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Quenching of Frictional Vibration of
a Rotating Circular Plate by Dynamic
Absorbers*

Atsuo SUEOKA**, Takahiro RYU**,
Masato FUJIYAMA*** and Yutaka YOSHITAKE****

This paper deals with the quenching of self-excited vibrations of a rotating
circular plate subjected to a concentrated frictional force as a function of relative slip
velocity exerted on its outer circumference by dynamic absorbers. Results obtained by
the method of multiple scales and the shooting method showed that (1) dynamic
absorbers tuned to the natural frequency of the vibration mode to be controlled and
arranged at a certain angle related to the vibration mode are the most effective, (2)
such mountings of not one but several dynamic absorbers for every possible occurring
mode, enable us to quench self-excited vibrations perfectly, and ( 3) thus, the effective
masses of the dynamic absorbers are on the order of 1072 of the mass of the circular
plate. The analytical results are confirmed by an experiment concentrating on the

perfect quenching of frictional vibrations of the rotating disk.
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1. Introduction

As a series of studies on quenching self-excited
vibrations such as squeals of disk brakes and of
railway vehicle wheels rolling along a curved rail, the
authors™? and Harada et a/.® analyzed the effect of
the imperfection existing in a rotating disk and con-
sidered the influence of the imperfection on the fric-
tional vibration. On the other hand, some methods of
vibration control using dynamic absorbers have been
investigated for the forced vibration of a disk®*®,
However, there are few investigations concerning the
means of quenching self-excited vibrations of a rotat-
ing disk.

In this report, the authors present an effective
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method by which the self-excited vibration of disk
rotating at a low speed can be perfectly controlled by
dynamic absorbers attached to the disk without the
effect of internal resonances. From theoretical and
numerical analyses of the model described in the
previous report”), it was made clear that the self-
excited vibration could be effectively and perfectly
quenched by arranging a few dynamic absorbers on
the disk. Furthermore, a good qualitative agreement
between the results of theoretical analysis for the
perfect quenching of self-excited vibration and the
experimental ones was confirmed.

2. Theoretical Analysis

The boundary condition of the disk for the inner
circumference (» =) is fixed, and that for the outer
circumference (»=R) is free, as shown in Fig.1,
where (7, 8) is the fixed coordinate system in space.
The disk rotates at an angular velocity w, and an
axial frictional force P acts at a point (R, 0) on its
outer circumference through a rigid friction rod sub-
jected to a normal load P. N dynamic absorbers are
mounted at the points (74, ¢») in the fixed coordinate
system (7, ¢) on the disk. The mass, viscous damping

Series C, Vol. 38, No. 3, 1995

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

442

Fig. 1 Analytical model and coordinate system of a disk

coefficient and spring constant of every dynamic
absorber are m, c» and kx, respectively (see Fig. 1),
where n=1, .-, N. This paper deals with the funda-
mental theoretical analysis of the self-excited
vibrations of the disk without the effect of internal
resonances. In order to enable us to also develop the
theoretical treatment for the disk with the effect of
internal resonances, the disk is regarded as a Mindlin
circular plate.

In this study, since the rotating speed is much
lower than the natural frequencies of the circular
plate, the centrifugal force and the Coriolis force are
neglected. The equations of motion of the disk are
represented by the following equations, in which the
fixed coordinate system (7, 6) is used:
oMy | 1 oMy , Mr— M,

o Yy T, @
=2 (5r+odg)
5 (5r+sg) v (1)

0Qr 1 0Qp , Qr
8r+r 80+ v

— 9 oV Py
—qu<at+a)~a?‘5~>w —5(r—R)8(6)

— S TUD8(r = )30 B fr

where M, M. and Ms are moments, & and s are
shearing forces, w, ¢» and ¢s are an axial displace-
ment and angular displacements, respectively, H is
the thickness of the disk, # is time, o is density, &(+)
is the Dirac delta function, and I(¢) is the contact
force between the n-th dynamic absorber and the
disk. The disk is axisymmetrical and has a few steps
as shown in Fig. 2. However, the subscripts referring
to the ring number are omitted here.

