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The measurement of the characteristics of the acoustic field generated by a set of sources is very impor

tant to understand and to control the noise.

In the 1970's, M. J. Fisher proposed the Polar Correlation Technique!) to solve this problem. The

Polar Correlation Technique and the development of it 2) indicate the relationship between the cross spec

tra measured in the acoustical far field and the distribution of source strengths. And it is proposed the

method of a least squares error of cross spectra to estimate the source strength distribution at the case of

aero-engine accurately. In the last report 3) it is extended this method for the relative strengths of partially

coherent sources. The results of this method was better than that with the direct calculating method.

In the present work it is extended this method for the case of unknown characteristics not only the

relative strength but also the phase between the array of partially coherent sources.

1. INTRODUCTION

It is important to estimate the characteristics of

noise source array for the noise control technics. The

Polar Correlation Technique 1) and the development

of it 2) made to estimate the source strength distribu

tion with the cross spectra of microphones located on

a polar arc in the acoustical far field. Assuming that

the positions of sources are known, the sources

strengths are calculated by using a least squares fit

pro<::edure of measured cross-spectra data. The orig

inal technique is restricted to the case of the mutually

incoherent sources. But in the reference 3), it was ex

tended to apply the partially coherent sources with in

troducing several reference microphones. It can

estimate the strengths of interacting noise sources.

However it is restricted only the case of the phase

differences in relating to the convection velocity of tur

bulence being known between each two sources.

In this report we estimate the relative strengths and

the phase of the noise source array when the positions

of sources are only known for monopole sources.
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2. Modeling of measuring system

2.1 Setting the microphones

Figure 1 shows the model of the noise source array

and the microphone array. All noise sources are the

monopole and fluctuate with. the convection velocity

Uc. Some of the sources have partially coherent each

other. The microphone array follows to the Polar Cor

relation technique 1), that is, set the arc positions at

the radius r 0 from the center of the nozzle outlet. The

cross spectra of two signals from microphones are

measured.

The cross spectrum between microphones m and n in

the far field noise can be written

ak.al'Ckl.expV. Q) rkma-rln)
C(m,n) = L L _ 0 (2.1)

k I rkm rln

where ak and al are the strength of the noise source k

and I, Ckl is the complex correlation coefficient bet

ween source k and I which includes the phase dif

ference caused by the convecting turbulence velocity

Ue. rkm and rln are the distance from the source k to
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---

(2.7)

(2,11)

The upper bar of the second term of right hand side is

the conjugate value of complex,

Thus this conjugate term may be written,

{G(m, n) -C(m, n) }=G(m, n) -C(m, n)

= {R(m, n) -j.[(m, n)}

- L L (bRkl-j·blkl) 'exp( -j'¢mnkl)
k I rkm'rm

To find the minimum error,

1 1
(}2=__ L L

MN m · n

[{R(m, n) +j·/(m, n)}

- L L (bRkl+j'b!kl) 'exp(+j'¢mnkl)]
k I rkm'rln

. [{R(m, n) -j.[(m, n)}

- L L (bRkl-j'blkl) 'exp( -j'¢mnkl)] (2.8)
k I rkm'rm

In both equations the left hand sides comprise a set of

measured data and the geometric relation between the

sources and the microphones, The right hand sides

comprise the SQurce correlation coefficients and the

geometric relations, Replace the upper equations for

each pair of (p,q) values,

And the error is written as,

+L L (blkl'HIR(p, q, k, l)
k I

MR(p, q) =L L (bRkl'HRR(p, q, k, l))
k I

+L L (blkl ,HRR(p, q, k, I»
k I

MI(p,q)=L L(bRkl,HIR(p, q, k, I»
k I .

