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1. Introduction

Let k be a field and R a finite dimensional k-algebra. We call R a
right peak ring if soc R the socle of R as a right R-module is projective.
A right peak ring is introduced by Simson in [7] when soc R is homoge-
neous and is called a multipeak ring in [8] when soc R is not necessarily
homogeneous. Since almost all results in [7] about a right peak ring
with a homogeneous socle are valid for the general case, we call them
simply a right peak ring. We showed in [4, 5] that the representation of
an order satisfying some conditions is representation equivalent to that
of a full subcategory of mods, R the category of socle projective modules
over a right peak ring R and that the relation between the Auslander-
Reiten quivers of these categories is completely determined. Thus the
category mods, R over a right peak ring R is closely connected to the
representation of orders.

In this paper, we construct a right peak ring S from the given right
peak ring R by the method of one point extension and determine the
Auslander-Reiten quiver of mods, S. Simson [7, §4] also considered this
problem and obtained many results, however our results are more complete
to determine the Auslander-Reiten quiver, especially, our main theorems
(Theorems 3.4, 3.7, 39 and 3.10) are all new results. Throughout the
paper, modules are right modules, unless otherwise specified and are
finitely generated.

2. Preliminaries

Put mods, R={X; X is an R-module with a projective socle}, where R
is a given right peak k-algebra. Fix M € mods, R and assume that M is
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indecomposable and nonprojective with Endz M=k. Put 7(—) =Homs(M, —)
and 4= {X&€ mods, R; 7(X) #0}. We denote ind .« to be the category of
all indecomposable modules of .«/. We assume that the representatives of
the nonisomorphic modules of ind .« consist of the finite modules X, ..., Xn.
We also consider the category .« as the subquiver of the Auslander-Reiten
quiver of mods, R. It is noted that there exists a connected component &
of the Auslander-Reiten quiver of mods, R such that «/C €. We assume
that € has no oriented cycles. Let S =(g %) Then S is a right peak k-
algebra by the above assumptions. We consider the following.

ProBLEM. Determine the Auslander-Reiten quiver of mods, S.

In order to settle our problem we must give the information about the
indecomposable modules and the Auslander-Reiten quiver of mods, S. Con-
cerning indecomposable modules, Simson solved completely in [7]. Some
informations about irreducible maps are given in [6, 7].

We will state the problem miore precisely. We identify an S-module to
the triple (U, X, t), where U is a k-vector space, X is an R-module and ¢:
U®«M— X is an R-homomorphism. We begin with the following lemma.

Lemma 2. 1. It holds that (U, X, t) € mods, S if and only if XE modsp
R and the adjoint t € Hom«(U, Hom:(M, X)) of t is a monomorphism.

Proor. This follows from the fact that every simple projective S-module
is the form (0, P, 0) for a simple projective R-module P and soc(U, X, t) =
(ker f, soc X, t') where t' is induced from ¢.

We have the full embedding ¢: mods, R— mods, S by ¢(X) = (0, X, 0)
for X€ mody R. Put /= {xE mods; S; x Im ¢}. Then it is immediately
seen that (U, X, t) €& t#0& U0 for (U, X, t) € mods, S. Following
[6, 7] an additive category K is called a vector space category over k if
there exists a faithful additive functor |—|: K— mod k, where mod k is
the category of all finite dimensional k-vector spaces. The subspace cate-
gory U(K) of K is defined as follows. The objects of U(K) are the triples
(U, X, ) where US mod k, X K and ¢: U— | X| is a k-linear map. A
morphism from (U, X, ¢) to (U, X', ¢’) in U(K) is the pair (f, g) with f€
Hom:(U, U') and g € Hom«(X, X') such that |g|¢=¢"f. Let U,(K) be the
full subcategory of U(K) consisting of the objects which have no direct
summands of the form (U, 0, 0) or (0, X, 0). It is noted that if (U, X, ¢) €
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U (K) then ¢ is a monomorphism. We put the vector space category K =
{r(X); Xe.4} over k and fix it. Define the functor o : mods, S— U(K) by
o((U, X, t))= (U, 7(X), ), where  is the adjoint of ¢t. The following is
easily proved.