The equation of motion of the xn-th dynamic
absorber and the contact force I'.(#) are given as
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tint28wn(tn— )+ @02(ttn— wn)=0 (2)

T($) = mn(28wn(ttn— tn) + W&(tn—wa)}  (3)
where &= cn/2VMnkn, wn=vFknlms, un is the dis-
placement of the n-th dynamic absorber, and w.=
w(7s, 6n) is the displacement of the disk at the loca-
tion to which the z-th dynamic absorber is attached.

We assume the displacements of the disk at a
point (#», ), which is fixed in space, as

Oy =2 msdrms(Cns cos MmO+ Dus sin m8)

o= s P o,ms( Cms Sin mO — Dps cos m8) (4)

w= 2 nstWns(Cms cos mO~+ Dus sin m8)
where m and s are the numbers of nodal diameters
and nodal circles (m, s=0,1, ), the symbol 2lus
means a double summation from zero to oo, with
respect to the subscripts » and s, and Cns and Dxs are
both unknown functions of time. @ns, $r,ms, and @o,ms
are the characteristic functions of radial coordinate »
of w, ¢» and ¢, for the (m, s)-mode corresponding to
natural circular frequency wms, and the shape func-
tions satisfy the normalized relation®.

Substituting Eq. (4) into Eq. (1) and applying
the orthogonal relation, the relationships between
natural frequencies and the characteristic functions
and the stress-displacement relations, we obtain the
following equations®® :

Cms + ZmCUDms +2 gmswms( Cms + ma)Dms)

+(whs— m*0?) Crs
=xmsP + D uxnslw(t) cos m,
Dms_ZMWCms +2 é’msa)ms(D.ms - ma)Cms)
+ (ks — MP W) Dns= D nxmsn(t) sin mb, (5. b)
where >, indicates summation from 1 to N, with
respect to #, and

xms:ﬁ)m(R)/pRs, K#zs:wms(rn)/pRsy

On=wt + dn. (6)

In addition, the modal damping ratios are
introduced in Eq. (5), and the modal damping ratio
for the (m, s)-mode is represented by &ms.

The relationship between friction force P and
normal load P acting on the rigid friction rod, and the
relative slip velocity v between disk and friction rod
are expressed as follows :

(5.2)

P=P-f(v)
f(v)=elvs—ezv+e3} v
v=V—(3/ot + 03130 w|,_y o0 (8)

where f(v) is the coefficient of friction defined by a
polynomial expression of the third order with respect
to v, e1, e: and e; are suitable constants, and V is the
sweep velocity of a friction rod in the axial direction.

Now, we introduce a small parameter &. The
rotating speed w, the viscous damping ratios &ns, the
frictional force P and the contact forces I(¢) are
small and it is assumed that they are all of order e.
Then, substituting Egs. (3) and (7) into Eq. (5),
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and taking the terms up to the first order in & into
account, we obtain the following equations :

Ems+ WhosCms= €l — 2 EnsWms € ms

—2mwdms+ Kis{f(v)— F(V)}
+ D uxnsIu(t) cos m(wt+ ¢n)l
d.ms + C()%nsdms = 6[ -2 tmsd)ms dms
+2mwE ms+ DnxpsIn(t) sin mwt + ¢4)] (9. b)
where Khs=xmsP, and cns and dus are the fluctuating
components of Cms and Dns, respectively, satisfying
the following relations.

Cms: ngs+ Cms, Dms:D?ns+ dms

Crons: EKgsf( V) /a)%ns, D?ns:()

In Eq. (9), the higher-frequency components of
wns and the lower-frequency ones of mw coexist. The
method of multiple scales™ which is very effective for
such a system is applied here to obtain the approxi-
mate solutions of the first order to Egs. (2) and (9).
In what follows, we describe only the expressions
which are necessary for the approximate solutions of
the first order.

First, we introduce new independent variables T;
=¢'t, where i=0 and 1. Then, we obtain

d/dt:Do+ED1, dz/dt2=D§+26DoD1 (11)
where Doza/aTo and D1=9/8T1.

