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Elasto-Plastic Behavior of Steel Pipe Beam-Column subjected

to Cyclic Horizontal and Torsional Loads

by

Minoru SHUGYO*, JianPing LI* and Nobuo OKA***

The inelastic behavior of cantilever column with circular hollow section subjected to repeated propor­

tionalloading of horizontal and torsional loads under a constant axial compression is studied. An accurate

numerical method for steel space frames and members with closed thin walled section which was

developed by the authors is used to investigate the behavior. It is shown that a nonstationary

characteristics, increase of out-of-plane deformation, is observed even in the column without an axial com­

pressive load and a strong axial compressive load causes a significant divergerice of out-of-plane deforma­

tion.

1 . INTRODUCTION

Restoring force characteristics of a beam-column

subjected to cyclic loadings are basic and very impor­

tant factors in plastic design of building frames. Many

investigations concerned with the inelastic behaviors

of beam-columns under repeated biaxial bending and

constant axial compression have been done so far 1 • 2)

and it is well known that some interesting charac­

teristics different from those under monotonic loading

are observed. However, the effect of torsional mo­

ment was ignored in those papers. A large torsional

moment can arise by a small torsional deformation in

the member with colsed thin-walled section. Some fac­

tors which cause structure and member to twist are in

a space bulding frame, e. g., eccentricity of the gravita­

tional center, therefore, it is desirable to clarify the in­

fluence of torsional moment on the cyclic· inelastic

behaviors of the beam-column with closed thin-walled

section.

In this paper the behavior of cantilever column with

circular hollow section subjected to repeated propor­

tionalloading of horizontal and torsional loads in addi­

tion to a constant axial compressive load is in-

vestigated. The effect of torsion on the inelastic

behavior is considered in the fiber level using von

Mises yield criterion.

2. CANTILEVER COLUMN AND NUMER­

ICALMETHOD

The analyzed cantilever column is shown in Fig. I

with the global coordinate system (X, Y, Z). In the

figure, L is the hight of the column, P, HYJ Hz and T

are axial compressive, horizontal and torsional loads

x

Fig. 1 Cantilever column
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applied to the column top respectively, U, v, wand (j

are the corresponding displacements. The numerical

analysis is done by using a new method for

geometrically and materially nonlinear analysis of

steel member with closed thin walled section. The

method is an advanced finite element method 3). The

column is divided into a number of elements along the

length.

(2)

where a is a normal stress due to axial force and ben­

ding moments, r is a shear stress due to St. Venant tor­

sion, and (J y is the yield stress of a fiber. Denoting the

translation of the center of the yield surface by (Kij, the

subsequent yield condition which behaves according

to Ziegler's modified kinematic hardening rule is

represented as follows:

2. 1 Geometrically nonlinear stiffness matrix

Member coordinate system ex, y, z) are shown in

Fig.2. Utilizing an energy principle we can obtain

the following equation:

The flow rule is represented as

d p. a!(aii,(Kij)d)
1;1; '::\ A

Uaij

(3)

(4)

(1 )

in which· K e is the geomertricallynonlinear tangent

stiffness matrix and Q and q" are nodal forces and

nodal elastic displacements of an element, respective­

ly. Both Qand if have 12 components.

where dl;t is the increment of plastic strain, and dA is a

positive scalar quantity. The elastic strain increments

dl;t are related to the stress increments da ij through

Hooke's law, hence the incremental total stress-strain

relation of a fiber is expressed as

x
z

(5)

while the strain increments are related to the in­

crements of generalized strains by

where R is the distance from the centroid of the cross

section to the center of the member wall. SUbstituting

equations (5) and (8) into equation (7), we obtain the in-

2. 2. 2 Plastic tangent coefficient matrix

The components of generalized stress vector F and

generalized strain vector Ll are shown in Fig. 2 . The

components of F and Ll can be written as

(6)

(7)

(8)

F=[Fx MXMyMz]TI

Ll = [1;0 if>x if>y if>zJT

dl;=dEo+zdif>y-ydif>zI
dr=Rdif>x

dFx= fdadA dMx= fdrRdA )

dMy=I dazdA dMz= - fdaydA

where Fx is an axial force, Mx is a torsional moment,

My and Mz are bending moments, and the components

of Ll are corresponding generalized strains, respective­

ly. The increments of·generalized stresses are related

to the stress increments by

Fig. 2 Generalized stresses and strains of an element

2.2 Plastic tangent coefficient matrix for a

cross section

In the present method,. plastic deformation incre­

ment is estimated utilizing tangent coefficient matrix

for a cross section. The tangent coefficient matrix is

obtained by numerical integration of tangent stiff­

nesses of fibers which compose the element.