Lemma 2. 2. There exists a representation equivalence A= U, (K) in-
duced from p.

Let Rx be a right peak ring associated with K [7, §3]. Then Rx=
gﬁ), where E=End, 7(X) @...® 7(X»)) and Ne=;{7(X) ©...D
7(Xn) |« Let p, be the unique simple projective Ry-module and E(p,) its
injective hull. Let mods, Ry be the full subcategory of mods, Rx consisting
of the modules having no direct summand isomorphic to E(p,). Then we
get the following from [7, Theorem 3.6].

TueoreM 2. 3. There exists a functor G,: U(K)—> mods, Rx which in-

duces a representation equivalence U, (K) =~ mods, Rx.

In our case, G, is explicitly described as follows. For a k-vector space
U, there exists an isomorphism @: U (Hom«(N, k)— Hom.(N, U) with
@w®H )In=uf(n) for u€ U, f€ Hom«(N, k) and nE N. Put D(-) =
Hom:(—, k) the usual duality. Take any (U, 7(X), t) € U(K). Define the
E-homomorphism t*: Hom«(N, U) = DHom(7 (X), N) by (t*(@(u®f)) )¢ =
(fét)u for a(u®f) € Hom« (N, U) (f€ Hom«(N, k) and u€U) and £
Homu(7 (X), N). For an E-module X' =ker t* and the canonical inclusion
t: X'~ Hom«(N, U), we have that G,((U, r(X), t))=(X’, U, f). As for
morphisms, let 6 = (f, g): (U, 7(X), t)—=>(V, 7(Y), s) be a map in U(K).
Then we have the following diagram of E-modules with exact rows;

ry £ 3
0 —— X' Homu(IV, U)—2 DHom x(7 (X), N)
#) L R

0 —— Y'— Hom.(N, V)—Sa DHom (7 (Y), N),

where f* =Hom(N, f) and g’ = DHom(g, N). By assumption the right hand
square is commutative and then there exists A: X' — Y’ such that the left
hand square is commutative. Then we have that G,(0) = (h, f). In the
above (and the following) observation, we identify an Rx-module not only
to a triple (X, U, t) but also to one (X, U, ) where ¥ is the adjoint of ¢,
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thus t € Hom(X, Hom.(N, U) ). It is noted that, for an Rx-module (X, U,
t') with ¢ € Homz(X, Hom«(N, U) ), we have that (X, U, t) € mods Ry if
and only if ker ¢ =0 by [7, Proposition 2.4]. The properties of the functor
G, are obtained in [7]. We summarize some of them in the following and

give their proof here for the reader’s convenience.

Lemma 2. 4. 1) G, is surjective on morphisms. We have that G.( (f,
g)) =01if and only if f=0.

2) Foro=(f,g) : U, 1rX), t)# (V, 7(Y), s) with U#0 and V50, 0
is a splitting monomorphism (respectively epimorphism) if and only if G.(9)
is a splitting monomorphism (respectively epimorphism).

3) 0 is the same as in 2) and assume that G, (0)% 0. Then we have
that o is irreducible in U(K) if and only if G,(0) is irredecible in modsp Rx.

4) We have that G.((k, 0, 0))=E(po) and G.((k, v (M), id) )= p,,
where id denotes the identity map.