The solutions of Eq. (9) are assumed as

cns(t, €)= cms( To, Tv) + ecis(To, Th)

dms(ll, E) = drils( To, Tl) + Edr%ts( To, TI) (12)

unt, )=uTo, TN)+euXTo, Tr).

Substituting Eq. (11) into Eqgs. (2) and (9), and
equating coefficients of like powers of &, we obtain,
from the comparison of the coefficients of &°,

Dichs+ @hschs=0

Dédhs+ whsdis=0

Déun+28nwnDorn+ wius

=il 72){ @i chi cos RO+ d} sin kO})

+2&wn(Docki cos kO + Dodli sin £6%)}. (13.¢)
Next, from the comparison of the coefficients of &', we
obtain

Dichs+ @hsChs=

—2DoD1Cms— 2 EmswmsDoCms— 2mwDodns
+ Knsel| =3 V22 wivnd R) Doch:
+3 V{0 R) Dochiy’ — {2 010ri( R) Dochi)?]
+ Kﬁsezﬂuwu(R)Docb
+ D nxms il Wil n— 2 w1tri 72)(chi cos kba
+ dki sin k62)}
+2 é‘ncun{Dou}l - Ekzﬁ)kt( Tn)(DoC};z COSs k@nl
+ Dod}: sin k63)}] cos ms
DEd2s+ whsdzs=
—2DoD1dns— 2 EmswmsDodms + 2mwDoCms
+ an;’,smn[wi{ Un— Zkl?/TJkl( 7”)(Cllel cos kG
+ d;z sin kgnl)}
+ 28wl Dot — 2 1t 72)(Dochi cos kO
+ Dodi: sin £62)}] sin m6;
Déui+ 2 GnwnDotel+ whudh

9.a)

(10)

(13.a)
(13.b)

(14.a)

(14.b)
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= Wi wiri{7n)(cki cos kOs+ dEi sin kOy)
—2&wn] Dius
— 2 sr 7 ){(Dicki+ Docii) cos kO
+ (Dldli[ +Dod}3[) sin k&rlz}] - 2D0D1u;11 (14C)

where Gi=wTi+ P
The solutions of Eq. (13) are written as

cms=Ans( T1) exp (jomsTo)+ cc

drs=Bus( T1) exp (jwms To)+ cc

ur=220 U Th) exp GwrnTo)+ cc

U= cu?l(wi+;1 é’,?wziz — W%1) = 278awn i

(0%— %) +4 Ewia’

X s #2)(Ars cos kOr+ Be: sin k6r) (15)
where cc stands for the complex conjugate of preced-
ing terms, and ;= —1.

Substituting Eq. (14) into the right-hand side of
Eqgs. (13.a) and (13.b), and eliminating the secular
terms yields

— j[2wnsDr Ams 2 Emsns Ams + 2@ W ms Bns

+ Krlr:s(?)el VZ - ez) ﬁ)ms(R) wmsAms

+3Knse1@ns(R) OnsAms[{ Wns( R)} s AnsAns

+ ZEZL{wkl(R)}ZwizAkuZ{kt]] + D nsmal wi{ Uss

— Wns(7n)(Ams cos MmOt + Bms sin m63)}

+278nwnwms{ Uns— Wms(72)(Amns cos mO

+ Bns sin m6;)}] cos mOz=0

— 72 wmsD1Bms + 2 Ensws Bms

—2MOWmsAms) + 2 nxmsmial 03 Uns

— D 7n)(Ams cos mOL+ Bns sin m61)}

+2780wn@ns{ Uns— @ms(72)(Amns cos mbs

+ Bns sin m03)}] sin mba= (16.b)
where the symbol X% means a double summation
from zero to o with respect to the subscripts 4 and /
for (k, 1)*#(m, s), and Ans are Bns are the complex
conjugate of Awns and Bas, respectively. We write Ans
and Bns in Eq. (16) in the following form:

Ams=Ims exp (jams)/2

Buns=ymns €Xp (]Bms)/z an

@ms: Ums — Bms
where Xms, Yms, ams and fSns are all real functions of 7.

