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Vibrations of Nonlinear Systems

with Discontinuities*
(The Case of a Preloaded Compliance System)

Yutaka YOSHITAKE**, Atsuo SUEOKA***,
Nobuchika SHOJI**** and Toshitaka HAI*****

This paper deals with vibrations of a preloaded compliance system as an example
of vibrations of nonlinear systems with discontinuities. The resonance curves of
harmonic, higher harmonic and subharmonic vibrations are obtained by using the
direct numerical integral method presented previously, which is a highly accurate
shooting method. Chaos is generated in the system treated here. Influences of
amplitude and frequency of external force and damping ratio on the resonance curves
and the stability of solutions are discussed. It is found that if a trajectory enters a
discontinuous point, a bifurcation is realized. A stable periodic solution becomes
unstable due to this bifurcation and chaos may suddenly occur at the halfway point of
the period-doubling route. This route to chaos is same as the one found in the forced
self-excited vibration system with dry friction.
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1. Introduction

There exist strongly nonlinear vibrating systems
with discontinuous characteristics, examples of which
are a system with preloaded compliance®~® which is
used in a flexible joint, an earthquake isolation floor®,
an isolator®, a dot printer®, and a system ac-
companied by friction™®, Since discontinuity is
strongly nonlinear, it is possible that many kinds of
nonlinear vibrations occur in such systems. However,
because of discontinuities, the analysis of these sys-
tems is very difficult and nonlinear vibrations that
occur in these systems have not been examined thor-
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oughly. Therefore, we developed the direct numerical
integral method® which is a shooting method that is
able to obtain highly accurate periodic solutions of
systems with discontinuities. A forced self-excited
system accompanied by dry friction’? was analyzed
by this method. Consequently, discontinuity in the
stability of periodic solutions and the route to chaos,
which are peculiar to the system with discontinuity,
were found and the mechanisms were clarified. A
preloaded compliance system also has discontinuity in
its restoring force. This system has been investigated
for a long time®, however ; subharmonic and higher
harmonic vibrations have not been treated. Chaos
arising from the discontinuity was found in this sys-
tem but its mechanism was not clarified™®. More-
over, it was assumed that the precision of periodic
solutions was insufficient and there was an error in the
solution™®, Therefore, we treated a preloaded com-
pliance system and investigated subharmonic vibra-
tions and higher harmonic vibrations in detail using
the direct numerical integral method"®. The effects
of the discontinuity of restoring force on the bifurca-
tions of periodic solutions and chaos were examined.
It was clarified that the discontinuous restoring force
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Fig. 1 Preloaded system

generated the delta function in the variational equa-
tion and that this was the reason for these bifurca-
tions.

2. Theoretical Analysis

2.1 Equation of motion

We consider the one-degree-of-freedom preload-
ed compliance system shown in Fig.1(a). This sys-
tem has mass m, stiffness 2 and viscous damping
coefficient ¢. The restoring force shown in Fig. 1(b)
has discontinuous characteristics at x=0 and its value
is 2kxo. This system is excited by a periodic external
force P cos wt. ‘

The equation of motion is

mi +cx + f(x)=P cos wt, ‘ (1)
where Az, is preloaded force,

f(x)=k(x+x) (2=0)

f(X)=k(x—x0) (2=0).
Equation (1) may be written in dimensionless form
as

y"+27y" +9(y)=p cos vr, (2)
where

9dy)=y+1 (¥=0)

ady)=y—1 (y<0)

y=x/xo, y=c/(2Vmk), t=wnt, '=dldr,

wi=kim, v=wlw., p=P/(kxo).
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2.2 Numerical calculation method

In general, the analysis of a discontinuous system
is difficult. If the system is piecewise linear, we can
obtain a periodic solution by connecting the analytical
solution of each linear term. However, when the
degree of freedom of the system is very large or when
we try to obtain higher harmonic vibration, this proce-
dure becomes too complex to obtain periodic solu-
tions. Moreover, if the system is essentially nonlinear,
this connecting method is impossible to use. On the
other hand, when we integrate the equation of motion
numerically, if we do not use any means of maintain-
ing its accuracy, its accuracy decreases to a value
proportional to the time step size of integration?.
Nevertheless, there is a study in which chaos was
treated without any means of maintaining accuracy.
We developed the direct numerical integral method?
which is based on the shooting method and can obtain
highly accurate periodic solutions of the system with
not only continuous nonlinearity but also discontinu-
ous nonlinearity. We confirmed the accuracy of this
method and have applied it to a system with
discontinuity®?. We also use this method in this study
to obtain periodic solutions and to judge their stabil-
ity. The outline of the method is given below.

