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Laminar Heat Transfer With Viscous
Dissipation and Fluid Axial Heat Conduction
for Modified Power Law Fluids Flowing in
Parallel Plates With One Plate Moving*

Toru SHIGECHI**, Ganbat DAVAA***
Satoru MOMOKI** and Odgerel JAMBAL***

Using the fully developed laminar velocity distributions obtained by applying the
modified power-law model proposed by Irvine and Karni, the thermal-entrance-region
heat transfer of non-Newtonian fluids flowing in parallel plates with one plate moving
is investigated taking into account both viscous dissipation and fluid axial heat
conduction for two kinds of thermal boundary conditions, namely, constant tempera-
ture and constant heat flux at the moving wall. The energy equation subject to a
constant temperature at upstream infinity, fully developed temperature profile at
downstream infinity and the appropriate thermal boundary conditions at the upper and
lower walls is numerically solved by the finite difference method as an elliptic type
problem. The effects of the moving plate velocity, rheological properties, Brinkman
number and Peclet number on the temperature distribution and Nusselt numbers are
discussed for both Newtonian and pseudoplastic fluids.

Key Words: Non-Newtonian Fluids, Moving Boundary, Viscous Dissipation, Fluid
Axial Heat Conduction, Thermal Entrance Region

flow and heat transfer analyses to predict the behavior

1. Introducti . . . .
niroduction of pseudoplastic or dilatant fluids. However, this

Problems involving fluid flow and heat transfer in
an annular or parallel-plate geometry with a moving
boundary of solid body or liquid can be found in many
manufacturing processes such as extrusion, drawing,
polymer coatings of wires (or tubes) for corrosion
protection and hot rolling, etc. In such processes, the
moving body continuously exchanges heat with the
surrounding environment. For such cases, the fluid
involved may be Newtonian or non-Newtonian and
the flow situations encountered can be either laminar
or turbulent.

Many important industrial fluids are non-
Newtonian in the flow characteristics. The power-
law model is frequently used in non-Newtonian fluid
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power-law model has a drawback that the correct
velocity field is not ensured if the power-law model is
applied to the region of lower shear rates including
zero shear rate. To accommodate the power-law
model to lower regions of shear rate, a modified
power-law model has been proposed by. Irvine and
Karni?,

Viscous dissipation is generated by the velocity
gradient of the flowing fluid. The moving wall
deforms the velocity profile and the velocity gradient
is changed. Therefore, it is important to clarify the
effect of viscous dissipation for the parallel-plate
geometry with a moving plate using the accurate
velocity distributions.

Thermally developing heat transfer of non-
Newtonian fluids in parallel plates with one plate
moving was investigated by Lin®. The thermal
boundary conditions adopted by Lin are not the same
as those of our study. In his study the power law
model was applied and the effect of fluid axial heat
conduction was neglected.

In this study, using the fully developed laminar
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velocity field obtained by applying the modified
power-law model, the effect of viscous dissipation and
fluid axial heat conduction on thermal entrance-
region heat transfer of non-Newtonian fluids flowing
in parallel plates with one plate moving is investigated
for the thermal boundary conditions of constant tem-
perature and constant heat flux at the moving wall.
The effects of the moving wall velocity, flow index of
the modified power-law fluid, Brinkman number and
Peclet number on the temperature distribution and
Nusselt number at the walls are discussed.

Nomenclature

By : Brinkman number

C : coefficient in Eq.(35)
¢p . specific heat at constant pressure
Dy : hydraulic diameter =2L
/@ friction factor
% . heat transfer coefficient
k : thermal conductivity
L : distance between parallel plates
m : fluid consistency
n . flow index
Nu : Nusselt number
P : pressure
Pe : Peclet number
g : heat flux
Rey : modified Reynolds number =%77&'
Pry . modified Prandtl number = 6277

T : temperature
u : fully developed velocity profile
um . average velocity of the fluid
u*: dimensionless velocity = u/un
U : axial velocity of the moving plate
U* . dimensionless relative velocity of the moving
plate =Ufun
¥ . coordinate normal to the fixed plate
y*: dimensionless coordinate = y/Dx
Z: axial coordinate
z* . dimensionless axial coordinate =z/(PeDx)
£ : dimensionless shear rate parameter
7. . apparent viscosity
74 . dimensionless apparent viscosity
7o : viscosity at zero shear rate
7 : reference viscosity
o : density
T : shear stress
6 . dimensionless temperature
Subscripts
b : bulk
e : inlet
fd : fully developed