Substituting Eq. (17) into Eq. (16), and separat-
ing real and imaginary parts, we obtain the following
simultaneous ordinary differential equations :

(16.a)

Ams= — EmsWmslms— MWbms COS Ons
+ KnI;s{(ez —3e Vz)Xms
—3e1 Xns( Xhs+ 220 XR)/4}/2
—(Wmsbms SiN Ons/4) 2 nKnms Vs sin 2mOs
— Wns DnKns Zns{ ams(1+cos 2m0y)
+ bns sin 2m0s cos Ons}/4

bns= — EnsWmsbms + Mwams COS Ops
+(Wmsms SIN Ons/4) 2 nKms Vs sin 2mbz
— Wms 20 Kis Znist ams sin 2mO; cos Ons
+ bns(1—cos 2mOi)}/4

One="bms/@ms — Ams/bms){ mw SN Oms
—(Wmns COS Oms/4) 2 nKns Yiis sin 2m Ot}
—(Wns/2) 230K ms Vits cos 2mbr

(18.a)

(18.b)
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+ (bus/ams + Ams/bns)(@ms SIN Ons
X SV K27k sin 2mB3) /4 (18.c)
where the notation “” indicates the derivative with
respect to Tj,
Ams= WmsTms, Dms™= WmsYms
711’3 = { TZJmS( Vn)}z/pRs, Xms = Wms(]\)) Ams
Y — mn(1— ,%3 +4 gzzg,;'zz)
(1 - -Qrgs +4§n ﬁs
21nLnms
)+ 4TI
and 27s=wns/wn. ams and bms represent the velocity
amplitudes of ¢ms and dus, respectively.

Zns= (1 .

3. Numerical Computational Results

3.1 Computational model and calculation
method

In Fig. 2 are shown the dimensions of the circular
steel plate used in the analysis in this report. The
theoretical natural frequencies and the experimental
modal damping ratios® for several modes of the
circular plate are indicated in Table 1. In the follow-
ing numerical computation, we assume that normal
load P=19.6 N, rotational speed 2=w/27=0.05Hz,
sweep velocity of the friction rod in the axial direction
V=0.12m/s, and that the dynamic absorbers are all
located on the outer circumference of the circular
plate. Furthermore, the characteristic of friction is
assumed as follows: e1=25s*/m?® e.=2.0s/m and e;
=(.45.

The damping ratio &, of the dynamic absorbers
was measured by exciting them by an electrodynamic
excitor. In the experiment without dynamic absor-
bers, we confirmed only the self-excited vibrations of
the (2, 0) single mode, in which the number of nodal
diameters m=2, and that of nodal circles s=0, and the
(3, 0) single mode as mentioned below. The damping
ratios of the dynamic absorbers for controlling the (2,

Table 1 Natural frequencies of a circular plate (Hz) and
damping ratios

Mode (m,s) (1,0) 0,00 | (2,00 | 3,0) [ 4,0)
Wi/ 2T 355 | 429 | 643 [ 1549 | 2861
Cma 1525107 go8 | 170 | 078 | 6.13

$250

9180
960

930

1

%
b EmL
7.

|
I

Fig. 2 Dimensions of a circular plate (Unit: mm)
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0)- and the (3, 0)-modes were experimentally set at
0.054 and 0.092, respectively. In this study, thus, we
chose the dynamic absorbers with light damping as
the subject of numerical computation and experiment.

Because of the imperfection due to dynamic ab-
sorbers, the periodically fluctuating terms such as
sin 2m{w T+ ¢») and cos 2m(w T+ ¢») appear in Eq.
(18), and thus Eq. (18) has a periodic solution ac-
companied by periodic fluctuation. We applied the
shooting method® to the solution for this periodic
vibration. The method uses both the Runge-Kutta-
Gill method and Newton-Raphson method in combina-
tion, and can extract the periodic solution efficiently.

First, the direct numerical integral method was
applied to the simultaneous ordinary differential equa-
tions of Egs. (5) and (18), taking the five modes
indicated in Table 1 into account. The results showed
that only the self-excited vibrations composed of the
(2, 0) and the (3, 0) single modes were generated for
the parameters used here. Thus, the amplitudes of the
other modes which did not occur were equal to zero in
these vibrations. As these amplitudes of the other
modes appear in the denominators of Eq. (18.c), an
approach such as the shooting method in which the
Jacobian matrix is used cannot be applied to Eq. (18).
Therefore, the periodic solutions and their stabilities
are determined as follows.

