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Abstract

Temperature programmed reduction and desorption techniques have been used to

investigate the reduction process of CuY. The reduction of Cu^2+ ions in zeolite with H_2

occurs via a two-step mechanism in which Cu^+ is first formed and then reduced to metal.

In the first step of reduction NH_3 was used as the reducing agent instead of H_2. Cu

particles in the reduced CuY with NH_3 pretreatment were uniformly dispersed compared

with those of CuY without one. The average particle size of Cu metal was estimated

to be 8.4 nm for the former and 18.5 nm for the latter. The detailed mechanism of

reduction process of CuY has been discussed by the physico-chemical measurements, such

as mass spectrometry, transmission electron microscope, infrared spectroscopy and

electron spin resonance.

Introduction

Cu ions in Y type zeolite can be readily reduced to monovalent form

in the presence of mild reducing agents such as carbon monoxide and

ammonia (卜3). The Cu2十ions in low Cu content sample are mainly located

on the site I and I'(4, 5), and moved to supercage by the interaction with

NH3 to form Cu(NH3)42十complex (8, 9). Recently, the reduction process of

Cu2十ions in CuY has been investigated by meanes of temperature pr0-

grammed reduction and ESR measurements by many authors (10-12).

Metal particle size is one of the important factors for supported metal

catalysts. The effect of preliminary treatment with ammonia on metal

particle size in CuY has been investigated in this work. Furthermore, IR

and ESR spectra have been measured to reveal the roles of NH3 treatment.

Experimental

A supported CuY catalyst was prepared by ion exchange of NaY zeolite
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(Union Carbide, Linde type, SK-40) with 0.1M copper (II) acetate solution.

The pH in the solution was controlled between 5.5 and 5.8 during ion

exchange. The ion exchange was repeated three times. The exchanged

zeolite was filtered, washed repeatedly with distilled water to remove the

excess salt, and dried at 383 K in an oven. The dried sample was pelletized

without a binder, crushed and sieved to 16-32 mesh before use. Sample

was stored in a desiccator with a saturated ammonium chloride solution.

The fluorescent X-ray analysis showed that 80.1% of Na十ions were

replaced by Cu ions in this procedure. Oxygen, anhydrous ammonia,

carbon monoxide and helium were of high purity grade. Hydrogen, 99.9999

purity, was used without further purification.

The pretreatment, temperature programmed reduction with H2 (TPR)

were carried out by conventional static system which includes high speed

circulation pump, cold trap kept at liquid nitrogen temperature, a pressure

transducer and quartz U-type reactor. By varying the pumping speed it

was demonstrated that diffusion in the catalyst bed did not limit the rate

of reduction. The volume of the circulating system was 231.0 cm

Zeolite sample was first evacuated at room temperature and then heated

slowly to 523 K at an increment of 3 K min. The evacuation was contin-

ued at final temperature for 60 min. The dehydrated sample showed a

greenish blue color. TPR experiment was carried out as follows ; H2 was

adsorbed on dehydrated sample at room temperature for 30 mm and then

the sample was heated to 723 K at a rate of3 K min. The initial pressure

of H2 was about 80 torr. The consumption of H2 was followed by measur-

ing the pressure drop as a function of temperature. The accuracy in this

system was 1 lzmole. The rate of reduction was obtained from the gas

consumption curves by graphical differentiation with a simple computer

system.

The NH3 pretreatment was carried out as follows ; NH3 was adsorbed

on the dehydrated sample at room temperature for 2 hrs and then sample

was heated to 673 K at a rate of 3 K min. The evolved gases during the

NH3 pretreatment were monitored by a Quadrupole Mass Spectrometer

(Ulvac, MSQ 150A) as a function of temperature. The details in this

method were described elsewhere (13). CO pretreatment was carried out

by the similar manner used for the NH3 pretreatment. Initial pressure of

CO was c.a. 200 torr. Other conditions in the CO pretreatment, i.e., heat-

ing rate, treatment temperature and evacuation, were similar to those in

NH3 pretreatment.
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ESR spectra during the NH3 pretreatment were measured with JEOL

JES-PEIX spectrometer. All spectra were measured in the X-band region

at room temperature. Mn十in MgO was used as a reference standard to

caluculate the g value. The 0.3 g of sample was set in 5 mm O.d. quartz

tube, and connected to circulating system. Sample was degassed at room

temperature for 1 hr, then heated to 673 K at a rate of 3 K min , and kept

at this temperature for at least 30 min. About 400 torr of NH3 was mtro-

duced to the degassed sample. It was kept at room temperature over-

night, heated at a rate of 3 K min to the final temperature, and then

evacuated for 15 min at this temperature.