~= 0 o(} 2 = 0 (2.9)
obRpq 'oblpq

Then insertion of equation (2. 8) to equation (2. 9)

yields

~~ L L(R'COS¢mnpq+/,sin¢mnpq)
M N m n rpm'rqn rpm'rqn

= L L bR ,~~ L L cos(ifJmnpq-¢mnkD
k I kl M N m n rpm'rqn'rkm'rln

+L L bl ,~~ L Lsin(ifJmnpq-ifJmnkl)
k I kl M N m n rpm 'rqn'rkm'rln

~~ L L (R' sinifJmnpq f. COS¢mnpq)
M N m n rpm'rqn rpm'rqn

= L L bRkl'~~ L L sin(¢mnpq-¢mnkl)
kiM N m n rpm 'rqn 'rkm'rln

- L L bl ,~~ L L cos(ifJmnpq-ifJmnkl)
k I kl MN m n rpm'rqn'rkm'rln

(2,10)

(2.5)

(2,6)
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(} 2 =it-1 L L IG(m, n) -C(m, n) 1

2

m n

=it-1LL{G(m, n)-C(m, n)}
m n

'7-;;;~-.,------.,---------:--:-

,{G(m, n)-C(m, n)}

microphone m and I to n, respectively,

Now put the term of ak'al'akl to the complex cross

spectrum coefficient bkl,

bkl=ak'al'ckl (2,2)

A set of the cross spectral C (m, n) measured at the arc

microphone array in far field determines the complex

cross spectrum coefficients by using the least squares

fit method.

2.2 The Least squares fitting method

Fitting the least square method (2) for the cross spec

tral C(m,n) , the error is revealed as follows,

then

bkl=bRkl+j'blkl (2,3)

where bRkl is the real part and blkl is the imaginary

part of bkl,

Thus the equation (2.1) is rewritten as follows,

C(m, n) = ~ ~. (bRkl+j·blkl) 'expj-¢mnkl (2.4)
~ "7' rkm'rln

"Y

where j , ifJmnkl is the phase of cross spectrum caused by

the difference of propagation time of noise and is ob

tained previously by geometric relations between

microphones and noise sources,

where G(m, n) is the measured values and consists

with the real R(m, n) and imaginary [em, n) parts,
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where

MR (p, q) =-.L -.L L L (R. cos¢mnpq+ j. sin¢mnpq)
M N m n rpm'rqn rpm'rqn

MI(p, q) =-.L -.L L L (R. sin¢mnpq+j. COS¢mnpq)
M N m n rpm'rqn rpm'rqn

HRR(p, q, k, l) =-.L-.L L L COS(¢mnpq-¢mnkl)
M N m n rpm'rqn'rkm'rln

HRI(p, q, k, I) =-.L -.L L L sin (¢mnpq - ¢mnkl)
M N m n rpm'rqn'rkm'rln

HIR(p, q, k, I) =-.L-.L L L sin(¢mnpq-¢mnkl)
M N m n rpm'rqn'rkm'rln

=HRI(p, q, k, l)

velocity. From this equation the convecting distur

bance velocity Uc can be related to the phase dif

ference. But the phase has the periodicity of 2 11: so

the convecting disturbance velocity can not be

calculated uniquely from equation (3. 1) .

In this paper we propose the method to calculate the

convecting disturbance velocity from the complex cor

relation coefficients of sources. At a angular velocity

m, the complex correlation coefficientbkl between

source k and I, can be written as following equation

from equation (2. 3) ,

HII(p, q, k, I) =_-.L-.L L L cos(¢mnpq-¢mnkl)
M N m n rpm'rqn'rkm'rln

= - HRR(p, q, k, I) (2.12)

where MR(p,q), MI(p,q) are the vectors from

measured cross spectra. HRR(p,q,k,l), HRI(p,q,k,l),

HIR(p,q,k,l),and HII(p,q,k,l) are elements of the

geometric matrix H.

=bmag(m) 'exp(rmXk~XI)

Now we differentiate this equation by m,

dbkL (dbmag(m) +' b ()Xk-Xl)-- }. magm--
dm dm Uc

'expV'mXk~XI)

(3.2)

(3.3)

3. Estimation of convecting disturbance

velocity

From the above method, we can get the complex cor

relation coefficients (bR,bI). These complex values

contain the relative source strength and the phase dif

ferences of each source. The phase difference is

revealed by the following equation.