(1) By applying the shooting method to the
simultaneous ordinary differential equations with
respect to the (m, s) single mode extracted from Eq.
(18), we obtain the periodic solution with period
T/mo.

(2) The stability of the solution should be judged
with full consideration of the relationship between the
corresponding mode and the other modes. We inte-
grate Eq. (18) over great many periods, with the
initial values which lead to periodic solution obtained
above for the (m, s)-mode and with the very small
initial values of the variables ax;, bx: and @y, for other
(%, I)-modes.

(3) From the result of integration, if the values
corresponding to the (s, s)-mode remain near the
initial values and the other values tend to zero, the
periodic solution obtained in (1) mentioned above is
stable, otherwise it is unstable.

(4) Substituting the periodic solution of Eq. (18)
obtained in (1) to (3) above into Egs. (15), (10) and
(4), we obtain the waveform of the self-excited
vibration of the rotating disk having dynamic absor-
bers represented by the fixed coordinates in space.
The waveform shows a beat phenomenon.

3.2 Numerical computational results and discus-

sion
Figure 3 shows the numerical computational
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Fig. 3 Control effect of self-excited vibration exerted by
a dynamic absorber

result of the (2, 0)- and (3, 0) -modes with parameter
v (=m1/M) of mass ratio of dynamic absorber to disk
when only one dynamic absorber is mounted on the
disk (N=1). The abscissa is the natural frequency of
the dynamic absorber fi=w:/27 [Hz)]. In the case that
the dynamic absorber is attached to the disk, the
vibration of the disk shows the beat phenomenon
because of the imperfection due to the dynamic absor-
ber. Therefore, the ordinate is the average amplitude
of velocity of the (2, 0)- and (3, 0) -modes calculated
from the average values of ans and bzs. The bold and
the fine lines indicate the solutions for which the
relative velocities between disk and rigid friction rod
are positive and negative, respectively, when comput-
ed from the average velocity amplitudes. The solid
and the dotted lines show the stable and the unstable
solutions, respectively. The solutions with negative
relative velocity may correspond to the self-excited
vibration of stick-slip type. Comparing the case
having absorber with that having no absorber (v=0)
in Fig. 3, the average velocity amplitudes are de-
creased when the natural frequency of the dynamic
absorber is tuned to that of the disk (see arrows in the
figures), and so the absorber certainly suppresses the
self-excited vibration. However, the solution for the
(2, 0)-mode exists, though it is unstable. This is
because the (3, 0) -mode is dominant and stable when
the dynamic absorber is set to control the self-excited
vibration of the (2, 0)-mode. Therefore, the (2, 0)-
mode can be generated, if the stable (3, 0)-mode is
perfectly controlled by some means. Hence, it is
impossible to perfectly control the self-excited vibra-
tion using only one dynamic absorber and for the mass
ratio of dynamic absorber to disk indicated in the
figure. In the case that the mass of the dynamic
absorber is large, there is a region with no finite
amplitude for the (3, 0)-mode, that is, one in which
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Fig. 4 Control effect of self-excited vibration exerted by
two dynamic absorbers

the vibration is perfectly controlled. This shows that
it is easy to quench the (3, 0)-mode, compared with
the (2, 0)-mode.

