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Effects of viscous dissipation and fluid axial heat conduction on
laminar heat transfer in ducts with constant wall temperature

(Part I: Parallel-plates duct)
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The problem of heat transfer for non-Newtonian fully developed laminar flow has been solved
for parallel-plates duct with constant wall temperature. The effects of viscous dissipation and fluid
axial heat conduction were taken into account and a numerical scheme based on the finite difference
method was applied to solve the governing elliptic type energy equation for an infinite axial domain
of -00 < Z < 00. The effects of Brinkman number and Peclet number on developing temperature
distribution and Nusselt number at the walls are discussed.

1. Introduction

This paper is concerned with the heat trans­
fer to hydrodynamically fully developed laminar
fluid flow in parallel-plates ducts with constant
and equal temperatures at the walls. The fluid
behavior is assumed to obey the power law model
and the effects of viscous dissipation and fluid ax­
ial heat conduction are taken into account. The
problem of laminar heat transfer for power-law flu­
ids with an emphasis on viscous dissipation and
fluid axial heat conduction is controlled by the
magnitudes of Peclet number, Pe, which charac­
terizes the ratio of axial heat convection to axial
heat conduction, Brinkman number, Br, which
represents the ratio of overall dissipation to heat
conduction and the flow index, n.

The energy equation together with a constant
temperature at upstream infinity, fully developed
temperature profile at downstream infinity and
the appropriate thermal boundary conditions
at the walls is numerically solved by the finite
difference method as an elliptic type problem.
In considering the effect of fluid axial heat
conduction, it is often necessary to investigate
this effect in two semi-infinite regions of the duct.
In this study, the walls of the upstream region at
-00 < Z ::; 0 are kept at the entering fluid tem­
perature and the walls of the region at 0 < Z < 00

are kept at a specified temperature. The solution

method to compute the temperature field and the
applied mesh system have already been described
in the previous reports[l]. Our results are com­
pared with those reported in tabular forms by the
previous researchers [2], [3] . The numerical values
of the fully developed Nusselt numbers for differ­
ent Peclet number were reported by Nguen[3j and
in his study viscous dissipation effect was not con­
sidered. He considered the laminar heat transfer
of Newtonian fluids flowing in an infinitely long
duct and applied a transformed axial coordinate
to solve the problem. For gas flows in parallel­
plate channels, Ou and Cheng[4] obtained analyti­
cal solutions by considering the effects of pressure
work and viscous dissipation. They stated that
for a given Brinkman number the effect of viscous
dissipation increases with the distance from the
thermal entrance and in particular the asymptotic
Nusselt number is 17.5, regardless of the value of
Brinkman number, instead of conventionally ac­
cepted 7.54 for constant wall temperature case.
In their study the effect of fluid axial heat con­
duction was neglected. Deavours[5j investigated
analytically thermally developing heat transfer of
Newtonian fluids in parallel plates duct. In his
paper, a method of finding certain expansion coef­
ficients in a series of nonorthogonal eigenfunctions
was applied to obtain the fluid temperature.

Received on April 18, 2003
* Graduate student, Graduate School of Science and Technology
** Department of Mechanical Systems Engineering



18 Ganbat Davaa, Toru Shigechi, Odgerel Jambal and Satoru Momoki

Nomenclature

Fig.l Geometrical configuration
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Fluid Flow

With the assumptions described above, the gov­
erning momentum equation with the non-slip con­
dition is

Brinkman number
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flow index
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Subscripts

Greek Symbols

m consistency index
p density
T shear stress
() dimensionless temperature

(2)

(3)

{
du

y=o- = 0 at
B.C. : dy

L
u=o at y --- 2°

The shear stress, T, in Eq.(l) is

T = -m '~~In-l ~~
The solution of the momentum equation for the
fully developed laminar flow of power-law fluids is

bulk
entrance or inlet
fully developed
wallw

fd
e
b

Introducing the following dimensionless parame­
ters

yields the exact solution for the dimensionless ve­
locityas

Heat Transfer

The energy equation together with the assump­
tions above is written as

u* = 2n +1[1- (4y*) n~l]
n+l

(7)

(6)

(5)

* yy =-
Dh

* uu =­,
Urn

n [1 ( dP)]* (L)n~l
2n+ 1 m - dz . "2

Then the average velocity of the flow is

L/2

Urn === ~ JUdY
o

• The flow is steady, laminar and fully devel­
oped hydrodynamically.

• The fluid is non-Newtonian with constant
physical properties. The shear stress may be
described by the power-law modeL

• The body forces are neglected.

• The entering fluid temperature, Te , is con­
stant at upstream infinity (z ----+ -00).

• There is a step change in the wall tempera­
ture at z = O.For z ::; 0 the walls are kept
at Te . For 0 < z, the walls are at a constant
temperature Tw .