We transform Eq.(2)into a system of two first-
order differential equations

dyldr=1(y, 1), (3)
where

y="(y, v')="(0, v2)

f=(#A, f2)=%(y, —2vy2—g(y1)+pcos vr).
Defining the variation of y as %, the variational equa-
tions becomes

dnldr=An (4)
where
2="(m, 72)

A=20f/dy : Jacobian matrix.

We assume an initial value y° at t=0. Then, Eq.(3)
is integrated numerically from r=0to =T, and y'=
“yi(T), y« T)) is obtained, where T'=27/v. Equation
(4)is also integrated numerically from t=0to r=T
with the initial conditions #?=*(1, 0) and #3="(0, 1),
then pi=*(n(T), 7(T)) and 9i="(n(T), 7 T)) are
obtained, respectively. As a result, the fundamental
solution matrix becomes

B=(ni, 72)

Since B=0y'/dy°, we obtain the first approximate
equation with respect to the correction value §°for y°
by the Newton-Raphson method :

(B-L)§°=y’—y' (5)
where L is a 2X2 unit matrix. We solve Eq.(5)and
replace y¥°+ J° by y°. The above procedure is repeated
until the solution converges. We judge the stability of
the convergent solutions using the eingenvalues of
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matrix B, which are called characteristic multipliers.
If the absolute values of characteristic multipliers are
all less than unity, then the corresponding solution is
stable.

Since there is discontinuity in the system, we
found a discontinuous point with high accuracy. The
integration of the delta function in the variational Eq.
(4) was treated as unity.

To obtain a chaotic solution, we used the Runge-
Kutta-Gill method with variable time step size and
found a discontinuous point with high accuracy. We
used a method"?, which was the arranged Shimada-
Nagashima’s method®® suitable for a discontinuous
system, to obtain Lyapunov exponents.

3. Numerical Results and Discussion

A numerical calculation is carried out using the
above-mentioned methods. 1/1, #/1 and 1/%# mean
harmonic, #th order higher harmonic and 1/#-subhar-
monic vibrations, respectively, in the figures below.
Symbols “O” and “E” in the figures below mean that the
periodic solution is composed of odd orders of Fourier
series and both odd and even orders of the series,
respectively.

3.1 Resonance curves of harmonic and subhar-
monic vibrations

First, for comparison with the results in Ref.( 3 ),
the results for damping ratio y=0.2 are shown.
Resonance curves of harmonic and subharmonic

6
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Fig. 2 Harmonic vibration
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Fig. 3 Harmonic and subharmonic vibration
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vibrations are shown in Figs. 2 and 3, respectively.
The ordinates represent maximum velocity ¥'max and
the abscissae represent angular velocity v of the
external force. Solid and dashed lines show stable and
unstable solutions respectively. All solutions shown
here are composed of odd orders of Fourier series and
pass the discontinuous point ¥ =0 twice in one period.
When the amplitude of external force p is large, the
resonance curve is similar to that of a linear system,
but when the external force p is small(p=1.2), the
resonance curve exists only in region v>1.1 and
shows multiple values of v. This means that the
smaller the external force is, the stronger the non-
linearity is. This is explained as follows. When the
amplitude of external force is small, the amplitude of
displacement becomes small; therefore, because of
preload, the nonlinearity becomes strong comparative-
ly. We could not find such solutions as those that
Shaw and Tung® found using the above-mentioned
analytical solutions connecting method in region
v<1.1. We consider that their solutions are imaginary
ones that do not satisfy the condition that the sign of
displacement does not change in every linear region.
The existing regions of subharmonic vibration
become wide toward smaller v and the amplitudes of
stable solutions become large as external force
increases. In a preloaded system, the resonance
curves of subharmonic vibrations do not become an
island in shape and the upper branches of stable
solutions and the lower branches of unstable solutions
never intersect each other on the right-hand side. It is
assumed that as v increase, the amplitude of subhar-
monic vibration decreases, the nonlinearity becomes
comparatively strong, and the existing region
becomes wide. Chaos is not found in region v>1.
3.2 Higher harmonic vibrations and chaos
Resonance curves of higher harmonic vibration
are shown in Fig. 4. Many types of higher harmonic
vibrations occur in region v<1. As the order of
higher harmonic vibration increases, the region in
which it exists moves to the lower region of v. The

0.8
§ | 7=02 3 2/1
;ﬁ p=1.2 3/1 . 4\ §(
0.6} :
5/1 4/1 .:' \“1‘ \
6/1 X 1/‘{ : :
04 \_J .
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........ :Unstable
0.2 . s . . .
0.4 0.6 08, 1

Fig. 4 Higher harmonic vibration
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Fig. 5 2nd higher harmonic vibration

value 3/3 in Fig. 4 indicates ultra-subharmonic vibra-
tion which is the deformed 3rd higher harmonic vibra-
tion and has a period of 6 /v.