Figure 4 shows the result similar to Fig. 3 for two
dynamic absorbers (N=2), where the natural fre-
quencies of the absorbers are equal to each other (i=
f»), and are variable. In order to clarify the effect of
two dynamic absorbers, we use the mass ratio v[=
(m+ m2)/M] of all absorbers to the disk as a parame-
ter. The upper and the lower figures correspond to the
arrangements of the absorbers at an angle of 45° for
the (2, 0) -mode and at an angle of 30° for the (3, 0)-
mode, respectively. Moreover, the positions of the
arrow in the figures show the natural frequencies of
the two modes to be controlled. For example, in the
case of v=1.0X1073, the self-excited vibration can be
perfectly quenched by tuning the natural frequency of
the dynamic absorbers to a frequency in the range
drawn with a thick line on the abscissa (called the
perfect quenching region). Therefore, in order to
perfectly quench the self-excited vibration by arrang-
ing the dynamic absorbers on the disk, it is very
effective to arrange more than two dynamic absorbers
tuned to a frequency in the perfect quenching region
at a particular angle. The consideration of the angle
will be mentioned below. Additionally, we can quench
the self-excited vibrations of the disk perfectly even if
the mass ratio of all dynamic absorbers to the disk is
on the order of 107 On the basis of the results
mentioned above, we used two dynamic absorbers in
the numerical computation and the experiment in the
following.

Figure 5(a) shows the influence of the opening
angle d¢s upon the quenching of the self-excited
vibration where two dynamic absorbers with masses
nu=me=2g tuned to the natural frequency of 1549 Hz
of the (3, 0)-mode (whose positions are illustrated in
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Fig. 5 Effect of opening angle between dynamic
absorbers

Fig.5 with the symbols m, and which are called
dynamic absorbers for the (3, 0) -mode) are installed
at an opening angle of Ad¢s=30°, and two dynamic
absorbers tuned to the natural frequency of 643 Hz of
the (2, 0)-mode (whose positions are illustrated in
Fig.5 with the symbols 0, and which are called
dynamic absorbers for the (2, 0)-mode) are also
mounted. Similarly, Fig.5(b) shows the influence of
the opening angle d¢s upon the quenching of the self
-excited vibration where two dynamic absorbers with
masses n=m.=2g for the (2, 0)-mode are installed
at an opening angle of d¢=45°, and two dynamic
absorbers for the (3, 0)-mode are also mounted. In
Figs.5(a) and 5 (b), we can see respectively the
states in which only the (2, 0)-mode can occur under
the condition of perfect quenching of the (3, 0) -mode
and only the (3, 0)-mode can occur under the condi-
tion of perfect quenching of the (2, 0)-mode. The
parameter v in the figures is the mass ratio of the two
dynamic absorbers whose opening angle is changed, to
the disk. From the figures, for the case that the
dynamic absorbers are perfectly tuned to the mode to
be controlled, the opening angles near d¢2=45° and
near Ad¢in=230° are the most effective for the (2, 0)-
and the (3, 0)-modes, respectively. That is, the
perfect quenching regions are effectively utilized by
arranging the dynamic absorbers at an angle corre-
sponding to the interval between loop and node of the
mode to be controlled. Here, the solutions in Fig. 5
are all stable ones with positive relative velocity.
Figure 6 shows the tolerable quantity of the
detuning for the (2, 0)- and (3, 0) -modes, that is, the
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Fig. 6 Perfect quenching regions of self-excited
vibration

perfect quenching region for the case of two dynamic
absorbers. The abscissa represents v, and the or-
dinate the natural frequency ratios of two dynamic
absorbers to the (2, 0)- and (3, 0)-modes. The
parameter in both figures is the opening angle between
the dynamic absorbers. Perfect quenching is possible
by tuning the natural frequency of the dynamic absor-
bers to the inside of the C-shaped region in the figures.
From the figures, where the dynamic absorbers are
installed at an angle of 45° for the (2, 0) -mode, perfect
quenching is possible in the region of w:/w0= w:/w=
0.88~1.12 even for v on the order of 1073, which shows
a fairly robust characteristic. As the detuning of the
dynamic absorbers is increased, the perfect quenching
regions become wider at opening angles of 30° for the
(2, 0)-mode and of 20° for the (3, 0)-mode.