Infrared spectra during the NH3 pretreatment were measured in a

vacuum infrared cell which was consisted with a Pyrex cell fitted with KBr

windows and heater. The sample wafer was prepared as follows ; 10 mg

of CuY powder was pressed into wafer (O.d.-20 mm) between stainless

steel plates using a pressure of 10 tons.
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Fig. 1. TPR spectra of CuY. Solid curve, CuY with NH3 pre-

treatment ; broken curve, CuY without NH3 treatment.
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Results

The result of TPR experiments is shown in Fig. 1. The broken curve

shows the reduction rate of the fresh CuY zeolite with H2. Two distinct

maxima were observed in the reduction rate around 450 and 660 K. It has

been already shown that the reduction of Cu ions in zeolite occurs by a

two-step mechanism, via Cu ions to Cu metal (9). Therefore, the first

maximum can be associated with the formation of Cu ions, while the

second maximum may suggest Cu metal formation. These assignments

are further substantiated by the color changes of the sample during the

TPR experiment, i.e., the greenish blue sample turns white when the first

maximum is appeared, and then it turns reddish brown above 660 K.

The H2 consumption of CuY with NH3 pretreatment is shown by the

solid curve in Fig. 1. In this case, only one maximum was observed around

670 K corresponding to the second maximum in the case of fresh CuY

sample. The deep blue sample turns to white during the treatment with

NH3. The NH3 pretreatment is, therefore, due to the reduction of Cu to

Cu ions. No appreciable difference of H2 consumption in the process of

Cu十ions to Cu metal is observed between these TPR experiments. In all

cases examined a small peak was observed near 550 K, as shown in Fig. 1.

This might be the reduction of small portion of Cu十ions which could not

be reduced with NH3 or H2 in the first step of the reduction. These Cu

ions are presumably located in the Si positions of Y zeolite (3).

The evolved gases during programmed heating (TPD) of CuY adsorbed

NH3 were investigated by mass spectrometry. The NH3 desorption curves

are shown in Fig. 2. Solid curve and broken curve shows the desorption

spectra for the first and second TPD experiment, respectively. In each

run, NH3 was mainly desorbed around 390 K. It sh、ould be noted that a

height of the peak around 390 K decreased in the second run. When

NH3 was adsorbed on Cu2+ ions, Cu(NH3)4 complex forms (6-8). Upon

first TPD experiment, Cu ions were changed into Cu+ ions as shown in

color. In second run, therefore, Cu(NH3)2 complex forms when NH3 was

adsorbed on Cu十ions (2). The decrease of peak height supposed to be due

to the difference of these complexes.

The N2 desorption curves for CuY treated with NH3 are shown in Fig. 3.

Solid and broken curve shows TPD spectrum for the first and the second

run, respectively. In the first run, two peaks were observed around 440

and 540 K. In the second run, however, the peak at the higher temperature
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Fig. 2. TPD spectra of NH3 adsorbed on CuY. Solid curve, first

run ; broken curve, second run.

Fig. 3. TPD spectra of N2 for NH3 adsorbed on CuY. Solid

curve, first run ; broken curve, second run.
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completely disappeared. Therefore, at the temperature of second max-

imum, Cu2+ ions were reduced into Cu十ions. The third TPD examination

was carried out at the same condition, the result was similar to that in the

second run. The reduction from Cu to Cu+ was almost completed the

first treatment. The peak at the lower temperature is considered to be the

decomposition of the copper-ammine complex.

The dispersion state of Cu metal on zeolite was investigated by trans-

mission electron microscope (TEM). Typical TEM photographs of the

reduced CuY with and without NH3 pretreatment are shown in Figs. 4 (A)

and (B), respectively. Homogeneous Cu particles were observed in the for-

mer case, while several sizes of Cu particles were observed in the latter

case. The size distribution of the Cu particles was estimated from these

photographs, and the histograms are shown in Fig. 5. Cu particles in the

latter are distributed in a wide range of the size, whereas those in the

former are distributed in a narrow range below 20 nm. The average parti-

cle size were estimated to be 8.4 nm for the former and 18.5 nm for the

latter.

