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Wall Friction and Local Heat Transfer

in Oscillatory Flow

(Two-dimensional Unsteady Laminar Boundary

Layer on a Flat Plate)*

By Masahiro ISHIDA** and Takashi YAMADA***

Wall friction and local heat transfer in an oscillating laminar
boundary layer over a flat plate with an unheated starting length are
theoretically analyzed. In the analysis, the power series solutions are
derived for velocity and temprature distributions in three frequency
regions, that is, low frequency (w*<1), intermediate frequency (l<w*<1/K),

and high frequency (w*>1/K) respectively.

As the result, the frequency

response of a hot film sensor is clarified theoretically. Especially it
is shown that the amplitude of heat transfer oscillation with an unheat-
ed starting length increases with frequency at low and intermediate

regions, and the phase angle is in advance of free stream oscillation at

these frequency regions.

1. Introduction

It is important to measure the skin
friction on body surfaces in a stream, for
investigating the flow mechanism and esti-
mating the friction loss. Recently the
fluctuating skin friction measurement is
required to inquire into the mechanism of
an unsteady flow, and it seems that the
hot film method is the most suitable one
to measure a fluctuating skin friction of
all existing techniques. In this method
the frequency response of the probe must
be known, but the hot film method has been
established by Brown(1l) and Bellhouse etc.
(2) only for measurement of time-mean wall
skin friction. Lighthill(3) studied the
effect of a fluctuating oncoming stream on
the skin friction and heat transfer on a
two-dimensional body; and Mori and Tokuda
(4) made a theoretical and experimental
study of heat transfer from an oscillating
cylinder. But these studies are not
enough, because the hot film probe for
skin friction measurement has a flat heat-
ed surface and is required to be located
at any portion of body surfaces, and then
the leading edge of hot film is different
from that of wall surface. Therefore to
clarify the frequency response of hot film,
the relation between wall friction and heat
transfer with an unheated starting length
should be examined.

In this paper, the fluctuating velo-
city distribution and the fluctuating
temperature distribution in an oscillating
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incompressible laminar boundary layer over
a flat plate with an unheated starting
length are theoretically analyzed. In the
analysis, introducing new non-dimensional
variables including both the unheated
starting length and the fluctuating fre-
quency, the equation of motion and the
energy.equation are solved by the power
series solution method in the cases of low,
intermediate and high frequencies respec-
tively. As a result, the amplitude and
the phase angle of skin friction fluctu-
ation and those of heat transfer oscil-
lation are clarified.

2. Governing equation

Fig. 1 shows a model of the hot film
probe on a flat plate for skin friction
measurement. The heated element is locat-
ed at the distance Xy from the leadingedge
of a plate which is immersed in a two-
dimensional incompressible laminar flow,
and the element length is very short. The
sinusoidal oscillation is superimposed on
the steady stream Ug. Then the free stream
velocity U is expressed as follows:

wt

U= U, s cel®ty (1)

where it is assumed that Up is constant and
€ is small compared with unity.
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Fig. 1 Analytical model of hot film
probe and co-ordinate system
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In the boundary layer along the flat
plate, the equation of continuity, the
equation of motion for streamwise velocity,
and the energy equation are as follows:

du/dox + dv/dy = 0 (2a)

Bu/at+u(3u/3x) +v(3u/3y) =dU/3t+v(d2u/dy2)

) 5 (2b)
9T/9t + u(3T/3x)+v(3T/3y) =« (3°T/3y") (2¢)
=y= = <x< =
u=v=0, T Tw(xo_x_x0+l), T Tm(x<x0,x>x0+1)
at y=0

u=U, T=T_as y >«
where T, is the heated element temperature
and Te the free stream temperature. If €
is small compared with unity, u, v and T
may be expressed approximately as follows:

U(x,y,t)=u0(x,y)+€elwtu1(x,y.w)

vx,y,t)=v (x,y) +ee v (x,y,0) (3

T(x,y,0) =T (x,y) +ee™ T (x,y,w)
Substituting Eq.(3) into Eq.(2), and
equating the same order of e, sets of
equations are obtained. The zeroth-order
equations are;

Buo/ax + Bvo/ay =0 (4a)

2 2
uo(auo/ax)+v0(au0/8y)=v(3 uO/By ) (4b)

uy (3T, /3) +v (3T /3y) =k (3T /3yD)  (4¢)

u0=v0=0, TO=Tw(x0§x§xO+1), TO=Tw(X<xO’
x>x0+1) at y=0

uO=UO, TO=Too as y > ®

The first order equations are;

