIER
HALL
VOLTAGE

Fig. 2. Blockdiagram of the system for the sound velocity measurement.
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The measurements of small changes of the sound velocity were carried out using
conventional pulse—echo superposition technique. Longitudinal ultrasonic waves of 20
MHz were excited by an X—cut quartz transducer with a fundamental frequency of 20
MHez.

was obtained. A blockdiagram of the arrangement is shown in Fig. 2. The sensitivity

Bonding was with a silicon grease and was repeated until a good echo pattern
to small changes was generally 1 x 107°, In this method, further smaller changes of
the sound velocity could be detected using the longer gate time of the universal counter.

In order to attain the low temperature, we evacuated the evaporating gas of lig~
uid helium with an oil rotary pump (4.2 K>T>1.7 K) and with a Kenny pump (1. 7
K>T>1.15 K).

Static magnetic fields up to 23 kOe were provided by an electromagnet with the
pole piece gap of 65 mm. The current stability is about 107*. The magnetic field
intensity was measured by the Hall probe calibrated against NMR. We could obtaina
strictly linear relationship between the field intensity and the Hall voltage in the range

from 1.5 kOe to 23 kOe.

§ 4, Expermental Results

The relative sound velocity & V/V(y can be expressed as
AV/V, = —(1/20V.)Re[ £ GXP.P./5P.], (4—1)
0 k SR EREE

where k denotes the propagation direction of the logitudinal sound waves and i and j
denote the types of the carriers. The values of G?‘ are calculated using the bare defor-
mation potential constants obtained by Katsuki and the elastic constants by Eckstein
et al.”
Table 1.

and are listed in Table I.

Values of G?- calculated using the bare deformation potential constants ob-—
tained by Katsuki and the elastic constants by Eckstein et al.

Cab = CGac Can Gpp = Gen
a//x 24.9 0.33 6.20
a/ly 22.0 34.3 1.35
q//z 0.0 39.8 39.8
2

in units of eV”,

The Fermi surface of bismuth consists of three electron ellipsoids tilted in the mir—
ror planes at the L—points and one prolate hole ellipsoid at the T—point in the first
Brillouin zone. The three equivalent right—handed systems are shosen as such in the
Fig. 3a. We give each of the electron ellipsoids a name for convenience. The schematic

energy level diagram is also shown in Fig, 3b.
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(a) Schematic diagram of the Fermi surface of bismuth.
level diagrams of electrons and holes.

(b) Schematic energy

As shown in the previous work, the quantum oscillations of the relative sound ve-

locity due to the b— and c—electrons are absent for g//y and dominant for ¢//x. These

were explained by the renormalization and the anisotropy of the deformation potential

tensor.

We will show and discuss the experimental results for ¢//y in the following,

in connection with the line shape of the quantum oscillations of the relative sound

velocity.
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Fig. 4. Quantum oscillations of the sound velocity (a) and the attenuation coefficient.
(b) for g//y//H at T = 1.2 K in bismuth.

In Fig. 4, the quantum oscillations of the sound velocity and the attenuation co—

efficient for q//y//H are plotted using the data recorded with a digital printer.



Quantum Oscillations of Relative Sound Velocity in Bismuth and Tellurium—doped Bismuth 7

The characteristics of the results are summarized as follows:

1. The line shape of the attenuation is spike—like and the spin splittings are clear
even for the 20 MHz sound waves.

2. The peak at a higher field of the spin—split peaks is larger than the one at a
lower field.

3. The attenuation coeffcient has peaks at higher fields than the velocity oscil —
lations. The magnetic field of the attenuation peak and that of the velocity minimum
do not coincide. The differences between the magnetic fields of the peaks in the attenua—
tion coefficients and those of the corresponding minima of the relative sound velocity are
listed in Table II,
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Fig. 5. Quantum oscillations of the sound velocity in tellurium—doped bismuth for :g//y
/1 H.
(a) T=42 K; (b)) T=12K.