2.2.1 Incremental stress-strain relationship

of a fiber

Assuming that only axial stress and shear stress due

to St. Venant torsion participate in yielding of a fiber,

the von Mises yield condition can be written as

follows:
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cremental generalized stress-generalized strain rela­

tionship:

where s is a tangent coefficient matrix. Let se denote

an elastic tangent coefficient matrix and let diJ e and

diJ P denote the elastic and plastic components of diJ,

respectively, then

dF=sdiJ

dF=sediJ
e

)

diJ =diJe+diJ P

(9)

(10)

ment. These plastic displacement increments can be

obtained as described below.

The generalized stresses at the element nodes are

obtained by the nodal forces with their coordinate

transformation. Using these generalized stresses we

can obtain the plastic tangent coefficient matrices Sf
and s; utilizing the procedure explained in the

preceding section. Representing the components of Sf
by (Ski) i, a new square matrix sf of 6 th order can be ob­

tained as follows:

which are the nodal displacement increments due to

the generalized plastic strain increments of an ele-

(15)

(S'll) i 0 0 (S\2) i (S'13)i (S'14) i

0 0 0 0 0 0

sf=
0 0 0 0 0 0

(S'21)i 0 0 (S'22) i (S'di (S'24) i
(1~

(S'31) i 0 0 (S'32) i (S'33) i (S'34) i

(S'41) i 0 0 (S'42) i (S'43) i (S'44) i

Another new matrix sf which corresponds to sf can be

obtained similarly. From assumptions 3) and 4)

the plastic displacement increments can be obtained

by the following equation:

Since the total displacement increments dq are the

sum of the elastic components dq e and the plastic com­

ponents dqP, an elasto-plastic tangent stiffiness matrix

~ is obtained as follows:

where R is the unbalanced force vector and I is the

unit matrix.

The numerical analysis is carried out by a displace­

ment control method 4) using ~. Coordinate transfor­

mation matrix of an element is updated and rigid body

displacements are separated in each step by using

orientation matrix 5 ).

3. NUMERICAL RESULTS AND DISCUS­

SION

The proposed method was applied to the analysis of

a cantilever column with hollow circular section. Sizes

and mechanical properties of the column are as

follows: outside diameter of the cross section D is 10. 0

cm, thickness tis O. 40cm, hight of the column L is 63.

1cm, Young's modulus E is 2. 06 x 10 5 MPa, yield

(11)

(12)

Substituting equation (9) into (10) yields

where. s' is a plastic tangent coefficient matrix. The

elastic tangent coefficient matrix se is constant for any

state of the section. The components of the tangent

coefficient matrix can be obtained by numerical in­

tegration. In the present analysis an element is par­

titioned into 240 fibers. The stress and the tangent

stiffness in each fiber are obtained as the average

values at its centroid

2.3 Elastic-plastic tangent stiffness matrix

The following assumptions are made concerning

the mechaninal behavior of the yielded element:

1) Plastic deformations consist of only four com­

ponents that correspond to axial force, biaxial

bending moments, and torsional moment.

2) Cross section does not distort.

3) An actual generalized plastic strain in a short

element shown· in Fig. 2 generally distributes

nonlinearly. It is idealized with generalized

plastic strains distributing linearly with the

values at the element nodes i and j 3).

4) Incremental plastic deformations in the two

II 2 portions occur concentrically at the ele­

ment nodes i and j, respectively, where I is the

length of the element.

Now let us define plastic displacement increments

df/t, dr/j as

dq: = [duf 0 0 drf;i deti dfl;iJ T ]

dqf= [duy 0 0 drf;j deJjj dfl;jJT
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stress (J y is 235. 0 MPa, and strain hardening modulus

after yielding H is EIIOO. The nondimensionalized

slenderness ratio Aof the column is 0.4. A was defin­

ed by the equation A= 2 L -Ii;I rr r, where Ey is yield

strain of material and r is radius of gyration about prin­

cipal axis of the section.