Bul/ax + avl/ay =0 (5a)

iwu1+u0(3u1/3x)+u1(8u0/8x)+v0(8u1/3y)
+v| (Bug/dy) =iwly+ v (3%uy/8y?) (5b)

1wT1+u0(3T1/8x)+u1(3T0/8x)+v0(3T1/3y)
+v1(3T0/3y)=K(32T1/3y2) (5¢)

u1=v]=0, T1=0 at y=0

u1=UO, T1=0 as y > ®

To solve Eqs.(4) and (5), the stream
function y and the non-dimensional temper-
ature 6 are used in the following form.

VO Y, 1) =9, (x,y) +ee N, (x,y,0) (6a)
- =Yg 1
6(x,y,1)=8(x,y)+ee’ " & (x,y,0)  (6D)

Yo and 6p are given as the well known
steady state solutions.

v = U, £(n) @)

n 3
% = 1-(1/r(4/3))LT e dn, (8)

On the other hand, the equations with
respect to Yj and = are derived from Egs.
(5) and (6) in the following sections.

3. Analysis of velocity
distribution

3.1 Case of low frequency (w*<1)

The unsteady part of the stream func-
tion is similar to Eq.(7), that is,
Y1=vvxUg @(&£,n), and if the non-dimensional
frequency parameter w* is smaller than
unity, & may be written in the following
power series,

[

o(g,m) = T &' (n) (9)
n=0

Substituting Eq.(9) into (5), and equating
the same order of £, the following equation
is obtained.

20"+ £ _2nf' @'+ (2n+1) £79_=20!' _+A_ (10)

n n n n n-1"n
where @_l=0, A1
= '= = =
@n @n 0(n=0,1,2,3,....) at n=0

=-2, An=0(n=0,2,3,....)

o'=1, ®ﬁ=0(n=1,2,3,....) as n > ®

=
0

The solutions of Eq.(10) have been already
obtained for the lower power terms in the
literatures(5,6) | but in this paper the
power series solution is obtained up to the
7th power so as to examine the truncational
error, as listed in Table 1. For compari-
son the value obtained by Nakagawa etc.(7)
is also listed in Table 1. Both values are
almost the same.

Table 1. The values of @}(0)
at low frequency

7
n ii:gi;t Nakagawa( )
0 0.4980 0.4981

1 0.8480 0.8485

2 -0.4785 -0.4697

3 0.3765 0.3677

4 -0.2785 -0.2695

5 0.1845 0.1769

6 -0.1100 -0.1045

7 0.0595 —_—

3.2 Case of high frequency (w*>1)

If the frequency paramter is larger
than unity, the unsteady component of the
stream function is defined as follows as
indicated by Illingworth(G).

b =0/ iwb (e, B) 5 (11)
a=1/viwx/Ug , B=y/iw/y

Substituting Eq.(11) into Eq.(5b), the
following equation is obtained.
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2®BBB+(af-a28f-)@BB+(a359'-2)¢

+a3f'® -a4f”® +2 =0
aB o

B ap

®=¢8=0 at B=0, ¢B
where the subscripts a and B denote the
differentiation with respect to o and B
respectively.

As the thermal boundary layer is very
thin compared with the velocity boundary
layer in the present case, it is assumed
that the velocity distribution is linear
in the thermal boundary layer. Therefore
f' in Eq.(12) is expressed as follows.

=1 as B—>co

£1=£1(0) -n=£"(0) -0-B; £(0)=0.33206

Expanding ¢ into a power sgries with
respect to a, that is, &= Z aMdn(B) and
equating the same order of 0, the follow-
ing analytical solutions are obtained.

a..-B
9 =Bre "1, 0 @2 9,=0=0,=bc=. . .=0

¢3=(f”(0)/16)[48 ~13+(13-138+58°
+28%/3)e78)

6 =(f" 2 3 -B

6= (£"(0)7/64) [3287/3+142B-5563/8+e
(8%/18+178%/15+2598% /24474383 /12
+18678°/8+44278/8+5563/8) ] (13)

and the values of the second derivatives
of &, at B=0 are as follows.