= 77a/7/
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7. I for Case I or II for Case II
Iw: lower wall
uw : upper wall

2. Analysis

We consider thermally developing and
hydrodynamically developed laminar flow of non-
Newtonian fluids between parallel plates subjected to
constant wall temperature (Case I) and constant wall
heat flux (Case II). The physical model for the
analysis is shown in Fig.1. The lower plate moves
axially at a constant velocity, UU. The assumptions
used in the analysis are:

* The flow is incompressible, steady-laminar, and
fully developed hydrodynamically.

* The fluid is non-Newtonian and the shear stress
may be described by the modified power-law model®,
and physical properties are constant.

2.1 Fluid flow

With the assumptions described above, the gov-
erning momentum equation is

dr dP

d—y: _E' ( 1 )

The boundary conditions are:

B.C.: {”:0 at ¥=0 (2)
u=U at y=L.

The shear stress, 7, in Eq.(1) is given by the
modified power law model®.
_ ., du
T—= " Na dy ( 3 )
where 7. is the apparent viscosity for pseudoplastic
fluids (2<1), defined by

_ /)
77(1_1+ﬂdu -7 - (4)
midy
The average velocity, #m, is defined as
L
um5%£ udy. (5)

The momentum equation and its boundary condi-
tions are reduced to, in dimensionless form, as

d ( s du* ): o/,
dy* Na d_’l/* 2f+Reu (6)
Stationary plate
oo 9= OorT=T, 0.0) \g=0o0rT=T, +00
—) v ==z
Hydrodynamically Thermal de )
T fully developed entrance or
non-Newtonian :
¢ fluid flow region de v.2)
N o

q=00rT=T,

G const \ Moving plate
v w

y or

T =const
Iw

Fig. 1 Physical model
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u*=0 at y*=
B.C.: { 7
u*=U* at y*=1/2 (7)
where
x__ Y % U (8)

V""" Do % T un
Friction factor, f, and modified Reynolds number,
Rey, are defined as

— Dh <__d£) — pumDh
f_ Zpu,zn dz s Rem—‘—?? . ( 9 )
The dimensionless apparent viscosity, 74, is defined as
pr="1a— H—B* — for n<L (10)
714 plde
dy*

From Eq.(10) developed for the modified power law
fluids, the following expressions are obtained at the
asymptotes of = 0 and B—°, respectively. The
former stands for a Newtonian fluid and the latter for
a power law fluid.

na=1 for B—0
* (n—1
*:> ‘du for B—»OO
where
= — o (U
=iy a=n(E) an

B is a parameter, which represents the effects of
the average velocity, #», and the hydraulic diameter,
D, when the rheological parameters of a non-
Newtonian fluid; 7, # and wm, are prescribed. S8
increases with an increase in #m or a decrease in D
for n<1.

The dimensionless form of Eq.(5) is

1/2
1=2 [ urdy (12)

The dimensionless velocity, #*, is numerically
determined from Egs.(6), (7) and (12). First, we
assume the value of f+Rex for a given set of parame-
ters: n, 8 and U* to solve Eq.(6) together with Eq.
(7). Then, Eq.(12) is checked by substituting the
resulting velocity distribution, «*, into it. Unless Eq.
(12) is satisfied within the accuracy of 107°, the value
of f+Reu is updated. This process is repeated until
the correct value of f+Rexn is obtained.

The detailed analysis and results are given in Ref.
(3). The typical velocity profile and its square of
velocity gradient is shown in Fig. 2 for a pseudoplastic
fluid (=05 and #=1) corresponding to U*=0 and 1.