The results are plotted by nondimensionalized

values. The basic values used to nondimensionalze are

as follows: initial yield values of axial compressive,

horizontal and torsional loads at the column top Py,

H yy,· H yz and T y , the corresponding initial yield

displacements uy, uy(=wy), Oy, initial yield torsional
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and bending moments Myx> Myy and My" the correspon­

ding initial yield generalized strains <Pyx, <Pyy and <Pyz'

The column was divided into 20 elements of equal

length. Initial imperfections and initial residual strains

were not considered.

Figures 3 and 4 show the behaviors for 10 cycles

repeated horizontal load under the constant axial com­

pressive loads P/Py=O. 0 and P/Py=O. 5, respective­

ly. The analyses were done by controlling the displace­

ment amplitude at the column top Va as Va= 3 vy • The

results show the similar tendency reported in a

previous paper 1) concerned with the cyclic behaviors

of a column of strain hardening material: resisting mo­

ment does not increase by a cyclic loading in case of

P/Py=O.O, while hysteresis loop of moment-cur­

vature curve approaches gradually to that for P /Py =
o. 0 and also an accumulation of average axial strain

occurs when an axial compressive load exists. Figures

5 and 6 are the results for ·10 cycles repeated tor­

sional moment under the constant axial compressive

loads P/Py=O.O and P/Py=0.5, respectively. The

analyses were done by controlling the·· amplitude of

rotation angle at the column top {}a as {}a= 3 {}y. The

characteristics are similar to those for horizontal load

except that the accumulation of axial displacement

becomes larger since the whole column yields.

The load-displacement hysteresis curves, displace­

ment orbit at the top of the column and the generaliz­

ed stress-generalized strain curves at the bottom cross

section of the column for 10 cycles repeated propor­

tionalloading of (T/ T yy) / (Hy/Hyy) = O. 3 are shown in

Fig. 7 . It looks like a stable response from Figs. 7 (a)

and 7 (b), however,anout-of-plane displacement w oc­

curs and increases gradually with the increase of the
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tion of out-of-plane displacement is

observed even in the column

without an axial load. Figure 8

shows the results for 10 cycles

repeated loading of CT/Ty) / CHy /

Hyy) = o. 3 under the constant axial

load P/Py =0.5. The out-of-plane

displacement diverges vigorously

from the beginning of the loading

and the column is going to collapse.

Fig.9 and 10 are the results for

repeated loading of lIy with a cons­

tant initial load Hz under the cons­

tant axial loads P/Py = 0 and P/Py

=0.5, respectively. The figures

show that an out-of-plane constant

load is very dangerous for the beam­

column subjected to repeated

horizontal loading and the effect of

the out-of-plane constant load is

almost similar to that of the propor­

tionally loaded torsional load.

Therefore it can be said that the

out-of-plane load secondarily caus­

ed by the column top deflection and

the torsional load is the reason of

the divergence of out-of-plane defor­

mation of the beam-column sub­

jected . to repeated proportional

loading of horizontal and torsional

loads.

4 . CONCLUSIONS

The inelastic behavior of can­

tilever column with circular hollow

section subjected to repeated pro­

portional loading of horizontal and

torsional loads in addition to a con-

5

stant axial compressive load was

studied. The following conclusions

can be drawn from the aforementioned numerical ex-

amples. (l)An accumulation of out-of-plane deforma­

tion is observed even for zero axial compressive load.

The deformation has a tendency to approach gradual­

ly to a certain value. (2)Hence a strong axial com­

pressive load may cause a significant divergence of
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number of repetition as seen in Fig. 7 (c). The out-of­

plane displacement is due to the accumulation of the

residual curvature about Y-axis at the bottom section

of the column(Fig. 7 (e)) . This phenomena suggests

that the column may collapse in out-of-plane direction

under an axial compressive load since an accumula-
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out-of-plane deformation. (3) The divergence of out-of­

plane deformetion is caused by the secondary effect of

the column top deflection and the torsional load.
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