@088(0)=1 386(0) =5f'"(0)/16,

¢6BB(O)=443f”(O) /512, (14)

¢9BB(0)=2794f"(0)3/4096

218800 =050 =055 (0] =955 (0) =070, (0)
=0gpp(0)=0

3.3 Wall skin friction fluctuation

The wall shear stress T consists of
two parts, that is, the steady mean term
To and the unsteady term T].

T =T, *c¢€e T (15)
As the result of velocity distribution
analysis, the following expressions are
derived.

T, /T=(1/£7(0)) & s“@;(O)

n=0

(w*<1) (16a)

Ty/Tp=(1/£"(0)) z BB(0)(w*>1) (16b)
n=0
where T0=f"(0)-pug/57ﬁaf

4. Analysis of temperature
distribution

The length of a heated element is
very short and the unheated starting

1469

length exists as shown in Fig. 1. Then the
thermal bounlary layer thickness on the
heated element is very thin compared with
the velocity boundary layer thickness.
Therefore it is assumed that the velocity
distribution in the thermal boundary layer
is linear.

u=(ty/oy+ et (1 /o)y (17
Since Vo=V =0, substituting Eq.(17) into
(5¢), the %ollowing energy equation is
derived.

iw - o+0= 1+ 1475

T /o0 Y T + O)Y P ayz

X

x"= J VT /e/vdx, v =y/T 7o)V
X
0

4.1 Case of low frequency (w*<l)

If the frequency parameter is smaller
than unity, it is justified to change the
independent variables x*,y* into the
following new variables.

£p=Ciux ov/1y) - (P /9x") /3

1/3

(18)

(19)
M=y T(p /9x )

Using the variables defined above, Eq.(18)
becomes as follows.
2
= +3n : 6€ n
nne O T , 7= &r (20
-9£T::+3nT (Tl/TO)SOnT =0

=0 at nT=O, = =0 as nT >

The subscripts NT and &T denote the dif-
ferentiation with respect to Nt and &p
respectively. Since Eq.(16a) which should
be substituted into Eq.(20) is a function
of &, the relation between £ and £T must
be known. If we put £7=K-& in this re-
lation, K is written as follows.

3/4]2/3 1/2

It is clear from Eq.(21) that K is a para-
meter of unheated starting length (xg/x),
and in general is a function of x. But K
must be kept constant to solve Eq.(20)
numerically. Fig. 2 shows the value of K
versus Xg/x for Py=0.72. If the unheated
starting length xg is zero, the value of K
is 1.08867, and K decreases to zero as
Xp/x approaches unity. Assuming that K is
constant, the variable &t in Eq.(20) is
changed into &.

K=[1- (xy/) (4798 0))%/ 321y

g esnlE

= = 2
gy 6€nT~g-9KE._+3nT (Tl/‘co)eon

t
=0 (22)
Expanding £ into a power series with

respect to &, that is, = =n205n5n(nT):

and equating the same order of &, the
following equation is derived.
2 = =
= on ol = - =
“n+3nT “n innT"n 9K"n-l (23)
“3np 2 (eTT/T(4/3)) (82(0) /£7(0)) =0
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4.2 Case of intermediate frequency
(1<w*<1/K)

T The energy equation (20) is original-
ly applicable to the intermediate frequen-
cy region. In this case Eq.(16b) is sub-
stituted into the term (T1/Tg) of Eq.(20)
or (22). As it will be mentioned later,
it is most suitable to take into account
the terms up to n=3 in Eq.(16b). There-
fore it is valid to expand Z ipto the
following power series; - _ ® ,5-1

P 5= £87 (0

The equation for Zn is derived by equat-
ing the same power of &.

N :

\\5~ 3n e/ r(a3)) (0 (0)/£7(0))=0
—oNp L€ 3-n’B8 =
(24)

0.8

06

0.4

2. - -
" = _ _ = - =
n+3nT = 3(n Z)nT_.n 9K =

n-2

0.2

[$3]
Il
m
1}
o

0 02 0.4 0.6 1.0

Eq.(24) is solved numerically in the same
manner as the case of low frequency, and

the values of E (0) are listed in Table 3.