(3.4)

(3.5)

we use the fourth accuracy numerical differential

technique. A real part and an imaginary part are ob

tained with following equations by using the

estimated correlation coefficients for each real and im

aginary parts.

dbRkl 8· {bRkl(m +dm) -bRkl(m -dm)}
dm 12·dm

{bRkl(m + 2 dm) -bRkl(m - 2 dm)}
12·dm

dbIkl 8· {bIkl (m +dm ) - bIkl (m '-dm ) }
dm 12·dm

{bIkl(m + 2 dm) -bIk1(m - 2 dm)}
12·dm

The left hand side is the differential of dbk1 with m , this

can be rewritten by the differential of real and im

aginary parts.

dbkl _ dbRkl+ .dbIkl
dm - dm } dm

The each term in the parenthesis of the right hand of

equation (3.3) is obtained from using equation (3.2)

as follows.(3.1)

(2.14)

(2.13)H=(HRR HRI)
HIR HII

Hence in matrix notation

(
JV:R) =H. (BR) BR= (bRpq )
MI BI ' BI = (bIpq )

In the above equation the left hand side vector con

sists of 2 x K dimension, the geometric matrix of

right hand side of (2 x K) 2 and the complex cross

spectral coefficient vector of 2 x K. From equation

(2.14) we can solve the (bR, bI). In this report, we use

the Gaussian elimination method.

where Wkl is the phase difference of source k and I, X",XI

are positions of source k and I, and Uc is the convec

ting disturbance velocity. This equation indicates that

the. phase difference is caused by the ratio of the

distance of sources and the convecting disturbance

dbmag_ R [(dbRkl+ .dbIkl) (. ) ]
dm - e dm } dm 'exp -J'Wkl

b Xk - Xl T. [(dbRkl . dbIkl) . ]mag--U;-=.Lm dm +} dm 'exp( -}'Wkl)

(3.6)
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(3.7)

As mentioned above, the microphones were set

with equally intervals. The angle of intervals t::. was in 1

degree or 6 degree. The angle of mth microphone am

is put as follows,

This angle referenced to the normal of the nozzle axis.

The distance rpm between the noise source number p

and the microphone number m, and the phase dif

ference ¢mnpq of noise source number p and q and

microphone number m and n are written,

4. 2 Calculating condition

At first we generated the cross spectra with the

following equation. It included the phase difference in

duced by the convecting disturbance. But when the

noise source characteristics was solved from a set of

these cross spectra, the value of this phase difference

is not used, but is obtained as a part of results of com

plex cross spectrum coefficients.

ak·al,ckl·exP{j·w(~+~)}
C(m, n) = 1: 1: rkm'rl

k I . n

(4.1)

(4.2)sin am=m·sint::.

_ - 1 blkl ~~-----,~
Wkl-tan bR

k
/ bmag= -IbRit +blit

We have to notice that the complex correlation

values bkl have some errors and it needs to be adopted

the statistic treatment, that is, least square fitting

method. From equation (3.3), (3.5) to (3.7) we ob

tain the following equation by using the weighted

average to Uc'

where the phase and the magnitude are obtained from

next equations,

{ (dbRkl . dblkl) (. )} fi J/·Im (J;;)+J dw exp -J'Wkl . Wkl

where fWkl is the weighted function and in this case it

is as same as the magnitude of complex correlation

coefficient.

(3.8)

Ue= 1: 1:[ (Xk-Xl) ·bmag
k I

[ {(dbRkl . dblkl) (. ) }2 fi Jf f 1m dw +J dw exp -J 'Wkl . Wkl

(4.4)

(4.3)

rpm=ro -xp'sin am=ro -xp·sint::.

'" = w rpm - rqn w~xqL·.:..:.n_·...:...si_n.:::t::.:"",-_,:":,,xf?~·_m...:...·.....:s_in.....:t::.::..
'f'mnpq ao a 0

'= . ( 1 +er x rand)ro ro 100

where er is the specified percentage of radius position

ing error and 'rand' is a probability number between -1

to 1.