In Fig. 5, the quantum oscillations of the sound velocity in tellurium-doped bismuth
are shown for ¢//y//H at two different temperatures of T=4.2 K and T=1.2 K. The
Fermi energy was increased by the tellurium doping, because tellurium acts as a donor
in bismuth. The minima of the sound velocity shift to higher magnetic fields. The
period of the velocity oscillations due to the a—electrons, which is proportional to the
inverse of the cross—section of the Fermi surface, has been changed from 8,3 X 107°
Oe ' to 4.9 x 107° Oe™ '

The line shape of the oscillations became broader and more symmetric because the
Landau levels are broadened due to the tellurium doping. The line shapes less depend
on temperature. The amplitude of the oscillations at high fields is still large and a—
mounts to 7 x 10 * larger than 5.5 x 10 ' in pure bismuth, even though the collision
time should be very short as compared with that of pure bismuth., The fact that the
amplitude of the oscillations of the sound velocity was not much affected by the im—
purity scattering suggests the usefulness of the measurement of the sound velocity os—
cillations in studying the electronic structures of compounds and alloys where theimpurity

scatterings are very large.
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§ 5. Discussion

In this section, we will discuss the observed quantum oscillations of the sound
velocity as quantitatively as possible. In calculating the polarizability function, we
used band parameterss, bare deformation potential constants®, and elastic constants”
given in the literatures.

a. Bismuth

The electronic energy state of carriers in bismuth depends on the spin quantum
number s as well as on the orbital quantum number n, If we assume that the spin—flip
transition does not occur in the course of the impurity scattering, the important part
of the polarizability function given by Nagai and Fukuyama can be rewritten in the

following form.
00 S 1 -2
P(g,@) = (No/V)gimdf@ (E)Zcosh [(e+epc)/2], (5—1)

where the energy ¢ is measured from the Fermi level and is normalized by kgT. The
quantity ¢ . represents the bottom of the Landau level with the quantum number (n,
s). We defined the line shape function @3(6)=@ﬁ(6)+i®§(ﬁ) by

0°(€) = Slong(e) + 1¥,Qu(€)/(1 - 20 Q)1 . (5—2)
n

The factor 1/{1 — ZCUZQs(f)} is the vertex correction due to the impurity scattering
and Q.(¢) is defined by

Q€)= 2Qu(e) = Zo  ()/[Dy(e)e, + 74— iv ], (5—3)
n n

where 6q='h2q2/2mz kgT and Vq=hwq/kBT. The collision rate Tg is related to the
density of states p s by

Ty = Zcuzps(e) = ZCuZans(e) . (5—4)
n

Equation (5-4) means that, for the short range impurity potential, the collision rate
is a function of energy and is independent of the quantum number n, This may be due
to the fact that the short range potential allows for all the inter—Landau level transi —
tions with equal probabilities, so that the collision rate does not depend on the initial
state of the carriers.

The normalized density of states ps(e)=2‘pns(e) is related to the imaginary part
of the zS—function defined by n
—%

2
z2g =Fzpg = ~F[—(e — e pg) + cu + cu z] . (5—5)
n n
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The diffusion constant Dns in eq. (5—3) is defined by

Dpg(€) = Im zpg/Re zyg . (5—6)

When the magnetic field is so strong that the separation between the successive
Landau levels is wide enough to neglect the overlap of the density of states due to the
different Landau levels, we can drop the summation over n and s. This is the case that
Nagai and Fukuyama have applied their theory to the quantitative analysis of the line
shape of the giant quantum oscillations of the attenuation coefficient in bismuth and
may be called as the single level approximation (SLA). By this approximation, we can
see how the vertex correction works in the guantum oscillation of the polarizability
function. The line shape function is now simply given by (dropping the spin quantum

number s)

®(¢) = D’ +iRDY/[D" + R'], (5—17)

where R = e/ q The energy dependence of @ is largely determined by the diffusion
constant D which is monotonically increasing funciton of ¢. The positions of the maxima
of the line shape functions depend on the value of R which is estimated to be 10° for
the 20 MHz sound wave. In Fig. 6, we show the density of states and the line shape
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Fig. 6. Calculations of the density of states and the line shape function of the a—electrons
in bismuth as a function of energy ¢ for ¢//y//H, H = 11.5 kOe and T = 1.2 K.
function as a function of energy. It can be seen that the maximum of d)r(f) occurs
always at higher energy than that of fDi(E) which explains the shift of the position of
the minima of the sound velocity with respect to the attenuation peak as observed in
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the experiments.