Proor. 1) Put u= (U, r(X), t) and v=(V, 7(Y), s). We can assume
that Gi(u) #0 and Gi(v) #0. Take an arbitrary (h, f) € Homg, (G:(u),
Gi(v) ) and consider the following commutative diagram with exact rows;

t_ £ 3

0 X Hom:(N, U) Im ¢*—0
‘[h S (f S*

0 Y’ Hom«(N, V) Im s*—0,

where f = Hom(N, f). Then there exists g” : Im t* —Im s* with g” t¥ =s*f".
Since Hom (7 (Y), N) is a projective left E-module, an E-module DHom (7
(Y), N) is injective. Extend g” to g’ : DHom(7(X), N)— DHom (7 (),
N). Then the diagram (#) is commutative for this g’. Since Hom z(DHom
(r(X), N), DHom(r(Y), N)) =Hom(r (X), 7(Y) ), there exists g & Homy
(r(X), 7(Y)) such that g’ = DHom(g, N). Considering the commutative
diagram ;

U «Hom(N, k) iHomk(N, U)

f@1 | |7

V& «Hom«(N, k) éHomk(N, V)
we proceed the computatuion. Take an arbitrary ¢(a® b) € Hom: (N, U)
(a€ U and b€ DN) and € € Homk(7(Y), N). Then it holds that;

(g't*(@(a®b)))E = (blglt)a
= (¥ (@(a® b)) ) =s*(@(bX fla) )) = (bsf)a.
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Thus we have that bf|g|t=bésf, so that |g|t=sf. Therefore, 0 = (f, g) €
Homyw (u, v) and it is easily seen that G,(¢) = (h, f). The second state-
ment is almost trivial. 2) If ¢ is a splitting monomorphism, then there
exists 7= (fi, &) : v—u such that 70 =1. Thus we have that fif=1 and
gg=1. Put Gi(7) = (h, fi) with &: Y = X', For fi’ =Hom(N, fi) and
g’ = DHom(g, N), it holds that fi'f' (§) = ifé =€ for all £ € Hom«(N, U),
so that fi’f'=1. Since f'thhh=ft and f't is a monomorphism, we have
that h=1. Thus G,(7)G,(c) =1. Conversely, if G,(0) is a splitting mo-
nomorphism, then there exists 7= (fi, &) : v—>u such that G(7)G(g) =1.
Since fi'f' =1 by assumption, we have that g,"g” =1 where g.”, respectively
g" is the restriction of g’ on Im s*, respectively g’ on Im t*. Since DHomy
(r (X), N) is an injective hull of Im t* by the proof of [7, Theorem 3.3] and
g'g |Im t*=g"g" =1, we conclude that g,'g’ =1. For an arbitrary a &
DHom (7 (X), N) and b & Homx(7 (X), N), it holds that a(b) = ((g'g')b)a
= a(bg.g), so that gig=1. Thus we conclude that 7o =1. The splitting
epimorphism case is similary proved. 3) is almost trivial by 1) and 2). 4)
By the construction of G: we have that G,( (k, 0, 0) ) = (DN, k, id) = E(p,).
In order to prove G:( (k, v (M), id) ) = (0, k, 0) it suffices to show that id* :
Hom (N, k) — DHom (v (M), N) is a monomorphism. For an arbitrary
a(b®a) (0FbeE k, and a€ Hom«(N, k) ), if (af)b=0, for all f&€ Hom(r
(M), N), then af=0. Suppose that a5 0, then there exist i(1<i<n) and
g € r(X;) with a(g) ¥+ 0. Put f=Hom(M, g). Then f&€ Hom(r (M), (X))
and af(1) =a(g) #0, so we conclude that af7 0, a contradiction. Thus we
have that =0 and 2(b&® a) =0. This completes the proof.

3. Auslander-Reiten quiver of mods, S
The assumptions and notation provided in section 2 are preserved in
this section. Put G= G0 the functor from mods, S to mods, Rx. By
Lemma 2.2 and Theorem 2.3 we get the following.

TueoreM 3. 1. There exists a representation equivalence .¥= modsh
Ry induced from G.

In this section, we determine the Auslander-Reiten quiver of mods, S
from those of mods, R and mods, R« using the functor G. Firstly, we

restate Lemma 2.4 using G.

Lemma 3.2. 1) G is surjective on morphism. For a morphism ¢ in
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modsp S, we have that G(9) =0 if and only if 0 factors through t(X) for
a module X € mod R.