The results of ESR measurement during the NH3 pretreatment are

shown in Fig. 6 and Table 1. Curve (a) shows the dehydrated sample and

(b) shows the CuY adsorbed NH3 at room temperature. The absorption

peak shifted to higher magnetic field and intensity decreased upon the

adsorption of NH3. The g value decreased from 2.165 to 2.093. These

results were similar to those of Y. Huang et al. (7). ESR spectrum of CuY

Fig. 4. TEM photographs of reduced CuY: (A) with NH3

pretreatment ; (B) without NH3 treatment.
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Fig. 5. Particle size histograms of Cu metal on CuY : (a) with

NH3 pretreatment ; (b) without pretreatment.

Fig. 6. ESR spectra of CuY recorded at room temperature, (a) dehydrated

CuY ; (b) NH3 adsorbed on (a) at room temperature; (c), (d), (e),

(f), (g) and (h) treated (b) at 373, 423, 473, 523, 573 and 673 K,

respectively.
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Table 1. Magnetic parameters of CuY

SnT/K '"*サ2-/G.�".

2.165 126.6
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2.093 211.1

2.101 220.7

2.177 205.7

2.183 206.2

2.157 273.4

2.153 273.1

treated with NH3 at 373 K is

shown m Fig. 6 (c), which was

similar to (b). When the sample

was treated at 423 K, ESR spec-

trum was shifted to lower magnet-

ic field, and the g value was 2.171.

The color of the sample changed

from deep blue to greenish blue.

The circumstance around Cu ions

in the sample of (d) was varied.

It is thought that the NH3 molecules on Cu十desorbed at 390 K. This

is supported by the results of TPD experiment (Fig. 3). The changes

between spectrum (c) and (d) was corresponded to the first peak in

TPD experiment. Spectrum (e) was similar to (d). The Cu ion in Y

zeolite treated from 423 K to 473 K remained unchanged. Upon the treat-

ment at 673 K, ESR spectrum strongly changed. The intensity was de-

creased and hyperfine structure appeared. This spectrum is similar to low

Cu content sample (14). Therefore, most Cu ions disappeared by the

treatment with NH3 at 673 K. Therefore, N2 desorption peak around 570 K

in TPD (Fig. 3) was associated with the reduction from Cu to Cu ions in

zeolite. ESR spectrum at 673 K may correspond the Cu ions located in

hidden cages.

TPR experiment of CuY treated with CO was carried out to confirm

roles of the NH3 treatment. As shown in Fig. 7, two broad peaks were

appeared at 543 and 693 K. The latter shows the reduction from Cu十to Cu

metal. During the first step in this treatment, greenish blue sample changed

to white, indicating Cu ions in the zeolite were reduced to Cu+ ions with

the CO treatment (3).

The TEM photograph of reduced CuY with CO pretreatment is shown

in Fig. 8. The histogram of particle size is shown in Fig. 9. The Cu

particles in CuY with CO pretreatment was distributed in a wide range of

the size compared with NH3 pretreatment, which had strong resemblance

to those in the untreated sample. Average particle size of this sample is

estimated to be 19.5 nm. This value almost equal to that of untreated

sample (18.5 nm).

IR spectra of CuY during the NH3 pretreatment were observed and the

results are shown in Fig. 10. After the addition of NH3 at room tempera-

ture, distinct adsorptions were observed at 1615, 1455 and 1275 cm. These



Preparation of Highly Dispersed Copper Particles in Zeolite

・U!LU-L- 6|OLUrf/J

373 473 573 673 773

T/K

Fig. 7. TPR spectra of CuY. Solid curve, CuY with CO treat-

ment ; broken curve, CuY without pretreatment.

Fig. 8, TEM photograph of reduced CuY with CO treatment.
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Fig. 9. Particle size histogram of Cu metal on reduced CuY

treated with CO.

Fig. 10. IR spectra for CuY during NH3 treatment.
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absorptions correspond to NH3 deformation (6), NH4十ions and Cu(NH3)4十

complex (8), respectively. The absorptions at 1615 and 1275 cm decreased

with the increase of temperature. At 673 K, the band at 1275 cm dis-

appeared, and that at 1615 cm l became very weak. The NH3 molecules in

the Cu complex desorbed at 540 K. However, an appreciable absorption

band of NH4十ions at 1455 cm was still observed above 673 K.