4. 3 Statistical condition in far field cross

spectra

In an actual measurement, some kinds of uncertain

ty include in the output of data; the radius positioning

uncertainty of microphones from the nozzle outlet, the

angle uncertainty of microphone arranged angles and

the output uncertainty of signal from microphones. In

order to simulate this uncertainty in the computer, the

probability random noise are added in calculating the

cross spectra.

The statistical uncertainty of the radius position

would make to generate the errors of magnitude and

the phase difference in cross spectra. In the numerical

simulation, we add the statistical errors of the radius

position of microphone in generating the cross spec

tra. The radius r 0' added the statistical error is p~t as

following equation,

4. Example of numerical simulation

4.1 Simulated sources and microphone ar

ray

The numerical simulation model was the same as

the case of reference(2). The shock cell noise was

generated from the supersonic jet blown from a 50

mm diameter nozzle. Six shock cells were set at 50

mm intervals. Shock cells interacted with the shear

flow and generated point monopole noises. The con

vecting disturbance velocity Uc was assumed to be 250

m/s. This velocity was used to set the complex cross

spectra. The mutual coherence of sources were ar

ranged, o. 75 between source nand n±1, 0.5 between

nand n±2, 0.25 between n and n±3, and zero bet

ween nand n ± 4, and beyond. The far field

microphone array situated around an arc of 10m

radius from the nozzle outlet. The angle of array

covered the range of 61 to 90 degree from the nozzle

axis. The two cases of microphone array were tested,

the one was at 30 microphone array in 1 degree inter

vals and the another was at 6 microphone array with 6

degree interval. The sound speed was taken as 342

m/s.
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(4.6)

(4.5)

In these equations it appears the sin X/X type terms

(X=..!!!...-L(q_l)sin aN or X=..!!!...-L(P_k)sin aM). This
ao 2 ao 2

type of function is called the window function. The

difference ofterm HRR(p,q,k,l) and HRI(p,q,k,l) is on

ly the last term of right hand side, cosine function in

HRR(p,q,k,l) and sine function in HRI(p,q,k,l) .

(5.2)

(6.1)

. w L{ ( I) sinaN (p k) sinaM}'sm- q- --- - --
ao 2 2

where sim aN=N'sin Ll, sinaM=M'sin Ll.

{
I - }1/2ErrbR= K2 2: 2: (bRk1-bRk1) 2

k I

{
I - } 1/2

ErrbI= K2 2: 2: (blk1-blk1) 2
k I

{
I - }1/2Errbmag= K2 2: 2: (bmagkl-bmagkl) 2

k I

{
I -

Errbphase = K2 2: 2: ((bphasekl- bphasekl)
k I

}
1/2

'bmag) 2

6. Results and consideration

6. 1 Error Estimation

The accuracy of calculating result is estimated by

RMS. (root mean square) errors of complex correla

tion coefficients between the calculated and specified

data. There are four types of errors; real part er

ror (ErrbR) , imaginary part error (Errbl) , magnitude

error(Errbmag) and phase error (Errbphase) . These

errors are defined as

, (. +ea·rand. )rkm = r 0 - Xk' m· smLl -----roo-smLl

where ea is the specified percentage of arranged angle

AddedNoise e x rand 2: a;
100 k rij

where e are the specified percentage of noise error.

error.

The statistical uncertainty of microphone output in

cross spectra is added to the calculated cross spectra.

The error noise is added to real and imaginary parts of

cross spectra. This technics is same as the reference

(3) ,

5. Theoretical treatment

At low frequencies the variation of the cosine and

sine function in equation (2.12) becomes small with

the microphone number variation. Then the discrete

values summation in equation (2. 12) can be replaced

by the integrals in relation to the microphone number

m and n. In this case, we put the following approxima

tion, the noise source distance x is very small compare

to the distance between the microphone and the noz

zle outlet ro; ro > >x'sin a.