2.2 Heat transfer

The energy equation together with the assump-
tions above is written as
oT 82 du \?

oo L=l G TRl G )
in 0<y<L and —oo<z<®
Case I: constant wall temperature
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Fig. 2 Velocity profile and square of velocity gradient
(n=0.5, f=1)

T=1T., at y=0 for 0<z
T=Tw at y=L for 0<%z
T=T. at y=0 for 2<0
T=T. at y=L for 2<0 (14)
zlir_n T=T.=const for 0<y<L
lim 7= Tra(y) for 0<y<L
Z—+00

Case II: constant wall heat flux
oT

¥ =0 at y=0 for 0<z
k%iy:(bw at y=L for 0<z

oT

ol _ = <

oy 0 at y=0 for 2<0 (15)
oT _ _

oy =0 at y=L for z<0

zlir_n T = Te=const for 0<y<L

zlim T="T(y, 2) for 0<y<L

The bulk temperature and Nusselt number are
defined as

L
f uTdy
Th="" (16)
'/; udy
Nu="2e 17
where the heat transfer coefficients at the walls are
. Quw __ qiw
huw_ Tuw_ Tb’ hlw_ T Tb (18)
__ ., 0T _, 0T
(Iuw* k ay k ay y=L (19)

The followmg dimensionless quantities are
introduced :
z*=2z/(Pe+ D) (20)
P€=R€M'PTM. (21)
The dimensionless temperature and Brinkman
number are defined as:
Case I:
- T—T.

T T, (22)
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U
Bfrzﬂm (23)
Case II:
_k(T-T,)
0= qwDr 24)
B?’][:U ug’ (25)
awDhr’

With the substitution of the above quantities into
the dimensional formulations, the dimensionless ener-
gy equation and boundary conditions are obtained as

12 2
u* gf gyfz +— ngz + By, 77«( Zu* ) (26)
in O<y*<% and —oo<z*<oo (j=IorIl)
Case I:
=0 at y*=0 for 0<z*
6=1 at y*Z% for 0<z*
=0 at y*=0 for 2*<0
=0 at y* % for 2*<0
Zlir{l =0 for 0<y*< %
lim 0=0(y*) for 0<y*<+
27
Case 11 :
gyg* =0 at y*=0 for 0<z*
%:1 at y*Z% for 0<z
gy()* =0 at y*=0 for 2z*<0
%=O at y*=% for 2*<0
lim 6=0 for 0<y*<i
zl{rg 0=0:(y*, z%) for 0<y* <%
(28)

The bulk temperature in the dimensionless form is
given by

1/2

@bszﬁ u* Ody* (29)
Nusselt numbers at the walls
Case I:

1
Nuuw (8uw eb) ay =0 (30)
1 06

Nulw (91 — ) ay - (31)

Case II:
_ 1

For infinitely large values of the axial distance
(z*—00), thermally fully developed region is reached.
For Case I, in the fully developed region the
dimensionless temperature is a function of y* alone.
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Then the dimensionless temperature 6 correspond-
ing to the boundary condition of constant wall temper-
ature is the particular solution of the following equa-
tion.

Case I:
%;5{2" =-B m( ‘fz,”* )z (33)
0=0 at y*=0
lefd—l at y*=i 39

For Case 1, since the thermal boundary condition
is different from that of Case I, the fully developed
temperature profile is calculated in a different fashion.
To seek the expression of 64, a solution of the follow-
ing form is assumed taking account of the fact that in
the thermally fully developed region, the constant
heat flux through the wall will result in a rise of the
fluid temperature linearly with the axial coordinate.
Case II:

Ora=Cz*+ ¢(y*) (35)
Substitution of Eq. (35) into Eq.(26) yields
2
—f*—zo at y*=0
a’gl) o 1 (37
dy* v 2
where
% \2
V:Bf’uﬂ;k(%> . (38)
On the other hand, in the thermally developed region
dTy P Tra <d7u>2
oCoU= I =k E + %a dy (39
%&‘L=0 at y=0
Y
aT (40)
ayfd =gw at y=L

dTs/dz in Eq.(39) is evaluated, from an energy
balance, as

dTo_  gu (1 +[’7“(§_Z>Zdy ]

dz ~ ocrunl| Qw
Substitution of the above balance into Eq.(39) gives

2qwu [14— .[77“(%%>2dy}

UnDh L Giw

(41)

12 2
k_a_ag_{‘d + 77a<'%> =

(42)
By introducing the relevant dimensionless quantities,
the above equation becomes

0.5
%fﬁ—z *(1+£ de*)— V. (43)

From Eqgs.(35) and (43), the coefficient C in Eq.(36) is
obtained as
0.5
C:2<1+£ Vay®). (44)

¢(y*) was calculated from Eq.(36) with Eq.(37)
by the finite difference method. The calculation
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results of Gy for Case I and Case II were used as the
boundary conditions at downstream infinity.