It should be noted that without the vertex correction the real part of the polar —
1zability function is almost completely determined by the density of states because Ts
>>v¢

In the SLA the vertex correction becomes very large because the complete cancel —
lation takes place in the denominator

7= 2cu o. (5—8)

However, the density of states of the particular Landau level has a long tail on the
higher energy side, so that the transition to the levels with lower quantum number,
even if its density of states is very small, breaks the condition of the complete cancel—
lation and may affect the line shape function. For this reason, we calculated the po—
larizability function in the approximation in which the summation over n in egs. (5—1)
through (5—5) are taken over all the levels below the Fermi level (6n8=>0). We shall
call this approximation the multi—level approximation (MLA).

In calculating zg according to eq. (5—5) (self—consistent Born approximation), we
neglected cu and the real part of z, in the right hand side of the equation. This neglect
is usually made in the impurity scattering problems. Then, Ts and Dns are simply
given, respectively, by

2 2 2 1 2 2
rg=2eu SLe—e ot ((eep) rg/4)*1/20(e—¢ ) + 1/4], (5—9a)
00t

0.5

Re P (103")

1.0F

qllyliiH
T=12K

MAGNETIC FIELD ( kOe)
Fig. 7. Polarizability functions for the a—electrons in bismuth for ¢//y//H at T = 1.2 K.

The solid lines are calculated with the vertex correction and the dotted ones with-
out it by the MLA. The dash—dot ones are obtained by the SLA.
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D= (2/7)[e—¢ S+{(e~ens)z+r:/4}/2 1. (5—9b)

ns n

First, we calculated Ts from eq. (5—9a) self—consistently. Then the line shape
function was calculated for the given value of ¢é. The polarizability function was ob—
tained by integrating the line shape function numerically.

In Fig, 7, the calculated polarizability functions of the a—electrons are shown for
q//y//H. The solid curves, the dotted ones and the dash—dot ones correspond, respec—
tively, to thoes calculated by the MLA with the vertex correction, the MLA without
vertex correction and the SLA. The vertex correction affects the line shape and the
absolute value of both the real and imaginary parts, especially near the extrema. The
peak of the imaginary part is seriously enhanced, while the peak in the real part is
reduced by the vertex correction. The difference between the MLA and SLA consists
most significantly in the relative height of the two split—off peaks in the imaginary
part. The peak at the lower field is due to the (0,+1) level, so that there is no inter—
Landau level transition, while the peak due to the (1,—1) level suffers the inter—Landau
level transition to the (0,—1) level. Therefore, the (1,—1) peak may be more enhanced
in the MLA than in the SLA by the vertex correction.

If the vertex correction is not taken into account, the peaks in the imaginary part
of p is rather density of states—like in contradiction with experiment and the (0,+1)
peak is higher than the (1,-1) peak. Thus, the vertex correction is important at a strong
magnetic field near the quantum limit. In the following, we shall show the calculations
of the polarizability functions by the MLA. In Fig. 8, and Fig. 9 are shown the calcu—

0
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25 “”\‘W”MM\N\/\/\/\/V\
1 1 1 1 1 1 1 J
5 10 14