4. Experimental Results

4.1 Experimental apparatus and experimental
approach

A photograph of the experimental apparatus is
shown in Fig. 7. The material of the disk was SK 4,
and the dimensions were the same as those shown in
Fig. 2. The inner circumference was fixed by the M 30
nut, and the disk was driven at a speed of 2=0.05 Hz
by a motor. The frictional rod, which was 20 mm in
diameter and 1.2m in length, was made of S 45C.
Both ends of the friction rod were fixed to the acrylic
plates through rubber in parallel with the guide bar so
that no natural frequencies of the friction rod coincid-
ed with those of the disk. The normal load of 19.6 N
was applied to the friction rod by a load adjuster with
a spring through the bearings on the outer circumfer-
ence of the disk, and the friction rod was swept by
another motor. To set the relative velocity V in the
axial direction at 0.12 m/s and in the circumferential
direction at zero, the sweep velocity and the sweep
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Fig. 7 Outline of experimental apparatus

angle of the rod were changed, according to the rotat-
ing speed of the circular plate. The frictional surface
was finished with emery paper of #800, and was
ultrasonically cleaned before the experiment. During
the experiment, the steady-state condition of the
friction surface was maintained by wiping with a cloth
containing acetone. The squeal produced by contact
between the circular plate and the friction rod was
always detected electrically in the experiment.

The displacements of the vibration were mea-
sured by eddy-current displacement meters having no
contact with the circular plate, and the arrangement is
shown in Fig. 1. In the figure, point A is a frictional
point, and the vibration was measured at points A and
B for the (2, 0) -mode and at points A and C for the (3,
0)-mode so that the measuring points correspond to
the loop and the node of the characteristic mode of the
circular plate in the stationary state.

The dynamic absorbers were composed of small
metal masses and rubber. The natural frequency of
each dynamic absorber was tuned, by means of an
excitation experiment using an electrodynamic ex-
citor, to that of the mode to be controlled as accurate-
ly as possible, and each absorber was set near the
outer circumference of the circular plate.

4.2 Experimental results and discussion

In Figs. 8(a) and 8(c¢ ), the waveforms with time
of the (2, 0)- and the (3, 0) -modes are indicated for
the case where no dynamic absorbers are installed.
Here, the time axis is reduced. We call the wavefor-
ms envelope waveforms in the following. The vibra-
tion waveforms of every mode and the results of the
frequency analysis are also indicated in Figs.8(b)
and 8(d). The abscissa in Figs.8(a) and 8(c)
represents real time and the ordinate the displace-
ment, and the points S and E in the figures show the
starting time and the finishing time for sweeping the
friction rod. From the figures, because of rotation of
the circular plate, the amplitudes at the points B and
C for the (2, 0)- and the (3, 0)-modes do not vanish,
and the vibration mode deviates only a little in the
rotating direction. We can also see weak beats in the
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Fig. 8 Vibration of disk without dynamic absorbers

(2, 0)- an

d the (3, 0)-modes. This is because the

circular plate possesses slight imperfection due to
errors in making and setting it. From the measured
result of the dimensions of the circular plate and
the numerical computational result for the case that
the imperfection is added to the circular plate, it

was clarified that the

imperfection was very

small, compared with the mass of the circular plate.
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Moreover, imperfection of this degree had little effect
upon the quenching of the self-excited vibration from
the numerical computation.

For this circular plate, it was clarified that both
the (2, 0)- and the (3, 0) -modes could occur, and from
the frequency of every mode occurring in the experi-
ment, it appears that the (2, 0)-mode tends to occur
more often, compared with the (3, 0)-mode, and the
other modes cannot occur. This is consistent with the
theoretical result.

Figure 9(a) shows the experimental result for
the case in which two dynamic absorbers with mass
mi=my=2g (v=146x107%) for the (2, 0)-mode were
installed at an angle of 45°. Here, the (2, 0) -mode was
perfectly quenched, and the envelope waveforms for
the case in which the (3, 0)-mode occurred are in-
dicated. Though the (2, 0) -mode tends to occur more
often compared with the (3, 0) -mode, in this state, the
(2, 0)-mode was perfectly quenched, and this mode
did not occur at all. Figure 9(b) shows the experi-
mental result for the case in which two dynamic
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(a) Occurrence of the (3, 0)-mode when dynamic
absorbers for the (2, 0) -mode were installed
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(b) Occurrence of the (2, 0) -mode when dynamic
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Fig. 9 Vibration of disk with two dynamic absorbers for
each mode
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absorbers with mass m;=m,=2g for the (3, 0)-mode
were installed at an angle of 30°. The (3, 0)-mode
was perfectly quenched, and only the (2, 0)-mode
occurred. Both waveforms were accompanied by
beats due to the imperfection due to the dynamic
absorbers. The results of the frequency analysis are
shown in Figs.9(c¢) and 9(d), respectively.