2) For a morphism ¢ in N, 0 is a splitting monomorphism (respectively
epimorphism) if and only if G(9) is a splitting monomorphism (respectively
epimorphism).

3) For a morphism ¢ in A with G(0) % 0, ¢ is irreducible in mods, S if
and only if G(0) is irreducible in mods, Rx.

4) We have that G( (k, 0, 0) ) = E(p,) and G( (k, M, id) ) = p..

We state some pieces of results concerning the irreducible maps.

Lemma 3.3. Let f: X— Y be an irreducible map in mods; R. Then;

1) if X& o, then ¢(f) : ¢(X)— ¢(Y) is irreducible in mods, S,

2) if Y& A and there exists no chain of irreducible maps from M to Y,
then ¢(f) is irreducible in modsp S,

3) if YE & and XE A, then (0, f) : (1(X), X, id) = ¢(Y) is irreducible
in modsp S.

Proor. 1) follows from [6, 2.6, Lemma 1], while 3) follows from [7,
Theorem 4.2]. 2) If Homz(M, X) % 0, then there exists a chain of irreduci-
ble maps from M to Y by [2, Corollary 1.8 (¢)]. This contradicts the
assumption. Hence X & .« and 2) follows from 1).

Now we state one of our main theorems which determines all the injec-
tive objects of mods; S, that is, sp-injective modules of mods, S.

TueoreM 3.4. An indecomposable module in mods, S is sp-injective if
and only if it is one of the modules given in the following 1) —3) ;

1) ¢(X), where X € mods, R is sp-injective in modsp R such that X & o,

2) (r(X), X, id), where X< mods, R is sp-injective in mods, R such
that XE A,

3) i) ¢(Xo), if there exists X, € A such that 1 (X,) =k and Hom(7 (Y),
7(Xo)) =Hom: (7 (Y), 7(X,) ) for all Y €4,

iL) w, otherwise, where u, € N such that G(uo) =71 (E(p.)) in which
T is the Auslander-Reiten transformation of mods, Rx.

Proor. At first we will show that the modules given in 1) — 3) are sp-
injective. 1) Let 0— ¢(X) 0./ U, Y, t)—(V, Z, s) —0 be exact in modsp
S. By the assumption and Lemma 2.1, there exists g: Y— X such that fg =
1. Since Hom(M, X) =0, (0, g): (U, Y, t) — ¢(X) is a homomorphism in
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mod S. Thus (0, g) splits (0, f), so ¢(X) is sp-injective. 2) Let 0— (7 (X),
X, id)—2 8L (U, ¥, t)—~ (V, Z, s) >0 be exact in mods, S. As in 1) we
have h: Y— X such that hg=1. For o' =Hom(M, h) and g’ = Hom (M, g),
we have that h'tf=h'g’' =1. Thus (R't, h): (U, Y, &)~ (r(X), X, id) splits
(f, 8, so (r(X), X, id) is sp-injective. 3) We prepare the following lemma.

Lemma 3.5. FEvery indecomposable sp-injective module of mods, Rk is
isomorphic to one of E(py) or G( (r(X), X, id) ) for X € ind ..

Proor. Let R2=<(’)‘:Dg>. Then by [7, Proposition 2.6] there exists a
category equivalence V: mods, Rx—> mod:; R), where mody R is the full
subcategory of mod R} consisting of modules X satisfying the condition
that X/rad X is injective, moreover, it holds that X € mods, R« is sp-injec-
tive if and only if X=9V"'(Y) for an injective Ri-module Y. Put u= (X,
7(X), t) =G((rX), X, 1d)) for X ind 4. We have an exact sequence
0~—>X'——>Homx(N 7 (X) )———»DHomK(T(X) N). By [1, Proposition 20.11]
id* is an epimorphism. Thus V(u) = (7 (X), DHom«(7 (X), N), s) by defini-
tion, where s is the composition 7 (X) ®«DN% Hom«(N, 7(X) )-—i(i*—)DHornK
(r(X), N). Since Hom(7 (X), N) is an indecomposable projective left ideal
of E and Dr(X) is an indecomposable direct summand of DN, we conclude
that (Dr(X), Hom«(7(X), N), Ds) is a projective left RY-module. There-
fore, V(u)= D(Dr(X), Homx(r(X), N), Ds) is an injective RJ-module.
Hence we conclude that u==V"'V(u) is sp-injective. Since the number of
nonisomorphic indecomposable sp-injective modules in mods, Rx equals
n+ 1, the lemma is proved.