In order to transform the upstream and down-
stream infinities into a finite domain, the dimension-
less axial coordinate z* is transformed according to
the relation employed by Verhoff and Fisher® as
follows :

*
z*=FEtan 2, or z: :Lﬁ arctan % (45)

By introducing the transformed coordinate z:, the
solution domain along the axial coordinate becomes
—0.5<2:<0.5. The constant of the axial transforma-
tion, E, in Eq.(45) was chosen as 4.62 for Case I and
as 1.0 for Case II. An irregular mesh system (100 X
400) consisting of finer grids near z:=0 was applied to
allow more accurate calculation of the fluid axial heat
conduction effect. The dimensionless temperature has
been numerically solved by the Gauss-Seidel method
for the elliptic type of energy equation (26) with the
boundary conditions of Eq.(27) or (28) using 7a, u*
and du*/dy* determined from the fluid flow analysis.

3. Results and Discussion

To check the accuracy of the numerical solutions,
our results for the case of a Newtonian fluid (#=1)
with Br=0 (no viscous dissipation) and Re—> (no
fluid axial heat conduction) were compared with those
presented in Refs.(5) and (6) for U*=0 (stationary
walls) and for U*=1 (moving lower wall) , respective-
ly. Both solutions on Nusselt number are in excellent
agreement with the error of 19. The predicted
results for the case of #=0.5 and f=1 (a pseudoplas-
tic fluid) are discussed hereinafter.

3.1 Temperature development

The temperature distributions of the fluid for — oo
<2< +o0 in parallel plates have been calculated for
Case I and Case II.

Case I: Constant wall temperature

Figures 3 and 4 illustrate the variations of local
fluid temperature development for the cases of the
relative velocity U*=0 and U*=1, respectively. At
z*=0, there is a step change in the wall temperature.
It is seen that the fluid temperature increases due to
fluid axial heat conduction and viscous dissipation
before the fluid enters into the heated wall region with
finite small Pe and large Br.

In Figs. 3(a) and 4(a) for Pe— and Br =0, at
z*=0 (0<y< L) the dimensionless temperature of the
fluid is zero. But for Pe=10 and B» =0 in Figs. 3(c)
and 4(c¢) the fluid temperature increases at negative
values of z*. This indicates that the influence of axial
heat conduction in the fluid for 2*<0 vanishes with
increasing Peclet number.

From Figs.3(b),3(d),4(b) and 4(d) for Br=
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Fig. 3 Developing temperature profiles (U*=0)
n=0.5, B=1, Casel

1 T T T T T T
Pe — o Pe — e
o8l U=1 L Ur=1
Br=0 Y Bry=0.1 N
06 n=05 ' ‘.". .- L n=05 ' ;{ |
. B=1 z; =1 / g /
04+ 4 L
02} L
o A 1 z'= ol
1 T T T T 3
Pe=10
o8| U'=1 L
Br=0 .
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Fig. 4 Developing temperature profiles (U*=1)
7=0.5, =1, Case ]

0.1 it can be seen that the dimensionless temperature
of the fluid at z*<0 deviates distinctively from zero.
This increase is due to the contribution of viscous
dissipation in the flowing fluid. Since the highest shear
rate occurs near the stationary wall as it is seen in
Fig. 2, the effect of viscous dissipation is most
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significant near the stationary wall and it is seen from
Figs.3(b) and 4(b) that the temperature increase
due to viscous dissipation is greater for U*=0 than
for U*=1. Therefore it is observed in Figs. 4( ¢ ) and
4(d) that the temperature increase of the fluid due to
fluid axial heat conduction and viscous dissipation for
the case of moving wall (U*=1) is less than for the
case of stationary wall (U*=0).
Case II: Constant wall heat flux

In Fig. 5 the development of temperature profiles
is shown for the thermal boundary condition of Case
II. The figures on the right-hand show the tempera-
ture profiles of the case of the moving lower wall (U*
=1). The solid and dashed lines stand for the results
for negligible (Pe—) and considerable (Pe=10)
fluid axial heat conduction cases, respectively. In the
region with the insulated walls (2*<0) the fluid tem-
perature is seen sufficiently large for large B» and
small Pe. In fact, it can be seen from Figs.5(c) and
5(d) that the fluid temperature increases significantly
before the fluid reaches the heated wall because of the
heat generated by viscous dissipation and the heat
conducted from downstream into the insulated wall
region. The comparison of the temperature profiles
for U*=0 and U*=1 shows that the viscous dissipa-
tion effect is greater in the case of stationary walls.
As this effect builds up, heat is transferred to the main
body of the fluid flow and heat generation due to
viscous dissipation behaves like a heat source. It is
observed that the viscous heating is more pronounced