Figure 10 shows the envelope waveforms for the
case in which a dynamic absorber with mass m;=15g
(v=>5.46x%107%) for the (2, 0)-mode was installed. In
the first half of the time, the (2, 0)-mode occurred,
and the (3, 0) -mode occurred in the latter half of the
time. Because perfect quenching was impossible using
one heavy dynamic absorber of 15g, it was confirmed
that a few dynamic absorbers arranged at a certain
angle relative to the vibration mode to be controlled
are the most effective.

First, two dynamic absorbers of mass »my=mn.=
2g for the (3, 0) -mode are installed at an angle of d¢so
=30°. Then, two dynamic absorbers of mass ms=m4
=2g for the (2, 0)-mode are installed. Figure 11
shows the envelope waveforms at point A when the
opening angle Ad¢s is changed under the condition
mentioned above. In Fig. 11, the arrangements of the
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-50 E

Displacement um

Time

Fig. 10 Example of envelope waveforms when a dynamic
absorber for the (2, 0)-mode was installed
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Fig. 11 Effect of opening angle between dynamic
absorbers for the (2, 0)-mode
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Fig. 12 Example of perfect quenching by dynamic absor-
bers for both the (2, 0)- and the (3, 0)-modes

dynamic absorbers are indicated in the same manner
as in Fig. 5. Because of the dynamic absorbers for the
(3, 0) -mode, the (3, 0) -mode does not occur at all, and
so the waveforms in Fig. 11 are all those of the (2,
0)-mode. Though squeal of the (2, 0) -mode occurred
up to dd20=20°, the (2, 0)-mode was perfectly quen-
ched at the angle of 25°.

Figure 12 shows the resulting waveform at point
A and the result of the frequency analysis for the case
in which two dynamic absorbers for the (3, () -mode
and two for the (2, 0)-mode are simultaneously in-
stalled at the opening angles of 30° and 45°, respective-
ly. The very small vibration shown in Fig. 12 corre-
sponds to that of the (1, 0)-mode. Because both the
(2, 0)- and the (3, 0)-modes are perfectly quenched,
the (1, 0) -mode occurs. However, the vibration is at
the noise level, that is, very weak, and intermittent
and so in practice, a state was realized in which squeal
does not occur at all. From the finding that the squeal
is perfectly quenched at an angle of Ad¢z=25°, the
experimental result agrees well with the numerical
computational one because .the quenching effect is
increased as the opening angle reaches 45° according
to the numerical computational result. Then, we
observed the vibrations of the dynamic absorbers
when only the rotating speed of the circular plate was
set to zero in this state. As a result, there are almost
no vibrations of the dynamic absorbers, and the mode
to be controlled is perfectly quenched at the initial
stage of the self-excited vibration. In this respect, the
behavior of the dynamic absorber for quenching the
self-excited vibration is much different from that for
controlling the forced vibration in which the dynamic
absorber vibrates heavily to suppress the vibration.

5. Conclusions

The authors presented an approach to control
perfectly the frictional vibrations generated in a rotat-
ing circular plate without the effect of internal reso-
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nances, and performed analysis and experiments. The
results are summarized as follows.

(1) In order to quench the self-excited vibrations
of the rotating disk by using dynamic absorbers, it is
effective to arrange two dynamic absorbers at an
angle corresponding to the interval between loop and
node of the mode to be controlled. Moreover, the
maximum vibration control effect is attained when
the natural frequency of dynamic absorbers coincides
with that of the mode to be controlled.

(2) By arranging the dynamic absorbers for all
possible occurring modes according to the approach
mentioned above, the self-excited vibrations are per-
fectly quenched.

(3) Qualitative agreement between analytical
and experimental results with respect to the perfect
quenching of the self-excited vibration was confirmed.
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