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1. Introduction. For ¢, aEN and b&EZ, we put
S(q,a,b) ={[(gn+b) al:nEL}.
In this paper, we treat the following two problems :

(1) Takeq;,a; €N (1=i <= 3) such that
(1) (q,a)=1and(a;,a) =1foralll<ixj=<3.
Our problem is to obtain a criterion for that three sequences S (q;, a;, b; ) (=
S; ) can be made mutually disjoint by taking suitable b’s. We gave such
criterion in [ 1 ] under certain additional assumptions. In the first half of
this paper, we give a general answer for the problem, and give a proof.

We state here the result. We put
(2)  Cay,a) =4, Caz, a3) =y, (s, @) = s,

(41,9, 0) =q and §;=qt (1<i<3),

Assume that S;'s are mutually disjoint. Then by Theorem 1 of [ 1 ], we obtain
[(x,a, + y,azzé\,,
(3) ] x2a2+y2a3={q\2, with ( x;, y;) EN2
( Xgag t+ ysa, = él\a,
From ( 3), we have

.

a, q 8 XeXg T 3y ye — ta X3y
(4) a| = X %3 %3+ Y12y taxgX) Tt yys — taxy2
L ag 172 1z taX Xy T tay3y — 4 Xe Y,

By considering (1), we have
(5) qf = X, X9X3+ y,y2y3 with fEN.

Theorem 1. Take q;, a; EN such that (q;, a;) = (a;, a;) =1 for 1
=1%]=3. Then three sequencesS (q;, a;,b;) (1 =i = 3) can be made
mutually disjoint by taking sutable b's if and only if there exists a solution
system (x;,y; ) (1 =i=<3)0of(3) such that f = 2.
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The statement of Theorem 1 is same to that of Theorem 4 of [ 1 ). But in
[ 1], we treated the problem under the assumption 6\1 = {1\2 = 6\3. The proof
of Theorem 1 is also similar to that of Theorem 1 of [ 1 ]. But we follow a
somewhat different way for the convenience of application to (II).

We think the assertion of Theorem 1 is noticeable for the following two
points. v

(a ) Since X;X,X3 +y,¥2Vs is the determinant of the matrix of coeffic-
ients of ( 3 ), Theorem 1 has an atomosphere of the well known Minkowski’s
Theorem. And it is remarkable that the value f controls the existence of the
solution completely.

(b ) Theorem 1 shows the fact that in case the criteria for pairwisely
disjointness are satisfied, there exists a disjoint triple except for the extremal

casef = 1.

(@) It is natural to ask whether the properties (a ) and (b ) remain
true for the case of disjoint quadruples. This is the theme of the latter half of
this paper. A criterion for disjointness of quadruples S (q;, a;,b; )1 <i <4
is given in Theorem 2. But it is rather an insufficient one, and we cannot give
any decisive answer to the above question. Thus we put off a full discussion
of the problem to a forthcoming paper. Instead of it, we give some numerical
examples which suggest curious phenomena which do not appear in case of

disjoint triples.

2. We start to prove Theorem 1. Letq;,a,(1<i<3)beasin §1. We
take Q, €Z such that
(6) é\lalEl(modql),
and consider it to be fixed in the following.
Since our problem does not change by the simultaneous translation of S ( q;,
a;,b;) (=8;), we assume b; =— 1. We take the solution system of ( 3 ) such
that
(7) l1=sy,=a,1=y,Sa,and 1 £ x;< a,.
Now Proposition 1 of [ 1 ] shows that if
(8) {bZE m, + Qlazn2 (modﬁ\l) with0 Sm,<x,—1,0Sn,<y,— 1,