If g is a nonsimple projective Rx-module, then g= (Hom (N, 7 (X)),
7(X), id) for a module X< ind A. Thus it is easily seen that there exists
X, € A satisfying the condition of 1) if and only if ¢ = E(p,) is a projective
Ryi-module. The case i). We show that G( (r (X,), Xq, id) ) =rad ¢q. Since
soc g is simple, rad ¢ is indecomposable and sp-injective in mods; Rx. Thus
there exists X & ind .« such that rad ¢g= G( (r(X), X, id) ) by Lemma 3.5.
Since g is the unique indecomposable projective injective module of mod Ry,
there exists a nonzero homomorphism ¢ : G( (7 (X,), Xo, id) ) = q such that
Im £ Crad q. Thus £ = G(o) with 0 = (h, g) : (r(Xy), X,, id) ) = (r (X), X,
id) ). It holds that g: X,— X is not zero. For consider the following
commutative diagram with exact rows;
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0 Xy Hom«(N, 7(X,)) DHom (7 (X,), N)
l |t
0 X'—3—Homi(N, r(X)) DHom«(7 (X), N).

If g=0, then the right hand side vertical map equals zero. Thus there
exists t' : Hom« (NN, 7(X,) ) = X' such that t=st’, so we get a nonzero map
(¢, 7(g)) : (Hom«(N, 7(Xo)), 7(Xo), id) > G((r (X), X, id) ). On the other
hand, gq= G((k, 0, 0))= (DN, k, id) = (Hom«(N, 7(Xo)), 7(X,), 1d) by
Lemma 3.2 and the assumption on X,, so we have a nonzero homomorphism
g— G((r (X), X, id)), a contradiction. Thus g0 and X,=X. We con-
clude that rad g= G( (r (X,), Xo, 1d) ). Next we show that there exists an
irreducible map ((X,) — (r(Xo), Xo, id). Let 0: u— (r(X,), Xo, id) be a
right almost split map. Put u= (U, Y, t) and 6 = (f, g). Then there exists
7=(0, h): ¢(Xo) > u such that 67= (0, id), and so gh=1. Thus X, is
isomorphic to a direct summand of Y and we identify X, to this summand,
so that there exists an indecomposable direct summand v’ = (V, X, ® X|, s)
of u. If V0, then we have an irreducible map G(u')— G( (7 (Xo), Xo,
id) )=rad q. Since G(u') is sp-injective, there exists X € ind .« such that
Gw')=G((r(X), X, id) ) by Lemma 3.5. Thus v = (v (X), X, id), so X=
X,, a contradiction. Therefore, V=0 and X;=0, so u == ¢(X,). Hence
there exists an irreducible map ¢(X,) — (7 (X,), Xo, 1d)). If ¢(X,) is not
sp-injective, then we have an almost split sequence 0— ¢(X,) > u—>v—>0
and (7 (X,), X,, id) is isomorphic to a direct summand of u. Thus we have
an irreducible map (7 (X,), Xo, 1d) — v, and applying the functor G, we have
an irreducible map rad g— G(v), a contradiction. Hence ¢(X,) is sp-injec-
tive. The case ii). By assumption there exists an almost split sequence
0—»rq—=u—>q—>0. Put u=GWw) for vE mods, S. Suppose that there is
an almost split sequence 0— u, 2 v’—a—,> w—0 in mods, S. We get the fol-

lowing commutative diagram ;