0.8
Xo/X

Fig. 2 Variation of unheated starting

length parameter K with xp/x 4.3 Case of high frequency (w*>1/K)

(Pr=0.72) If the frequency parameter is larger
than 1/K, the variables x*, y* in Eq.(18)
where Z .1=0, the prime denotes the dif- are changed into the following variables.

ferentiation with respect to "T
boundary conditions are;

and the
ap=1/VE,  Br=np/og (25)

En=0 at nT=O, and En=0 as np > @ Eq.(18) yields the following.
Eq.(23) is solved numerically for some dif- =
ferent values of K, and the values of

temperature gradient at the wall are listed

4 4
_9Z +3R. 0. = +3B a. (T,/Tt,)8, =0
BTBT T OLT T T 1’0 00LT

in Table 2. (26)
Table 2. The values of 51'1(0) at low frequency
K
1.08867 0.5 0.1 0.02 0
n

0 | -0.55957 -0.55957 -0.55957 -0.55957 -0.55957
1 0.12789 -0.25052 -0.50764 -0.55906 -0.57192
2 0.22603 0.36899 0.22729 0.24062 0.23049
3 | -0.35167 -0.27277 -0.16133 L | -0.14466 L | -0.14105 1
4 0.31113 0.16552 0.99515x10_] 0.87095x10_; 0.85207x10:1
5 | -0.21242 -0.90739x10_, | -0.53299x10_, 0.48860x10_ ) | -0.47848x10 )
6 | 0.12252 .| 0.46005x107) | 0.27481x10_; 0.25238x1077 | 0.24723x10_)
7 | -0.62327x10 -0.21707x10 -0.13104x10 -0.12043x10"" | -0.11799x10"

Table 3. The values of 51'1(0) at intermediate frequency
K

1.08867 0.5 0.1 0.02 0
n

0 | -0.34744 -0.34744 -0.34744 -0.34744 -0.34744
1 0. 0. 0. 1] o 1) o
2 0.63427 0.29128 0.58256x10" 0.11651x10 0.
3 | -0.84289 -0.84289 -0.84289 , | -0.84289 ;| -0.84289
4 | -0.67305 -0.14195 -0.56778x10‘1 -0.22711x10_7 | O.
5 0.92411 0.42439 1 0.84877x10_ ;| 0.16975x10_¢ | O.
6 0.51719 0.60091x10~ 0.40073x10" 0.32058x10_3 | 0.
7 | -0.67372 -0.14209 -0.56835x10" “ | -0.22734x10 0.
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where the boundary condition requires that
£=0 at Br=0, and 2=0 as BT~ . Eq.(16b)
is substituted into Eq.(26), and Sgar is
approximated by the following power series;

3,3
eOaT=_8T/F(4/3)'(1_aT BT +o BT ------ )

Since Eq.(16b) is a function of o, the
variable or in Eq.(26) is changed into
using the relation or=0/vK. By expandingZ
into a power series, that is, E==n§0a 3
(BT), and by substituting that into Eq.(26),
a differential equation with respect to Z,
is derived. This equation is solved ana-
lytically as follows.

E . (0)=(-2/9£"(0))/K°T(4/3)
38y
E o8 (0)=(35/162K>£"(0)-5/72) /K°T (4/3)
T

£ g (0)=(-595/5832K> £ (0)-25/1296 V K
T
-443£7(0)/2304)/K°T(4/3)  (28)

4.4 Heat transfer fluctuation

The local Nusselt number is defined
by Nu=—x(38/8y)y=0. Ny consists of two
parts which are”a steady mean term and an
unsteady term.
0+eelthu1 (29)

The steady term is derived from Eq.(8).

N =N
u ul

" 1/3
Nu0=1/F(4/3)-(f (O)Pr/12) .
-1/3 (30)

AT (xg/0 %)

And the unsteady term is expressed in the
following equations.

Ny /Nyo=-T(4/3) 2 5“5;1(0) (w*<1) (3la)
n=0
= - n/2—1 =t
N, /N o=-T(4/3) T a E 1(0)

o (31b)

(1<w*<1/K)
> n-1.
N,y /Nyo=-T 4/ 3)/Kn§0a z nBT(O) (310)

(w*>1/K)

5. Numerical results
and discussion

The typical profiles of the amplitude
and the phase angle of velocity fluctuation
at several different values of frequency
parameter w* are shown in Figs. 3(a) and
(b) for low and high frequency regions
respectively. At low frequency, similar
results have been already obtained in
literatures'®,”» In this paper, solu-
tion are obtained up to the 7th power in
low frequency and up to 9th power in high
frequency, so that these solutions are ap-
plicable in a wider frequency region and
also near the region where the frequency
parameter is unity. The maximum amplitude

1471
=
=10 Wz w*
10
0.8
06
0.4
os | 02
0
4 5

1

(a) Case of low frequency (w*<1)

|
w* N
= 502010 5 2
HH
=10
0.5
0
o 50 20 105
< 00— =
o 2
oo 1
[y}
20
40
0 2 4

(b) Case of high frequency (w*>1)

Fig. 3 Amplitude and phase angle of velo-
city fluctuation

appears near the wall at any frequency,

and the position comes closer to the wall
with an increasing frequency. And it can
be seen that the phase angle near the wall
is in advance of the free stream fluctua-
tion. The phase advance increases with
frequency, and an asymptotic phase advance
45° at the wall is attained. And the
asymptotic solution at very large frequency
is identical with Stoke's profile.