The statistical uncertainty of arranged angle would

mainly cause the error of phase difference in cross

spectra. As same as the radius positioning error

generation, the position of microphone added the

statistical angle error is put as following equation,

The matrix coefficient of equation (2.12) HRR

(p,q,k,l) and HRI(p,q,k,l) become

sin {.!!!...- L (q -I) sinaN}
HRR(p,q,k,l) \ an . 2

ro .!!!...-L (q-l) smaN
ao 2

sin{.!!!...- L (p - k) sinaM}
an 2

.!!!...-L(P~k)sinaM
ao 2

.cos'!!!"'- L{(q_l)sinaN_ (P-k) sinaM}
ao 2 2

sin{.!!!...- L (q -I) SinaN}

HRI(p,q,~,l) = /g wan sin:N
a;L(q-I)-Z-

sin{.!!!...- L (P-k) sinaM}
an . 2

.!!!...-L(P_k)sinaM
ao Z

The tilde values in the right hand sides are the

specified values. The phase error has the special

characteristics that it becomes large at the magnitude

of correlation being very small. Because the phase is

calculated by the arc tangent of ratio between real

part and imaginary part of the complex correlation, so

at the very small correlation coefficients of sources

the error of it becomes large. When the magnitude of

correlation is small, however, the phase of correlation

do not important to the validity of the results. Then

we use the magnitude of correlation bmag as the

weighted function in calculating the error of phase.

6.2 Error of estimated complex correlation

coefficients

In figure 2, the variation of the error Errbmag to

the frequency is shown for the case of microphone ar-
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o 10000
Frequency,fHz

(a) Variation of condition number with frequency

200

dashed line. The large value of this condition number

makes the error of complex correlation coefficients

(bR,bl) large.· But the condition number of partial

elements matrix which consists only with (HRI,HIR)

elements, HRI,HIR set to zero, becomes very low as

shown with the dashed line even at the low frequency

range. Fig. 3 (b) is the variation of window functions

of equation (5.2). Each line corresponds to distances

between two sources, that is, (P-k) =0,1, 2, 3, 4.

The levels of all lines decrease with the frequency in

creasing. At the (P-k) values being 2, 3 or 4, the

levels of the window functions decrease rapidly. So it

could be expected that the elements by neighborhood

sources, (P - k) = 1 make the significant influence to

the characteristics of matrix H. Figure 3(c) shows the

variation of HRR andHRI elements for the case of

(P-k) =1 and (q~l) =0. The solid and the dashed

lines are the HRR and HRI elements in equation (5.2)

and the alternate dotted line is the matrix element of

the previous method (3). At the previous method the in-

20000

AddedNoise 5%

AddedNoise 0%

-------- 5% Error Level --

30*30 Microphones Array
6 Sources

-300
o 10000

FrequencY,fHz

Fig. 2 Variation of rms error of bmag with frequen

cy: 30*30 microphone array

ray 30*30 with statistically added noise error Add

Noise= 0 and 5%. The solid lines are the results of

this method and the dashed line is the previous one (3) •

The error of this method is as small as that of previous

method over the 10 kHz frequency range. Especially

at the AddNoise=5%, the magnitude lays under the 5

% error level (-26dB). But below the 10kHz, the er

ror· becomes large compared with the previous

method. These error characteristics for low frequen

cies are closely related to the characteristics of matrix

H. As indicated in chapter 5, each element of matrix

H consists with the window function and the sine or

cosine function at low frequency range.

Figure 3 shows the characteristics of matrix H.

Fig. (a) shows the variation of the condition numbers

of matrix H with the frequency variation. The solid

line which is the case of full elements of matrix H is

very large and the level is almost equal to the peak

level of reference (3) which is shown with the alternate

100
~
~

~ 0
.8

~ -100

.~ -200
..9
o
N

(P-k)=l
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! \

,I \
"i \
! '\, '.
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Fig. 3 Characteristics of matrix H 30*30 microphone array
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wL(K-I). A 2
----'-------'-sIn l.l = 1r

ao

The value in the parenthesis takes· only the integers.

Then it is put as (K-I). From this condition the fre

quency to reduce the accuracy is· obtained as follows,

becomes the very small over the 10 kHz range.