Discussion

The reduction of Cu十ions in CuY with H2 occurs via two step reduc-

tion, i.e., Cu十ions to Cu metal. If a weak reducing agent such as NH3 0r

CO is used in the reduction, Cu十species are formed selectively. In this

study CuY was reduced with H2 followed by the NH3 treatment. Homoge-

neous small particles of Cu metal can be obtained by this treatment (Fig. 4).

The reduction from Cu十to Cu+ with NH3 occurred around 570 K. It is spec-

ulated that when the NH3 is introduced on the dehydrated CuY, Cu(NH3)4

complex is formed and Cu十ions are moved from small cavity to supercage

(6-8). With increasing the temperature of NH3 treatment, ESR spectra

were varied between 373 and 423 K, i.e. g values were changed from 2.101

to 2.177 (table 1). The latter value is similar to that of dehydrated sample,

although the intensity and shape of the peak decreased. From results of

TPD, the maximum desorption of NH3 was observed at this temperature

range of 373-423 K (Fig. 3). Therefore, it is considered that since the

NH3 molecules adsorbed on Cu ions decreased the circumstances around

Cu ions were become to be similar to those of the dehydrated sample.

Upon the treatment above 423 K, the peak area decreased with the

increase of temperature. It is speculated that Cu ions are reduced to

Cu十with NH2 at the elevated temperature (12). This speculation is also

confirmed by the result of TPD experiment (Fig. 3), i.e., the reduction of

Cu2+ to Cu十takes place at 473-573 K. Upon the treatment at higher range

of temperature above 673 K, the peak decreased strongly in its intensity,

and is similar to that of low Cu content zeolite (14, 16). This small peak

corresponds, therefore, Cu十ions located at the site I in the structure of Y

zeolite. These results are also explained in terms of motional narrowing,

i.e., the width of ESR signal becomes narrow, which is due to the mobility

of electron spin momentum. Although the changes of intensity and width

of peak are occurred by other cause such as the increase of temperature,

all ESR spectra in this study were measured at same temperature (room
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temperature). The peak widths (2J&>msi) of CuY treated with NH3 below

373 K were 210-220 G. These values were much larger than that of dehy-

drated sample (126.6 G). Therefore, the mobility of Cu十ions may be

lower. Below 373 K, Cu2+ ions form Cu(NH3)42十complex in supercage (7, 8),

and their mobility is lower than the bare Cu ions. Upon the treatment

at 473 K, the g value of the NH3 treated sample is almost equal to that of

the untreated sample, and the peak width of the untreated CuY is small

compared with that of the sample treated at 373 K. It is considered that

the mobility of Cu+ ions increases by the treatment at 473 K, because NH3

in the Cu(NH3)4 complex is eliminated. Upon the treatment at 573 K, the

peak width distinctly increased (273 G). According- to the TPD experi-

merits, an appreciable amount of Cu ions is reduced to Cu十at this temper-

ature. At the same time, NH4十ions formed by the interaction between NH3

and H十sites in the zeolite. The mobility of Cu十ions is presumably re-

stricted by the presence of these bulky NH4 ions.

In order to reveal the adsorbed NH3 in zeolite, IR experiments were

examined. The distinct three absorption bands were observed at lower

temperature, while at only one band assigned NH4十was observed at higher

temperature (673 K). It is considered, therefore, that an appreciable am-

ount of NH4 ions are located in zeolite lattice. When CuY is reduced with

H2, Cu species forms and then migrates in the lattice. In the reduced

sample with NH3 pretreatment, however, the NH4 ions restrict moving of

Cu species. Consequeiltly, Cu metal can not be agglomerated to large

particles. On the other hand, the bulky NH4 ions are absent in the reduced

CuY without NH3 pretreatment. The migration of Cu metal occurred in an

appreciable extent, and large particles are generated on the zeolite. In

order to confirm the above consideration, CuY was reduced to Cu with CO

instead of NH3. CO molecules cannot remain in the structure. The TEM

result was similar to those of CuY without NH3 pretreatment. It is con-

eluded, therefore, that the reason why the homogeneous particles are

formed on the zeolite with NH3 treatment is due to the formation of NH4

ions in zeolite.
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