0 G(uo) ¢ G(v) v q 0 (exact)
E g
0 G -2 )-8 Glw).

For since G(g) is not a splitting monomorphism and the first row is an
almost split sequence, there exists A= G(6") : G(v) = G(v') such that G(0)
= h¢, where 6” : v—>v'. By G(0')h¢ = G(0'0) =0, there exists h' : ¢— G(w)
such that A= G(0')h. Thus the above diagram is commutative. Suppose
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that A" 7 0. Since Im A" € mods, R«, A’ is a monomorphism. Thus G(w) =
g, a contradiction. This implies that A" =0, so G(6’6”)=0. Thus ¢'¢”
factors through v77—>!(Yl)—7]>w for Y, € mods, R by Lemma 3.2. If 7 is a
splitting epimorphism, then w & Im ¢, so we conclude that 7q= (X, U, t)
and u= (Y, U, s) by applying G™' to the almost split sequence ending at w.
This contradicts the fact that g= (DN, k, id). Thus 7 is not a splitting
epimorphism, so there exists 7" : ¢(Y;) > v’ such that 7=0'7". We have
that o' (6” —7"7')=0'0" —6'7"7" =0 and there exists #: v—u, such that
of=0" —7n"n". When G(f) =0 we conclude that h=0, so G(¢) =0, a con-
tradiction. Otherwise, since G(0)G(f)p=G(c")p=G(c) and G(o) is a
monomorphism, G(8)¢ =1, a contradiction. Therefore, u, is sp-injective.
It is noted that w, is not isomorphic to a module given in either 1) or 2).
For the case of 1) is trivial. If u, coincides with a module in 2), then G(u,)
=17q 1s sp-injective in modsp, Ry, a contradiction. Finally, since the number
of nonisomorphic indecomposable sp-injective modules of mods, S equals
one of nonisomorphic indecomposable sp-injective modules of mods, R plus
1, the sp-injective modules obtained in 1) —3) are all indecomposable sp-

injective modules of mod S.

ReMark 3. 6. We make some remarks about the condition in Theorem
34, 3), i).

1) The module X, is sp-injective in mods, R.

2) For every Y € ind ./, since Hom«(7 (Y), 7(X,) ) = Hom«(r (Y), 7 (X))
70, there exist f: Y—> X, and g: M— Y such that fg#0. Thus there
exists a chain of irreducible maps in .« from Y to X, by [2, Corollary 1.8
(c¢) ]. Therefore, the shape of the subquiver .« has not only the unique
minimal element M but also the unique maximal element X,.

3) There exist the canonical epimorphism Hom:(X, Y) = Hom(7 (X),
7(Y)) and the canonical inclusion Hom (7 (X), 7(Y) ) = Hom.(7 (X), 7(Y))
for every X, YE mods, R. If there exists X, €.« such that dim: 7(X,) =1
and dim« Hom(Y, X,) =dim« 7 (Y) for all Y & .« and moreover, if Hom(X,
Y)=Hom«(r (X), r(Y)) for all X, Y& .« (for example, this holds when M
generates every X €.«/), then this X, satisfies the condition of i)

Next we study almost split sequences of mods, S.

Tueorem 3. 7. Let 0—>X~h> Yi Z—>0 be an almost split sequence in

mods, R. Then the following hold.
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1) If X A, then 0— ¢ (X)— t(Y) — ¢(Z) — 0 is an almost split sequence
in mods S.

2) If XE A, then 0— (r(X), X, id)— (7 (X), Y, t)— ¢«(Z)— 0 is an al-
most split sequence in mods, S with t=71(h).