Z'=4.2x 10

Pe=10 Pe =10
Pe— e
(c)| sof (d)
Bry=0.1
Bry=0.1 U 1
u*=0
6 0.5 1 s0Ln=05 i
. n=0. B=1
B=1 1 Pe =10 | . o Pe=10 |
z*=42x10° . ooazzo== 2"=42x 10 o=
Pe o Po — =
60 4
14+
rotx1o?’  Fezl9 L z=1x 107 Pe=19
Foow Pez10 Po 2= Z'=0 Pe=10
P 220 5‘0_Ps—>a= ]
! L 1 ) L ! ) L
0 0.1 0.2 03 04 05 0 0.1 02 03 04 05
* *
y y

Fig. 5 Developing temperature profiles for U*=0
and U*=1 (CaseIl
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for the thermal boundary condition of Case II than for
that of Case I. The resulting increase in temperature
is specially large when the velocity gradient at the
fixed wall assumes a large value as it is seen in Fig. 5
(c¢) and Fig.2. Also from the developing tempera-
ture profiles, it is seen for Case II that the wall-to-
fluid temperature difference is small.
3.2 Nusselt number

The effects of viscous dissipation, fluid axial heat
conduction and moving boundary on Nusselt number
are presented in more detail in Figs. 6 to 13.

Case I: Constant wall temperature

The effect of fluid axial heat conduction is demon-
strated in Fig.6 for a Newtonian fluid (z=1) with
neglected viscous dissipation. The circles show the
results from the Refs.(5) and (6) for Bn=0, and
even at small values of z* it is seen that the agreement
is excellent. It is also seen that Nusselt number at the
upper wall (whose temperature is maintained at a
constant value equal to the entering fluid tempera-
ture) remains almost constant throughout the thermal
entrance region if Pe is small. This behavior is
attributed to that the fluid temperature increases due
to the fluid axial heat conduction (for 2*<0) before
the fluid flow reaches the heated wall. It is seen that
in the thermally developing region Nusselt numbers at
the walls increase due to larger fluid axial heat con-
duction if viscous dissipation effect is negligible.

The same trend is observed for non-Newtonian
fluids. In Figs. 7 and 8, Nusselt number variations in
the thermally developing region are shown for a
pseudoplastic fluid (=05, §=1) with B»=0 and B~
=(.1, respectively. It can be observed that the
asymptotic Nusselt number values are identical
regardless of Pe values. Including fluid axial heat
conduction causes an increase in Nusselt number at
the lower wall in the thermal entrance region. For a
specified axial position with a given Brinkman num-
ber, Nusselt number at the lower wall is larger for U*
=1 than for U*=0. But Nusselt number at the upper
wall whose temperature is kept equal to the entering
fluid is larger in the case of U*=0 than in the case of
U*=1 for Br+0. Including viscous dissipation
causes an increase in Nusselt number at the upper
wall. For »=0.5 and #=1, the fully developed Nusselt
number at the upper wall changes from 4.0 to 4.903 for
U*=0 and from 3.495 to 4.051 for U*=1 if Br is
increased from 0 to 0.1.

The variation of Nusselt number was investigat-
ed from the viewpoint of the combined effects of
viscous dissipation and fluid axial heat conduction.
From Fig. 9 it can be observed that the effect of fluid
axial heat conduction (Pe=10) accounts for the Nu
value increase at the lower wall in the thermal
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Fig. 6 Nu variations with Pe for heat transfer to a Newtonian fluid (#=1) without viscous dissipation
(Br=0), Case I
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Fig. 7 Nu variations with Pe for heat transfer to a pseudoplastic fluid (#=05, f=1) without viscous
dissipation (Br=0), Casel

entrance. Viscous dissipation effect (B»=*+0) has a for different values of B7 for the same Peclet number
strong effect on the Nusselt number at the upper wall. if U*=1. For U*=0 Nusselt number at the lower
But Nu curves at the lower wall are almost identical wall decreases with an increase in Brinkman number
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Fig. 8 Nu variations with Pe for heat transfer to a pseudoplastic fluid (#=0.5, §=1) with significant
viscous dissipation (Br=0.1), Casel
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Fig. 9 Effects of B» and Pe on Nu at the walls for Casel (n=0.5, 3=1)
in the fully developed region. thermal boundary condition of Case II. The effect of
Case II: Constant wall heat flux fluid axial conduction is demonstrated in Fig. 10 for a