by = m3+é\1a3n3 (mod{1\3) with0=my;Sy;—1,0=ng = x53— 1,

then S, NS, =S, NS;=¢. (We first consider G, only.)
For S;NS; = ¢, we use Theorem 2 of [ 1 ]. Thus we transform the properties
of b, and b, given in ( 8 ) to that of modulo 6\2. We put
(9) q2=d2{]\] and q,= d,q,.
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Then we have
by =m,+ & agny + wyq, (mod qz) with 0 < w, < dy— 1,
b; = my + é\lagns—F w36\3 (mod q3) with0 = wy = dz— 1.
Now by Theorem 2 of [ 1 ], we see that if
(10)  a,by— azb,E {8, X+ 8, Y : 0SXSx,— 1, 1S Y S y,} (mod §3),
then S, NS; = ¢. ( We first consider E,.)
We take Q;.l &Z such that QQ, az= 1 (mod 6\2) and consider it to be fixed in the
following.
By easy calculations, we see that (10) is equivalent to the following
an {— az/e}gm— azé\ln+ a2/a\3w3{1\3 - W2é1\1} NlLx +y,—1]x¢
(mod {1\2),
where—y;+1=m=x,—land —x3+t1sn=y —1
and0=w,;<d,-1(i=2,3).
Now (11) implies
(12)  {—a,Aym—a,An} N1 x +y,— 11> ¢ (mod q).
On the other hand by the chinese remainder theorem, we see that (12) implies
(11). Thus we study (12) in the following.
We use frequently the fact
13)  (y;,a)=(x;,a4,) =1foralll<i=<3,
which follows from (1) and (3). (We consider i cyclicly.)
For m, nE€Z, we define r and s as follows.
(14) {m5~a3r(modxz)and0§r§x2—1,
n=—as(mody,)and0=s =y, — 1
By (13), r and s are determined uniquely from m and n. Now we put
(15) x (m,n) = {t,r/x,+ t;s/y,} q + yom/x, + x;n/y,,
where { x } means x — [ x ].

Lemmal. x (m, n) €Z and satifies the following relation.
(16) 2 (m,n) E—a2/a\3m— aQCa\ln(modq)‘

Proof. First we note the following two relations.
an {— azé\gmz ra,+ ([rag/x,] + [ (m—1) /x,1+ 1) y,(mod q ),

— aQQ,n =sa,+ ([sa,/y;]+[(n—1)/y;1+1)x,(modq).

We prove the former one. Since (g, a;) = 1, we multiply the relation by a,
and consider the difference of two sides. Then we have

—aym—ragzaz— ([rag/x,] + [(m—1) /x,]1+ 1) y,a,.
Using the relation y,a3=— x,a, ( mod q), we have

=a,(—m—rag+t x, ([rag/x,] + [ (m—1) /x,] +1)).
By (14), we see the value = 0. A similar reasoning works for the latter
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relation of (17).
Now we add two relations of (17). Then we have
rasx;+ asys) /Xt y, ([(m—1)/x,]1+ 1~ {rag/x,})
+s(ay,+ax)/yy+x, ([(n—1)/y;]+1—{sa;/y;}).
Hence by ( 3) and (14), we have
= q (rty/xy + st,/y,) + yom/x,+ x,n/y;.
Considering the value modulo q, we obtain the relation of Lemma. And we
see the value is in Z. Q. E. D.
Now we give another expression of x. In order that, we define the
following numbers. Namely we put
(18) (y,,x3) =d, x,=dX, and y, = dY,.
And we take A €Z such that
(19 A=t,Y,r+t,X,s(moddX,Y,)and0 £ 2= dX,Y, — 1.
Finally we put
(20) F=f/d,u=(Fm +y;1) /X, andv = (Fn + x,4) /Y,.

Lemma 2. FEN and (u,v) €Z%. And we have
21 x = Cuy, + vx,)/f.

Proof. If FE&EN, there exist a prime number p and a&EN such that p® | d
and p°4 f. Then by (4) and (5), we havep | (q, a,). This contradicts (1).
Next we prove u€Z. By (19), we have 4 = t,rY,;(mod X,). And a,F =t,Y,
ys (mod X, ) follows from (4 ). By using m = — agr ( mod X,), we have the
relation Fm=—t,Y,y;r=—y; A (mod X, ). Thus u €Z. A similar reason-
ing works for v.

From (15). we have x = (q2+ y,Y;m+ x,X,n) /dX,Y;. Now by (5),
we have (21). Q. E. D.

We denote
(22) H={(mn):—ys+1=m=x,—1 —x3+1=n=y,—1}.
Then our problem is to seek the pair ( m, n ) €H such that
(23) x(mn)E[1,x,+y,—1](modq).

Lemma 3. If 2= 0 for some (r,s) = (0, 0), (23) has a solution pair
(m, n).

Proof. Let A=0for (r,s) * (0,0). Then there exists ( m, n) which
satisfies (14) and0 < m < x,—~1and0<n=<y,— 1. Since (m,n) = (0, 0),
we see by (15) that the pair satisfies (23). Q. E.D.