The magnified the resonance curve, bifurcation
diagram and phase planes of the 2nd higher harmonic
vibration are shown, respectively, in Figs. 5(a),(b)
and(c). The ordinate represents the velocity when
the phase of external force is zero and the abscissa
represents. angular velocity v of the external force in
Fig.5(b). The ordinate represents the velocity and
the abscissa represents displacement in Fig.5(c¢).
When the order of higher harmonic vibration is even,
such as the 2nd higher harmonic vibration, there is no
periodic solution composed of only odd orders of
Fourier series. The periodic solution 2/1-E composed
of both odd and even orders of Fourier series leads to
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Fig. 6 3rd higher harmonic vibration

chaos after iterating period-doubling bifurcations.
The Lyapunov exponents are 0.004 2 and —0.428 at
v=0.942 1, which means chaos. Since we were able to
confirm ultra-subharmonic vibrations up to the 2/64th
order by the direct numerical integral method, this
route to chaos is assumed to be an ordinary one. The
trajectory of periodic solution 2/1-F is not symmetri-
cal with respect to the origin in Fig. 5(¢). The figure
on the right in Fig. 5(c)is the phase plane of 2/2-F
bifurcated in a period-doubling manner from 2/1-E.

The magnified resonance curve, bifurcation dia-
gram and phase planes of the 3rd higher harmonic
vibration are shown, respectively, in Figs. 6(2),(b)
and(c). The periodic solution 3/1-O bifurcates to
3/1-E and leads to chaos after iterating period-doubling
bifurcations. The Lyapunov exponents are 0.0018
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and —0.673 at ¥=0.759 98, which means chaos. Since
we were able to confirm ultra-subharmonic vibrations
up to the 3/64th order by the direct numerical integral
method, this route to chaos is assumed also to be an
ordinary one. The routes to chaos shown in Figs. 5
(b)and 6(b)are the same as that of Duffing’s equa-
tion with restoring force of softening type®¥. The
trajectory of periodic solution 3/1-0O is symmetrical
with respect to the origin in the left figure in Fig. 6
(c¢). The figure on the right in Fig. 6( ¢ )is the phase
plane of 3/1-E after pitchfork bifurcation of 3/1-0.
Solid and dotted lines correspond to the lower and the
upper branch in Fig. 6(b), respectively, which have a
phase difference 7 and the trajectory of 1/3-E is not
symmetrical with respect to the origin.

The magnified resonance curve, bifurcation dia-
gram and phase planes of the 4th higher harmonic
vibration are shown, respectively, in Figs.7(a),(b)
and (c). We can see the periodic solution 4/1-E
leading to chaos after ordinary period-doubling bifur-
cations on the right of Fig.7(a). We were able to
confirm ultra-subharmonic vibrations up to the 4/64th

order by the direct numerical integral method. Onthe -

other hand, we can see the ultra-subharmonic vibra-
tion 4/2-E bifurcating to chaos directly on the left of
Fig.7(b). The upper branch and the lower one in
Fig. 7(b)have a phase difference 7. There exist two
small circles to the right of the origin in the left phase
plane(v=0.551 338) of Fig.7(c), whereas the outer
circle intersects the origin ¥ =0 in the right phase
plane (v=0.551 336). This is the reason why chaos is
generated abruptly. Figure 7(d)shows the Poincare
map of chaos at ¥=0.551 336, which is assumed to be
extremely near the bifurcation point. The abscissa
represents the velocity y» when the phase of external
force is zero and the ordinate represents the velocity
Yn+2 two periods later. We confirmed that the Poincare
map does not intersect the diagonal line, from a
magnified figure. Dots scatter in the chaos region of
Fig.7(b). This indicates that this chaos is of the
intermittence type. The Lyapunov exponents at v=
0.551 336 are 0.022 6 and —0.748. The characteristic
multipliers are 0.768 9 and 0.000 142 8 at v=0.551 336
567 446, which is assumed to be extremely near the
bifurcation point and the absolute values of the char-
acteristic multipliers are much less than unity. In an
ordinary intermittent route, the absolute value of the
characteristic multiplier is equal to unity at the bifur-
cation point, but in the route to chaos which results
from discontinuity of preloaded compliance, it is not
equal to unity.