MAGNETIC FIELD ( kOe )
Fig. 8. Real parts of the polarizability functions of the electrons and holes in bismuth
for g//y//H at T = 1.2 K.
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Fig. 9. Imaginary parts of the polarizability functions of the electrons and holes in bis-
muth for g//y//H at T = 1.2 K.
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Fig. 10. Calculated curves of the quantum oscillations of the sound velocity and the attenua
tion coefficient in bismuth for ¢//y//H at T = 1.2 K together with the experimen-
tal curves. The bare deformation potential constants by Katsuki and the elastic
constants by Eckstein et al. were used.
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lated real and imaginary parts of the polarizability functions of electrons and holes for
g//y//H. 1t is seen that the polarizability function of holes are modulated by the

magnetic field dependence of the Fermi energy.
By using these results, we calculated the relative sound velocity and the attenuatlon

coefficient according to the relations

- _ 2 y .
Av,/vo)y = (1/2pvy)ReifijcijPin./;Pi] , (5—10a)
1
@ = (a/eVy)m[ 3 GIPP/IR] . (5—10b)

i>] i

The numerical values of Gz} are listed in Table I. In Fig. 10, the calculated results are
shown together with the experimental data. It can be seen that the relative sound
velocity is well reproduced by the theoretical calculation. The slight discrepancies may
be due to the inadequate choices of the pand parameters. It should be noted, however,
that we could not fit the last (1,—1) peak to the theoretical curve by changing the
parameter 2cu?. The agreement between theory and experiment in the attenuation
coefficient is not so satisfactory. The difference of the amplitudes of the spin—split
peaks is too large, though the main features could be reproduced, especially, the line
shapes are spike—like even at 20 MHz, which proves the importance of the vertex cor-
rection. Another evidence of the necessity of the vertex correction is the shifts of the
positions of the attenuation peaks relative to the positions of the minima of the sound
velocity. The reason is clear in Fig. 6. The numerical values of the shifts are compared

with experimental values in Table II,

AH

(n,s)
Experiment Theory
-»\AH|*

0 ,+1
(1 ,-1) 325 Oe 150 Oe { ) ,-1)

+|aH|«
(0 ,+1) 300 Oe 250 Oe (0,41 )

Table II. Differences between the reak positions of the attenuation coefficient and the
corresponding minima of the relative sound velocity.
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Fig. 11. Calculated sound velocity oscillations in bismuth for ¢//y//H at T = 1.2 K. (b)

together with the experimental result (a).
Figure 11 shows the experimental (a) and the theoretical (b) velocity changes at 4. 2

K for g//y//H. The agreement between theory and experiment seems good except for
the fact that the absolute amplitude of the oscillation of the theoretical curve is slightly
smaller than that of the experimental curve,

From the above considerations, we conclude that the quantum oscillations of the
velocity of sound in pure bismuth are quantitatively explainable by Nagai—Fukuyama’ s
theory. The vertex correction to the polarizability function is found to be important.

It should be noted, however, that the above calculations were made with the value
of 2cu® which is 0.1 times as large as the one used by Nagai and Fukuyama. . With larger
values of 2cu?, the line shapes become unrealistic irrespective of the SLA or MLA, The
above value corresponds to the zero magnetic field scattering time 7 =6 X 10™° sec which
1s too long as compared with the experimental value”. Because R in eq. (5-7) is very
large at 20 MHz, we must use such an unrealistic scattering time to get the quanti —
tative agreement between theory and experiment. The vertex correction in Nagai—
Fukuyama’s theory, though it is important, seems to become overcorrection at low
frequencies.

b. Tellurium—doped bismuth
"~ The same method is applied to calculate the line shapes of the relative sound velocity
oscillations for the tellurium—doped sample. The impurity concentration in the deped

sample may be two or three orders of magnitude higher than that in bismuth.
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Fig. 12. Calculations of the polarizability functions of the a—electrons in tellurium—doped
bismuth by the SLA for 2cu2 as a parameter for ¢//y//Hat T = 1.2 K.