We put
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(24) D= (thQ, ta ¥y )

Corollary. If D> 1, there exists a disjoint triple.
Proof. If (r,s) runs through the range given in (13), the values of 2

covers 0 at least twice. Q.E.D

In the following we assume D= 1. Since D=1 impliesd = (t,, y,) = (t,,
X,) = 1, the values of A cover [0, x,y, — 1] exactly once. We put
(25) M(h) = {(m, n) €H : the corresponding A =h }.

Lemma 4. AssumeD=1andf 2 2. Then there exists a pair (m, n) €
H which satisfies (23).

Proof. Wetake (M, N) fromM(1)suchthat0=M=x,—1and0<N
< y,;~ 1. Then the pairs (m, n) of M (1) are of the form

m=M — w,;x, and n = N— w,y, where w,, w,& NU {0}.
We consider the corresponding ( u, v) € Z®which is defined in (20).

Here we note the following three facts ;

(i) If udecreases x,, the corresponding u decreases f.

(ii) The u which corresponds to M is a positive integer.

(i) f=2 implies (f(—y3) + y;3) /x,<<0.
By (i) — (iii), we see that there exists u such that 0 =u =f — 1. Since v
satisfies a similar property, we can deduce easily the assertion of Lemma by
using (21). (Incase (u,v) = (0,0), we replaceit by (f,0).) Q. E.D.

3. Thus the remained case to be consideredis D = f = 1.

Lemma 5. Iff=1, there exist no pairs (m, n) € H, which satisfy (23).
Proof. By (22) and the fact (u, v) € Z?% we obtain the following two in-
equalities.
(26) {[yg(l—l)/xzj-l-léugl-{-[(ygl—l)/x2],
[xg (A—-1)/y, 1 +1Svs1+[(x34—1) /y, ]
We first assume 1 < A = x,y, — 1. Then we see from (26)
l1=u=yy,and1l =v =< x.x,.
Thus by Lemma 2, we have y, +x, < x (m,n) = q.
If =0, we have
—[Cys—1)/x,]Su=<0and ~[(x,— 1) /y,JSv=0.
Hence we have —q + y, + x, S x < 0. Q. E.D.
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Note here the fact that Lemma 5 does not imply directly the non-existence
of disjoint triples. To ascertain that, we must check the other possible
solutions of ( 3). By operating a suitable permutation on i, we may assume
@27)  y3>a,.

Note that (27), (4 ) and (5) imply tyy; < t;x,.

Lemma 6. If t,y, = t,X,, we have t, =t, =t3 =y, = x, = 1. And there
are no disjoint triples.

Proof. Since D=1, t,y, = t,X, implies t; = t, = y; = x,= 1. By (4), we
see a; = t3y, and a;= t3x,. Thus (1) implies t; = 1. This case is treated in
[ 1], and we ascertained there the latter assertion of Lemma. Q. E. D.

Thus we put

(28) z=1t;x,— tyy, € N.

We take by from G, of Proposition 1 of [ 1 ]. And we take b,& G, and ab; —

azb, in E;. Then we see that if the relation

(29) x(mn)eE[1,x,+y,—1](modq)

holds with

(30) agtl=m=x,+y;—land —a,+x3+ 1 =n =y, — 1, there exists
a disjoint triple.

Lemma 7. Assume (28). Then (29) has a solution pair.
Proof. We consider the pair with A =0. In the case,r =s = 0. Thus
X, | mand y, | n, and the ratios are u and v. By (30), we have the following
inequalities for (u, v) € Z?%;
{taxl— [(ysz— 1) /3,0 =u=<1+[(y,—1)/x,],
—t3y,— [ (%3 (z—1)—1)/y,]=v=0.
Then by Lemma 2, we have
—[(y3z— 1) /2,1y, — [(x3Cz—1)—=1) /y, 1 =%
S(1+[(ys— 1) /%D y,.
By noting z =2 1, and by the fact that the differences of the adjacent
values of x =< Max ( x,, y,), we obtain the conclusion of Lemma. Q. E. D.

As a final step of the proof of Theorem 1, we need the following

Lemma8. (i)f=1impliesD=1.

(ii) Assume (27) and f =1, then x;x, (x5 +a;) + (ys—a3) y,y,= 1if
and only if t; Xy = tyy,. ‘

Proof. Assumef =1, thend = 1. If there exists a prime p such that p |
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( Xy, t3), then (1) implies p | y5. Thus (5) implies p | q. On the other hand,
we have p | a, from (4 ). This contradicts (1). By a similar reasoning, we
have (y;, t,) = 1.