Figure 6 shows the errors of bmag for the 6*6

microphone array. The tendency of error is almost the

same as the case of 30*30 microphone array except at

13100 and 16400 Hz range. At the 13100 and 16400 Hz

the cosine function of matrix HRR and HII takes the

value of 211" increments with summing the microphone

coherence. So all elements of HRR and HII becomes

large and characteristics of matrix becomes bad. This

condition is shown by reference (3), and in this

method it becomes as follows from equation (2.12),

wL{(k-p) 'm- (l-q) 'n}sin~ = 2 1r·i
ao

teraction between the sound wave and the convecting

disturbance generates, then the magnitude of cosine

function has the periodicity. The level of it becomes

large about at 3. 1kHz, 6. 2kHz and 9.2 kHz, and then

the error of Errbmag becomes very large as mentioned

above. But in this method, the HRR element(dotted

line) and the HRI element(dashed line) have the

slower periodicity. The magnitude of HRR gradually

decreases with increasing the frequency and becomes

zero at about 7kHz, but the magnitude of HRI

becomes large nearby the frequency. So at every fre

quency under 10kHz, the magnitude of HRR or HRI

is large, then the matrix H becoms bad condition in

this method.

Figure 4 and 5 show the error characteristics of bR,

bI and bphase for AddNoise=O and 5%, respectively.

In both figures the error levels lay low over the 10kHz

range and becomes large below 10kHz range. This is

almost the same as the tendency of bmag. The level of

bR is coincident with that of bI and so the phase error

i= 1, 2, 3, ... (6.2)

101Jr-~-----r----r------r-----, 200 r------,------,,------.-----,

2000010000
FrequencyJHz
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Fig. 4 Variation of rms error of bR, bI with frequen

cy: 30*30 microphone array

Fig. 6 Variation of rms error of bmag with frequen

cy: 6*6 microphone array
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Fig. 7 Rms error of bmag with microphone array er

ror in radius and angle
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so on.

7 . Conclusions

It proposed the method to estimate the complex cor

relation coefficients in partially coherent and the con

vecting disturbance velocity. We get the following

results.

1) It is shown the Least Squares Fit method to find

the complex correlation coefficients with good ac

curacy.

2) The sine terms of matrix HIR and HIR make the

condition number H large and the accuracy of com

plex correlation coefficients bad at less than 10kHz

frequency range because of the large values of win

dow function.

3 ) At the 6*6 microphone a:rray some frequencies

that the accuracy of estimated coefficients is bad ex

ist even over 10 kHz.

4) It is shown the method to find the convecting

disturbance velocity with good accuracy.

ing 30*30 and 6*6, respectively. At the case of 30*30

array of figure (a) the error levels Uc with AddNoise=

0% and 5% are adequately low over the 10 kHz fre

quency range in corresponding to the results of com

plex correlation· coefficients. This indicates the con

vecting disturbance velocity Ue can be calculated at

good accuracy by this method. At the case of 6*6 ar

ray of figure (b) the level at AddNoise= 0% is almost

the same as in figure (a). But the level at AddNoise=

5% is different from that in figure (a), that is, the

level of error is over the 5% error level (dashed line)

with wide .frequency range. So it needs more

microphones to get the accurate convecting distur

bance velocity Uc'

(6.3)
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Thus atd =6deg,L=0. 05m the frequencies are 13100

Hz atK=5, 16400HzatK=4, 21800Hz atK=3 and
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Figure 7 shows the influences of the microphone ar

ray errors, ro and Om errors to the correlation coeffi

cients bmag for 6*6 microphone array. The error of

microphone array is 5% for radius or angle positions.

At the case of angle error, solid line, the level of

calculated results is lower over the 10kHz range than

the 5% error level. But at the case of radius error,

dashed line, the level is larger at all frequencies than

the 5% error level. So it could be noticed that we have

to take care of the radius positioning at setting the

microphone array.

6.3 Error. of estimated convecting distur

bance velocity

Figure 8 (a) and (b) show the errors of convecting

disturbance velocity Uc for the microphone array be-
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