In Figs. 4(a) and (b), the amplitude
and the phase angle of wall skin friction
fluctuation are shown. In these figures
the solid lines indicate the low frequency
solution, the broken lines the high frequen
cy solution, and the numbers on the line
are the values of exponent in Eq.
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(16a)or (16b) . The amplitude of skin frictionl 20
fluctuation increases monotonously with
frequency. The phase angle is in advance
of the free stream fluctuation and an
asymptotic phase advance 45° is attained

at very large frequency. The low frequency
solution Eq.(16a) dees not always agree
with the high frequency solution Eq.(16b) 1.0 Y

near the region where the frequency para- ‘\\‘\\\
meter is unity, but the solution truncated )
at 5th power for low frequency agrees well
with the one truncated at third power for
high frequency in that region.

The profiles of amplitude of the
temperature fluctuation at some different
values of frequency parameter are shown in 0 0.2 0.4
Figs. 5(a), (b) and (c) which are the cases 18]
of low, intermediate and high frequencies (a) Case of low frequency (w*<1)
respectively. The unheated starting length
parameter K is selected to be 0.5 in these
examples. The temperature fluctuation

7
8*

SO0
O ODO

20 S

2

/1 w'=10) 12) 1.4) 16) 18 20)

1T,/ Tl
~

8l 086

(b) Case of intermediate frequency
(1<w*<1/K)

0 02 0.4

1.0 e e

: | i 0 S

0.1 10 w10 % —

(a) Amplitude of wall skin

friction fluctuation 0 0.2 0.4 06 0] 08
(c) Case of high frequency (w*>1/K)

Fig. 5 Profiles of temperature fluctuation

amplitude
«60 ;
3 “ 5
& ! L N
40 J e
f: / appears only near the wall and the maximum
z i /] amplitude appears near N1=0.7 at any
20 a { / \ frequency. The upper edge of fluctuating
’,////, 30 7 region is nearly equal to that of the
3,:j steady mean thermal boundary layer. These
0 temperature profiles depend a little on
01 10 w* 10 the value of K. In Fig. 5(c), the solution
(b) Phase angle of wall skin by Eq.(27) is not valid at large value of
friction fluctuation Nt as shown by the broken line.
Figs. 6(a), (b) and (c¢) show the
L. amplitude and the phase angle of heat
Fig. 4 Frequency characteristic of wall transfer fluctuation. In Figs. 6(a) and

skin friction fluctuation (b), the solid lines are for the case of
low frequency, the chain lines for that of
intermediate frequency and the broken lines
for that of high frequency. The parameter
is the value of K. As the frequency in-
creases, the amplitude increases at low and
intermediate frequencies, but it decreases
to zero rapidly at high frequency. And the
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-5
amplitude tends to become larger as K be-
eIV comes smaller. With regard to the phase
&{ \ angle of heat transfer fluctuation as shown
0 ’t;? L v in Fig. 6(b), it is influenced considerably
1 \
A}