In Figs. 10 to 13, the variations of Nusselt number Newtonian fluid flow with neglected viscous dissipa-
are shown with different values of Pe and B» for the tion. The circles show the predictions from the Refs.
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(4) and (5). The figures indicate that the agree-
ment of both is excellent. In Figs. 11 and 12 the effect
Peclet number on Nusselt number at the heated wall
is shown for a pseudoplastic fluid (z=0.5, =1) with
respect to negligible (Bru=0) and considerable (B
=0.1) viscous dissipation cases, respectively. Unlike
the case of constant wall temperature, Nu values at
the heated wall tend to decrease near z*=0 with a
decrease in Pe. It is also observed that Nusselt
number in the thermal entrance region remains almost

547

constant if Pe is small. This trend has been also seen
for Case L.

From Fig. 13 it is seen that the effect of B» on
Nusselt number is different depending on the relative
velocity, U*. In the fully developed region, viscous
dissipation has a definite effect for both cases of U*=
0 and U*=1. Nu decreases with an increase in By for
the stationary wall case {(U*=0) and vice versa for
the case of the moving wall (U*=1). The behavior of
Nu due to viscous dissipation is understood as follows.
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Fig. 10 Nu variations with Pe for heat transfer to a Newtonian fluid (#=1) without viscous dissipation
(Br=0), Case Il
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Fig. 11 Nu variations with Pe for heat transfer to a pseudoplastic fluid (#=0.5, $=1) without viscous
dissipation (Br»=0), Case Il
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Fig. 12 Nu variations with Pe for heat transfer to a pseudoplastic fluid (=05, 8=1) with significant

viscous dissipation (B»=0.1), Case Il
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Fig. 13 Fffects of B» and Pe on Nu at the walls for Case II (#=0.5, 3=1)

The value of Nu is calculated using the dimen-
sionless temperature difference (6w— 6) as shown by
Eq.(32). Both of 6w and & increase in the flow
direction of z*. In terms of the increments of Gw and
& due to viscous dissipation, the increment of G is
larger than that of 6 for U*=0 and vice versa for
U*=1. :

The effect of fluid axial heat conduction (Pe=10)
accounts for the decrease in the Nu value in the
thermal entrance region.

4. Conclusions

Thermally developing heat transfer of non-
Newtonian laminar flow in parallel plates with one
plate moving is analyzed including viscous dissipation
of the flowing fluid and fluid axial heat conduction for
the two kinds of thermal boundary conditions of
constant temperature and constant heat flux at the
walls as an elliptic type problem by considering an
infinite axial domain.

The results are presented graphically in dimen-
sionless form and the effects of the moving plate
velocity, fluid axial heat conduction and viscous dissi-
pation are thoroughtly discussed.

An inspection of the temperature profile develop-
ment reveals that the fluid temperature increases at
2<0 due to fluid axial heat conduction and viscous
heating even when there is no heat flow from the wall.
The temperature profiles show a more pronounced
effect of viscous dissipation for the case of constant
wall heat flux. Nusselt number abruptly decreases for
Pe—oo and By =0 as the fluid temperature undergoes
a rapid change because of the heat flow from the wall.
The shape of the Nusselt number curve in the thermal
entrance region is rather flattened out for smaller
values of Peclet number. This may be explained by
the fluid temperature increase in the region of z<0.
The effect of Br on Nusselt number is different

depending on the moving velocity of the plate. For a
specified axial position with a given Brinkman num-
ber, Nusselt number at the lower wall for U*=1 is
larger than the corresponding Nusselt number for
U*=0.

For.the case of constant wall heat flux, the wall-
to-fluid temperature difference is small whereas the
effect of viscous dissipation is more significant.
Unlike the constant wall temperature case, the Nus-
selt number at the heated wall is greatly affected by
Br in the thermal entrance region for the constant
wall heat flux case.
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