The assertion (ii) follows by easy calculations. Q.E.D.

Now we collect the results of Lemmas, and easily conclude the assertion

of Theorem 1.

4. Henthforth we treat the problem of disjoint quadruples. We take q;,
a; (1=i=4)suchthat (q;,a;) =1. For simplicity, we assume
(31) (qi,q) =qand (a;,a;) =1forall 1Sixj=4
We denote S (q;, a;, b; ) simply by S;. We take é\; such that /a\; a; =1(mod q),
and consider it to be fixed in the following. The relation S; N S; = ¢ for all 1
=1 % j = 4 implies the following 6 relations.

()

0 Zy 0 Wo
L0 0 Z3 W3

(%, y1 0 0] a, q
0 x5 yo O a = |q Xj,¥j, Wi,z EN
(32 ys 0 x5 O as q (1=j=3.)
zz 0 0 w, ay q
q
L g )

We assume that

(#) (32) is the unique solution system forqand a; (1 =i=4).

By oparating a simultaneous translation on S;, we may assume b, = — 1.
Then by Proposition 1 of [ 1 ], we see that §; N S;= ¢ if and only if

(33) b= mj+Q4ajnj (modq) with0 S m;=w;—1,0=n=z—1

(We consider j cyclicly modulo 3.)

Lemma 9. Under the assumption of ( ), S (q;, a;, b; ) can be made
mutually disjoint by taking suitable b’s if and only if there exist pairs (r/ﬁ i ﬁ\j )
(1 £j = 3) which satisfy the following two conditions (34) and (35).

(34) {é\j =n—n_, with0<n; < z—1,

-—mj+1§r/x\1j§xj—mj+1—1 with 0 = m; = w; — 1.

Proof. By taking b; as in (33), we use Theorem 2 of [ 1 J. Then we
obtain (35) by a similar calculation used in §2. Q.E.D.

Now as in §2, we introduce the following numbers.
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i+11; (mod x; ) with0 = r; < x; — 1,
i =—ays; (modz) with0=s; <z — 1.
(36) )l—Zr+Xs(moddXZ)w1thO<Jl =d;X;Z 1,
fia = x5z W; T ¥, 2, W4,
x,-—(qx,+y,z{y\1 +wX;0,) /4, X,
We treat the conditions given in Lemma 9 by separating into the following

((%;,2)=d;,§;=4F;,x,=¢X;,z=4d%.
/\._

m=—a

/\

n;

three parts.

(A) List up all (A, n ) such that — w;,, + 1 <M S x—1, —z,, +1=
QSz—landx (r/1\1 )E[1w+yj—1](modq)

(N) From the solutions of (A), list up all (f n,, {1\2, n'y) such that n1 + 1/1\9
+ n3 = 0.

(J) From the solutions of (N), we take the corresponding I/I\Ij and x; (1
<j=3). Seek the pair ( r/r\lj_l, x;) such that

(M, +2,)€ (1, x_,+y,—1](modq).

Lemma 9 There exist a disjoint quadruple if and only if there exist
triples ( mJ , n] » x;) (1 =j=3) which satisfy (A), (N) and (J).

Proof. Only 1f part is easy. Thus assume that we have triples ( m
x;) (1 =j=<3) which satisfy (A), (N) and (J). First we ascertain the fact
that 1/1\ ; can be expressible as in (34). By easy calculations, we see that the
cardinality of (n,, n,, ny) is given by Min ({1\1- + 2z, 2z — {1\]- ) Z;).
We see also that from r/r\1j , x; (1 =j=3) which satisfy (A) and (J), we can
take m; (1 <j = 3) which satisfy (34). Q. E. D.

Note that (A) is the problem to determine all the disjoint triples (S;, S,
S,). Finally we reformulate our criterion as follows. We define

uj:(FvI/I\l-+}.-W]+1)/Xj and v; (Fn + A24,) /Z;.
u/fy=a;, i/t = 8. 4;/Fy=7; and ;= B; = 7.
Then the condition (N ) becomes :
371 ulz1+u2z2+uf,z3 0.
And (J) becomes
(388  a;y;tu;wtax,EL1x-,+y;—1]1(mod g).
Now collecting above discussions, we have

Theorem 2. We take q;, 2, EN (1 <1< 4), which satisfy (31) and (£).
Then four sequences (q;, a;, b; ) can be made mutually disjoint by taking
suitable b’s if and only if there exist triples (fa;, £, x;) (1 <j < 3) which
satisfy (35), (87) and (38).
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As noted in § 1, the criterion given in Theorem 2 is rather an insufficient
one. However it works to study numerical examples. We give some exam-
ples which suggest the future possible theory of disjoint quadruples in §5.