Proor. 1) Since ¢(X) Is not sp-injective by Theorem 3.4, 1) follows
from a standard computation. 2) Since ¢(Z) is not projective, there exists
an almost split sequence 0— (U, A, ¢) = (U, B, s) > ¢(Z) — 0, where ¢ = (id,
f) and ¥= (0, g). We have a morphism (0, u) : ¢«(Y)— (U, B, s) such that
(0, k) = (0, g) (0, u), so that k=gu. Since k is irreducible, v is a splitting
monomorphism. Thus we can assume that B= Y® B’. Consider the fol-

lowing diagram with exact rows;

0 x— "y kg 0
lz l(id, 0) H
0 A Y®B-& 72—,

where g= (k, k') with B : B'—Z. Thus there exists [: X— A such that
the above diagram commutes. If [ is not a splitting monomorphism, then
there exists I’ : Y— A such that [=1"h. This implies that the second row
splits, a contradiction. Therefore, [ is a splitting monomorphism. We can
assume that A=X® A" and flx=h. Let p: 7X)DP7r(A) —=7(X) and ¢:
X@® A— X be canonical projections. If ¢ = (pt, q): (U, XD A', t) — (r (X),
X, id) is not a splitting monomorphism, then there exists (a, b) : (U, Y®
B, s) = (r(X), X, id) such that (a, b) (id, f) =¢. Put b= (b,, b:) with b,:
Y—X and b.: B—>X. Then x=q(x)= (b, bs)f(x) =b:h(x) for all x= X.
Thus h is a splitting monomorphism, a contradiction. Therefore, we get
an isomorphism (U, X® A’, t)= (r(X), X, id), so that A" =0, U=r(X),
t=id and B’ =0. Hence the almost split sequence ending at ¢(Z) is the
form 0— (r(X), X, d) = (r(X), Y, t) > ¢(Z) >0 with t =7 (h).

Lemva 3.8. Let f: X— Y be irreducible in mods, R and XE .4 If
either Y is projective or Y is not projective such that tY & .o, then ((f) :
t(X)— ¢(Y) is irreducible in modsp S.

Proor. If Y is not projective such that tY & .« then there exists an
almost split sequence 0— ¢ (tY) — ¢(X') — ¢(Y) — 0 such that X is a direct
summand of X' by Theorem 3.7. Thus ¢(f) is irreducible. If Y is projec-
tive, then we have that rad ¢((Y) = ¢(rad Y) and ¢(f) is irreducible.
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Tueorem 3. 9. Assume that ind .« has an indecomposable module not
isomorphic to M. Let fi: M—>X:(i=1, ..., k) be all distinct irreducible
maps from M. Then there exists an almost split sequence

0— cWM)—— D (XN D (k, M, id)—— " («() ) ——0,

where (k, M, id) is the unique indecomposable projective S-module con-
tained in &, moreover it holds that G(t™' (¢(M) ) ) is the unique indecom-
posable module in mods, Rx such that there exists an irreducible map from
po to G(' (¢(M)) ).

Proor. There exist irreducible maps ¢(M)— ¢(X;) (i=1, ..., k) by
Lemma 3.8 and ¢(M) — (k, M, id) by rad (k, M, id) = ¢(M) and the projec-
tiveity of (k, M, id). Suppose that there is another irreducible map ¢(M)
- G7'(y) for y € ind mods, Rx. By Theorem 3.4 and the assumption, ¢ (M)
is not sp-injective, so we can put 7' (¢(M))=G'(2) for z€ mods, Rx.
Thus there exist irreducible maps f: y—z and g: po— z in mod, Rx. Here
we can assume that Im g C Im f. Therefore, we have h: po—y such that
g =fh, so that h is a splitting monomorphism, a contradiction. Thus an
almost split sequence starting from ¢ (M) is one in the theorem. The rest
is almost trivial.

Tueorem 3.10. 1) Let 0—>u£ vi w—>0 be an almost split sequence of
mods, Rx. Then there exists X< mods, R (possibly zero) such that 0— G™
()= G W) D (X)) — G ' (w) — 0 is an almost split sequence of modsp S.