Figure 12 shows the polarizability functions of the a—electrons calculated by the
SLA with ZCué, normalized with the value used by Nagai and Fukuyama for bismuth, as
a parameter for q//y//H. As can be seen there, the real part of the polarizability
function rapidly decreases with increasing impurity concentration. When 2cz’ is about
400 times as large as that in bismuth, the peak in Re P, almost disappears. Contrary
to the theoretical calculations, we observed rather enhanced amplitude in the doped sample,
though the line shapes are rather broad. The reason for the reduction of the amplitude
in the theoretical calculations can be understood from the SLA line shape function, eq.
5—7 combined with egs. 5-9a and 5-9b. The collision rate 7 becomes large with in-
creasing impurity concentration, so that the energy dependence of D becomes weak.
Because R is very large (~10%) at 20 MHz, the maxima of the line shape function are
located at energy far apart from ¢ =g where the density of states is considerably
small. Thus, we considered that the vertex correction is, by some unknown reasons,
ineffective in the doped sample. This may be partly due to the long range nature of
the impurity potential of the screened Coulomb type with the screening length of about
40 ;\ By this assumption, we can approximate the real part of the line shape function
by the density of states and obtain

© 1 _
Re P(q,@) = (No/V)Z Jdep q( ¢ )5 cosh [(e+ epg)/2] .
ns

— 0

(5—11)
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Fig. 13. Calculations of the polarizability functions according to eq. 5—11.

In Fig. 13, we show the real part of the polarizability function calculated according to
the above expression. It is seen that the density of states itself does not so much depend
on the parameter 2cu®. The observed enhancement of the amplitude of the oscillation
may be due to the cancellation of the reduction of the peak in the density of states by the
increase of the Fermi energy. In order to get the more realistic line shape, it is also
necessary to take account of all the higher order terms in Fig. 14 in calculating the den—
sity of states of electrons.
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Fig. 14. (a) Self-energy function of electrons in the self—consistent Born approximation.
(b) T—matrix approximation.
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§ 6. Conclusion

The line shapes and amplitudes of the velocity oscillations in bismuth could be well
reproduced by the calculation of the real part of the phonon self—energy using Nagai-
Fukuyama’s theory. The vertex correction to the polarizability function is found to
be important expecially at strong magnetic fields near the quantum limit,

In the case of a tellurium—doped sample, however, the line shapes and amplitudes
of the velocity oscillations could not be reproduced. Despite of the short collision time
due to the tellurium doping, the amplitude of the oscillation is still large. The line
shapes are rather symmetric, The vertex correction seems to be unnecessary in the doped
sample by unknown reasons. Thus, the quantum oscillations of the sound velocity may
be solely determined by the density of states. The density of states should be calculated
by the T—matrix approximation where the infinite series of the scattering terms are

summed.
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Appendix

The semiclassical equation—of—motion method can easily take account of the Coulomb
interaction between carriers, the anisotropy of the deformation potential tensor as well as
that of the elastic properties of the crystal( . The expression for the relative sound velocity
. . . o . .. . . .2 2
is obtained using the longitudinal conductivity. Then using the relation ie” @ q,w)=q d(gq,
@) the expression is obtained in terms of the polarizability functions.

For q//y//H, the relative sound velocity of the quasi—longitudinal mode is expressed

as

2
AVIV,) = —(1/20V,)Re[ £ G .P.P./5P.],
0y (ARSI B

where G'; are defined by
a’ - aguf— £+ B AL - D
ab 16 2 4 4 84 1 2’

Y o~ ow £ 2 ez e e
G (A1 /t?) +,/.9A4 rA4(A2+/1}11),

y 1 2 1 e? le, e e
= a= + + 4 + B + 75 + + 4 .

The parameters @, £ and 7 are defined by
@ = [1+ (Cpy ~ C/{(Cyy = Cyp? + 4C},} 22,
B = [1 = (Cpy = C/{(Cyy = Cy* + 4C ) 12,

= . 2 2 3172
7 = 2C/{Cyy ~ Cyp? + 4Ci 12,

where Cij are the components of the elastic modulus tensor.
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(*) See V. I. Pustovoit and L. A. Poluektov : Zh. eksper. teor. Fiz. 50 (1966) 1265.