Here we state two general remarks.

(i) The main difficulty arises from (N). But if we can take ¢, = u,=
i3 =0, then (N) holds trivially. And in the case the condition of (J) becomes
simple. Such examples are given in §5.

(ii) It seems plausible that a proposition of the following type holds ;
Namely if f; <K (1 =j = 3) hold with a constant K, then there exists ¢ (K)
such that there exist no disjoint quadruples for ¢ >c (K) (except possibly
the case noted in (1) ).

5. We give several numerical example :

Examplel. q = 30011. a,= 326, a,= 271, ag= 349, a, = 389. We have x;
=48, X, =9, x3 =15, y, = 53, y, = 13, y3 = 76, z, = 67, z, = 105, z3 = 18, w; =
21, w, = 4, wy = 61.

(A) f,=4. And the solution triples are as follows ;

(M, 1, 2,) = (15,62,8), (26,19,16), (37, 43,45), (37, —24, 24), (11, 24,
29), (11, —43,8), (22, 48,58 ), (22, —19, 37), (22, —86, 16 ), (33, 5,66 ), ( 33,
—62,45), (7, —14,50), (7, —81,29), (18, —57, 58 ), ( 29, —100, 66 ).

£,=3. (R, 0y, 2,);(72,82,7),(83,41,10), (11,64, 7), (22, 23, 10),
(—50,46,7), (—89,5,10).

f,=3. (Mg, My, 25); (5,12,66), (5 —6,5), (10,6, 71), (10, —12,10),
(—16, —37,127 ), (—16, —55,66), (—11, —43,132), (—11, —61, 71).

(N) As easily seen, the sum= 0 for all ({1\1, {1\2, {1\3).

Example 2. q =503. a,;= 38, a,= 25, a;= 23, a4—29

=6,%=10,x3=7,y,=y,=11,y3=9,2,=4,2,= 17,2, = 10, w;, = 9, wy, =
2,w3~7.

(A f,=2. (M, 0, 2):(8,210),(3 —2,1), (1, —11,19), (1, —1
5,10). ; '
f,=3. (M, 0y, 22):(8,1,3),(9,9,8), (9, —86),(18,5), (1,
—9,3),(2,16,10), (2, —1,8),(—6,15,7),(—6, —2,5),(—5, 6, 10).

t=2. (fy, 0, xs) = (~1,3,8).
(N) (R, 0y, 09); (=2, —1,3), (—11, 8, 3).
(J) For the above solutions of (N), x,+ r/r\x3 fails (J).

Example 3. q = 2003. a, =97, a, =67, a; =59, a, =53.
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(A) f,=6. (@, 0, x,);(—5616), (—10,12, 32), (—12,12,5), (10,
~1,18), (—15,5,34), (—17,5,7), (—22, 11, 23), (—20, —2, 36), (—22, —2,
9),(—27,4,25).

f,=2. (M, My, x2);(—1, —5,85), (—8, —2,43), (=8, =5,9), (—15,1,
51), (=15, —2,17), (—22, 1, 25).

fo=2. (g, M, x5); (5 —10,19), (—1, —8,32), (—1, —10,2), (7, 4,
45), (=17, —3,15), (—13, 4, 28).

(N) (B, 0y, 0); (12, =2, —10), (5, —2, —3), (=2, —2,4). The
corresponding (4 ,, #,, #3) = (1/2,1/6, —1), (0,0,0), (—1/2, —1/6,1).

(J) There exist 24 combinations of ( r/r\lj , X;), which correspond to (N).
Only two of them satisfy (J). They are 1’/1'\11 =-12, %, =5, 1/1'\12 =-—15, x,=17,
My =5, x;=19, and M, =—20, ¥, =36, M, =—8, x,=43, M;=—13, x;=28.

Example 4. q =30011, a, =326, a, =209, a; =389, a, =271. Thenf,=9, f,=
37, fy=4. This case has fairly large numbers of solutions.
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