Numerical results for y=0.05, p=2.0 are shown
in Fig. 8(a)for comparison with those in Ref.(15). It
has been reported that the periodic solution bifurcates

Series C, Vol. 41, No. 4, 1998

e
g ¥ =02 4/2-E,4/4-E,4/8-E,
0451 - /
_-- :Stable
-------- :Unstable
0.4 ] ! ] 1
055 056 057 058 0.59 y 0.6

(a) Resonance curve

y 0555

(b) Bifurcation diagram

-7 42-E
> [ Stable

_\\ﬁy

v =0.551338
02 0 y 0z

S Chaos
o b

v =0.551336
02 0 y 02
(¢) Phase planes

-0.5

0.130
o | v=0551336
s fbor=02
p=12
0.128|-
0.126] -7
1 ]

l !
0.126 0.128 y  0.130

'l'l
(d) Poincare map
Fig. 7 4th higher harmonic vibration
discontinuously because of preload(this means discon-

tinuity in resonance curve) ; however only the stable
solutions are calculated in Ref.(15). Therefore, we
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Fig. 8 3rd higher harmonic vibration

attempt to obtain both stable and unstable solutions
using the direct numerical integral method in this
study. The stable periodic solution 3/1-0O starting at
v=0.46 changes its inclination from negative to posi-
tive discontinuously at the point immediately below
vy=0.403 970 ; then, it becomes unstable. Two charac-
teristic multipliers change discontinuously before and
after this point as follows. They are —0.3139 =0.600 8¢
at point « in the stable solution, 0. 00006150 and
7 472 at point & in the unstable solution, where 7°= —1.
This unstable solution continues up to the tangent
bifurcation point that stands between points ¢ and d.
The inclination at the bifurcation point is vertical and
that of characteristic multipliers is unity. Character-
istic multipliers before and after the bifurcation point
are shown in the resonance curve. The solution
becomes the stable 3/1-O again after this bifurcation.
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Phase planes are shown in Fig.8(b). Trajectories
seen as two circles near the origin in figure I approach
the origin which is the discontinuous point of restoring
force in figure II, and then intersect with the
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discontinuous point in figure III. Therefore, the abso-
lute value of the characteristic multiplier jumps over
unity at the bifurcation point between points ¢ and &.
This indicates the discontinuity in the stability of the
periodic solution. The resonance curve is shaped like
a bluff at such a bifurcation point.

The resonance curve of 3rd higher harmonic
vibration below v=0.4, the bifurcation diagram, the
phase planes and the Poincare map are shown in
Figs.9(a),(b),(c) and (d), respectively. The solution
3/1-0 starting from the left end becomes unstable and
the stable periodic solution 3/1-F occurs after pitch-
fork bifurcation at approximately v=0.342. Then the
stable periodic solution 3/1-E becomes unstable and
chaos is generated abruptly at approximately v=
0.346 3. This chaos continues until 3/1-F is generated
again at approximately v=0.3550. The characteris-
tic multipliers of the periodic solution are 0.283 7 and
0.093 58 at v=0.346 3. The Lyapunov exponents at
v=0.3464 are 0.027 6 and —0.316, and the state of
vibration is judged as chaos. The phase planes in Fig.
9( ¢ )are those immediately before and after the bifur-
cation point. We can see a trajectory that is shaped
like a small arc on the rightside of the origin in the left
figure of Fig. 9(c). On the other hand, in the right
figure, the trajectory derived from the above-
mentioned one intersects the origin, which is the
discontinuous point of restoring force. Therefore, the
absolute value of the characteristic multiplier jumps
over unity at the bifurcation point. Figure 9(d)shows
the Poincare map of chaos at v=0.346 4, which is
assumed to be beside the bifurcation point. This map
is shaped like a bluff, similar to that obtained in the
last report®?, This bluff shape is characteristic of
chaos that arises from discontinuity“®.

The phenomena that system behaviors change
abruptly depending on whether it passes the discontin-
uous points are shown above. The mechanism of the
phenomena is explained as follows. The variational
equation that determines the stability of the solution
has a delta function in a system that has a discontinu-
ous function in the equation of motion. The integrat-
ed value of the variational equation differs by some
amount depending on whether the discontinuous point
is passed or not. Therefore, the stability of the solu-
tion changes discontinuously and the behavior of the
system changes abruptly. As a result, the bifurcations
to chaos in Figs. 7(b)and 9 and the change of stabil-
ity of the periodic solution in Fig. 8 happened

4. Conclusions

We analyzed the harmonic, higher harmonic and
subharmonic vibrations of a preloaded compliance
system in detail using the direct numerical integral
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method. Chaos were confirmed in the regions near
where the higher harmonic vibrations are generated.
It was found that the characteristic multipliers change
discontinuously and chaos are generated abruptly
because of discontinuity of the restoring force. These
characteristics are peculiar to the system with discon-
tinuity.
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