2) Let w < mods, Rx be projective but not simple and let v=rad w.
Then there exists X, Y€ mods, R(Y is possibly zero) such that 0— ¢(X) —
(YY)D G (v) > G (w) — 0 is an almost split sequence of mods, S and X<
.

Proor. For an indecomposable module w € mods, Rx, G (w) is projec-
tive if and only if w=p,. Thus it is noted that G™' (w) is not projective in
either case. 1) Let 0— as G (v)® bi G (w) —0 be an almost split
sequence in mods, S ending at G (w) and let 6 =G (8) : G™' (u) > G (v).
Since we have that G(7°0) = G(7")¢ =0, there exists X & mods, R such that
7’0 factors through G'(u) = ¢(X)—~ G'(w) by Lemma 3.2. Then there
exists 0" : ¢(X)—~> G (v) D b such that ' =7'¢", so 7' (6 —d’f) =0. See the
following ;

G (u) : ((X)

Il
0—— a—— G (1) ® b—— G~ ()— 0.
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Thus there exists ¢,: G'(u) > a such that 70, =0 —d’f8. It holds that a &
Im ¢ and there exists y € mods, Rk such that G(a) =y. Since ¢ = G(0) =
G(7)G(0,), the map G(o,) is a splitting monomorphism, so u=y. There-
fore, b Im ¢ and the proof of 1) is completed. 2) Consider the almost
split sequence given in the beginning of the proof of 1). If b&.4, then
there exists an irreducible map v® G(b) - w with G(b) #0 by Lemma 3.2,
a contradiction. Thus bEIm ¢ and then a=Im ¢. Let G'(v) = (U, Z t)
and a=¢(X). Then (0, f): a—> G'(v) factors through ¢(Z). Thus fis a
splitting monomorphism. If X & .« then (0, f) is also a splitting monomor-
phism, a contradiction. Hence X & .. This completes the proof.

Summarizing briefly our main theorems we explain the Auslander-Reiten
quiver of mods, S. We see by Theorem 3.7 that an almost split sequence in
mods, R starting from a module X is preserved under ¢ if X & .« and varies
its first and second term closely connecting with it if X . Using The-
orem 3.9 we can fix the unique new projective S-module (k, M, id) being out
of Im ¢ in the Auslander-Reiten quiver of mods, S. By Theorem 3.10 we see
that an almost split sequence of modsy Rx, adding modules in Im ¢, is
almost preserved under G7', in special, 2) makes the connection between Im
¢ and G'(mods, R«) clear.

The following example will be useful to the reader for seeing how to

apply our theorems.

ExampLe 3. 11. Let R be the path algebra of the bounden quiver Z:i:g
with commuting cycles. The Auslander-Reiten quiver of mody, R is;
001 011
001 011
/ \ u / \
eo0" 0~ 011___ 111
001 \ / 011\_ / 111 111,
coo” 001
011\ / 111
000
111

where every indecomposable module is denoted by its dimension type, and

the dotted lines denote the 7-orbit. Let M =8(1)% Then the shape of the
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quiver of .« is;
/70\ -
M\O/ © °.

. N .
Thus Rk is the path algebra of the bounden quiver °—'°< Pine with com-

o

muting cycle. The Auslander-Reiten quiver of mods, Rk is;

-

Do= 10800~—>11800 ------- S 11%00 ——»11%10——»11{11 = E(po).
N

On the other hand, S is the path algebra of the bounden quiver J l /°/l

0—>0———>0

with all commuting cycles. The Auslander-Reiten quiver of mods, S is the

following.
i
/N
00} 0] e Ty e i
SN SN SN S
o J— 000} ftol— Sz i}
Nt N N
0000 e B0} oo o
Nui
!

It holds that x;=0€© X&€ Im ¢ and x;# 0 X4 for a module X having

the dimension type xs xs xi. This example is the case i) of Theorem 3.4,

7
X3 X2 X

3). Thus the module ﬁO% is an sp-injective module.
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