INu1/Nyol
e
.
o2
oo
3
[

by the unheated starting length parameter
05 \ \ K. For example, if there is no unheated
X 34&4 \ \ starting length which corresponds to K=
0. ? ,7( \ \ 1.08867, the phase lag becomes larger as
05 1088 \ \ N, the frequency increases and an asymptotic
| ! X \0.50 \ phase lag 90° is attained at very large
\1oss | N ; ; ;
Y N N frequency just as in the previous works.
~ < It is interesting to note that the phase
S advance appears at low frequency in a case
with an unheated starting length. As the
w value of K becomes smaller, that is, the
(a) Amplitude of heat transfer unheated starting length becomes longer
fluctuation compared with the heated element length,
60 the phase advance becomes larger. In
K=0.0 addition, in the case of K=0, an asymptotic
S s il S —— phase advance 45° is attained at very large
i ) frequency, and this phase advance of heat
s f Ga\ ! < N tiansger is identical with that of wall
- I - skin friction.
0-—""'—-—\\: \ \€40 \\ In Figs. 6(a) and (b), although the
1.088 N \ \ discontinuity and the disagreement of
-20 \)T\ \0.50 \ \ curves exist between two adjacent frequency
<\§> \ regions where the frequency parameter is
-40 )\ N\ \ nearly equal to unity or 1/K, in the real
1088\ A \ phenomena it will be expected that there
60 | V\\ RS \ will be a continuous change. In the case
NN L \ without unheated starting length, the
1088 >\, T\ 0.50 010 | 3 ired in the present the
] NN~ ~<<0) assumption required in the presen ory
o 0 may not be satlsfleg, but the result will
* be in good agreement with the results ‘in
literatures(4,5,6) as shown in Fig. 6(c).
Therefore Eq.(31) will be applied for the
case without unheated starting length as
well as Eq.(30).

In Fig. 7, the influence of unheated
starting length on the amplitude and the
phase angle of heat transfer flucuation is
indicated in the case of low frequency.

It is clear that the amplitude becomes
constant as K becomes smaller than 0.15,
and the phase angle also becomes constant
in the region where K is smaller than 0.02.

]

arg (Nyy /Ny ) de:

-80

0.1 1.0

(b) Phase angle of heat transfer
fluctuation

o

ING1/Nyol
~

1
42}

-~

=

r

7=, -
L= . bt ke
T T NG

arg (Nui/Nyo) deg

~
(=}

1 arg ( Nux/Nuo)

0.2 ]
——Present the
——Ret. (5)
—-=Ref. (6)
--=Ref. (4)

-100°
0.1 1

107 107 - o

10 0 10 K 10

(c) Comparison between present theory Fig. 7 Influence of unheated starting
and other works (Xo0=0) length on heat transfer fluctuation

(case of low frequency)
Fig. 6 Frequency characteristic of heat

transfer fluctuation
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+

6. Conclusions y = y/TO/p/v

The velocity distribution and the X, = Unheated starting length
temperature dist?ibution With gnheateq o = 1/Viwx/U_; Eq.(11)
starting length in an oscillating laminar 0
boundary layer over a flat plate were Gr = 1//§;} Eq.(25)
analyzed thegret%cally by means of boundary B = y/iw/y; Eq.(11)
layer approximation, and the amplitude and
the phase angle of wall skin friction 81 = np/ap; Eq.(25)
fluctuation and heat transfer fluctuation T(4/3)=0.8930; Gamma-function
were calculated. The results obtained in ]
this paper are as follows. € = iwx/U,

(1) The amplitude and the phase £ = (iwx pv/T.) - (P /9x+)1/3; Eq.(19)
advance of skin friction fluctuation in- T 0 r
crease with frequency, and an asymptotic n = YVUO/VX
phase advance 45° is attained at very large n. =y (P /9x+)1/3; Eq.(19)
frequency. T T

(2) The maximum amplitude of temper- 6 = (T'Tw)/(Tw'Tm)
ature fluctuation.appears near Nr=0.7 at T = (Tl‘Tm)/(T -T;)
any frequency, which corresponds to about W
one third of time mean thermal boundary k = Thermal diffusivity
layer thickness. v = Kinematic viscosity

(3) If there is an unheated starting . L
length, the amplitude of heat transfer T = Wall skin friction
fluctuat%on incr?ases with frequency at w = Angular frequency of oscillating free
low and intermediate frequencies, but de- stream
creases to zero rapidly at high frequency. i .

(4) In a case without unheated start- w* =wx/Up; Non-dimensional frequency
ing length, heat transfer is found to parameter

fluctuate always with phase lag, but the

phase advance appears at low and inter-

‘mediate frequencies if there is unheated References
starting length.

(5) When the unheated starting length
parameter is very small (K<0.02), a phase
advance 45° is attained asymptotically at (2)
very large frequency in heat transfer
fluctuation as well as in wall skin fric-
tion flucuation.
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Nomenclature

f = Blusius's stream function

=
"

= Nusselt number

r = Prandtl number

N

P

T = Temperature
t = Time

U = Free stream velocity

u,v= X,y-components of velocity

x,y= Co-ordinates parallel and normal to
the plate

+ X
X = L /To/p/vdx
0
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