• A symmetry line exists at the half width of
the channeL

2. Analysis

The geometry of the problem and the coordi­
nate system for the analysis is shown in Fig.l.
The assumptions and conditions used in the anal­
ysis are:
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BO = 0 at y* = 0 for - 00 < z* < 00
By*

aT [iPT 82T] du (8) 1
pCpu Bz= k By2 + Bz2 - T dy 0=1 at y* =- for 0< z*

4

L 0=0
1

for z* ::; 0
and

at y* =- (18)in O<y <"2 -00 < z < 00 4

lim for
1

The boundary conditions are: 8=0 0< y* < 4
z*->-=

BT = 0 at y=O for lim 8 = Ofd(Y*) for * 1-oo<z<oo 0< y < 4'By z*->+=

The following dimensionless quantities are in­
troduced

The bulk temperature and Nusselt number are de­
fined as

z* = z/(Pe·Dh) (13)

Pe = pcpumDh/k (14)

0=
T-Te (15)
Tw -Te

n+1D1- n
Br =

mUm h
(16)

k(Tw - Te)

(19)

(20)

(21)

{

dOfd = 0 at y* = 0
dy*

(22)

ofd = 1 at y* = ~

The temperature gradient is obtained as

dOfd (n+l)2 [(2n+l)]n *2n:l "(23)-- = -Br 4 n y
dy* n

Eq.(21) has been solved analytically and the solu­
tion for 0fd is

(
2n + l)n

Ofd=I+Br -n-

The bulk temperature in the dimensionless form
is calculated as

r1j4
Ob == 4 ) a u* 0 dy*

Nusselt number at the wall

Nuw = 1 BO I

(1 - 8b) By* y*=1/4

In the fully developed region the dimension­
less temperature is a function of y* alone, i.e.,

88e* = !4: = O. Then the dimensionless tempera-z 8z*
ture Ofd corresponding to the boundary condition
of constant wall temperature is the particular so­
lution of the following equation.

d28f2d = -Br (_ dU*)n+1
dy* dy*

n [ (n+l)2 3n+l 1]
X -- -4-n-y*-n- +4n- (24)

3n+ 1

The bulk temperature in the fully developed re­
gion is

(9)

(10)

(11)

(12)

for 0 < z

for z::; 0

L
for 0 < y < 2"

BTlq -k-
w - 8y y=L/2

Nu = hDh
- k

(L/2
T, - Ja uTdy

b = L/2
fa udy

L
at y=­

2

L
at y=­

2

lim T = Tez->-=

L
lim T = Tfd(Y) for 0 < y < -2 .

z->+=

T=Te

T=Tw

where

The substitution of the above quantities into the
dimensional formulation gives

80 B28 1 82 8 (dU*)n+1
u*-=-+--+Br -- (17)

Bz* By*2 Pe2 Bz*2 dy*

1
in 0 < y* < 4 and -00 < z* < 00

o = 1 2B (i)n-1 (3n + 1)(2n + l)n (25)
bfd + r n (4n+l)(5n+2)

The asymptotic value of the Nusselt number is

Nu d = 2(4n + 1)(5n + 2) (26)
f n(3n + 1)

for non-zero Brinkman numbers. For Br = 0, the
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Fig. 2 Developing temperature profiles (n = 1)

(a) Negligible viscous dissipation and fluid axial heat conduction: Br = 0 and Pe -t 00. (b) Negligible viscous

dissipation and considerable fluid axial heat conduction: Br = 0 and Pe = 10. (c) Considerable viscous dissipation

and negligible fluid axial heat conduction: Br = 0.1 and Pe -t 00. (d) Both viscous dissipation and fluid axial

heat conduction are considerable: Br = 0.1 and Pe = 10.
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value of N U fd cannot be determined as

from Eqs. (23) - (25).

different fluids. It is worthwhile to compare the
present results with those reported by Cotta and
Ozisik[2] who presented the results for the limiting
case of neglected viscous dissipation and fluid ax­
ial heat conduction for the power-law fluids. Even
at small values of z*, the agreement is excellent.

3. Results and Discussion

Fig. 4 Nusselt number for various Peclet number

for the negligible viscous dissipation case (n = 1)

Fig. 3 Nusselt number for different fluids
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The temperature distributions of the non­
Newtonian power-law fluids flowing in parallel­
plates duct were calculated for an axial domain
of -00 < Z < 00, where at the origin (z = 0)
there is a step jump in the wall temperature.

The calculation has been carried out by using
the finite difference method. The range of param­
etersconsidered are:

Brinkman number: -1, -0.5, -0.1, 0.0, 0.1, 0.5, 1
Peclet number: 00, 100, 50, 20, 10, 5, 2.
Flow index: 1, 1/3, 0.5, 1.5 and 3
The variations of local temperature profiles

with Br and Pe are shown in Fig. 2, At z* =

0, there is a step change in the wall temperature.
Figures 2(a) and 2(b) show the case of Br = 0,
that is the fluid experiences no gain of heat due
to viscous dissipation. In Fig. 2(a), for Pe ~ 00

and Br = 0, at z* = a (-0.5 < y* < 0.5) the di­
mensionless temperature of the fluid is zero. But
for Pe = 10 and Br = a in Fig. 2(b) the fluid
temperature increase is occurred for negative val­
ues of z*. This indicates that the temperature
increase is due to the fluid axial heat conduction
and that the influence of axial heat conduction in
the fluid for z* ~ a vanishes with an increasing
Peclet number. From Figs. 2(c) and 2(d) for Br
= 0.1 it can be seen that the dimensionless tem­
perature of the fluid for z* ~ adeviates definitely
from zero. This increase is due to the contribution
of viscous dissipation in the flowing fluid. As the
viscous dissipation effect builds up, heat is trans­
ferred to the main body of the fluid flow and heat
generation due to viscous dissipation behaves like
a heat source, increasing the fluid temperature as
seen in Figs. 2(c) and 2(d). In fact, it can be
observed from the temperature developments in
Fig. 2 that the fluid temperature increases before
the fluid reaches the heated wall region because of
the heat generated by viscous dissipation and the
heat conducted from downstream into the region
of z ~ O.

In the following figures the heat transfer results
are illustrated in terms of the conventional Nusselt
number at the wall. Figure 3 presents the results
in the thermally developing range for the three
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Fig. 5 Effects of Br and Pe on Nusselt number for n = 1
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Fig. 7 Effects of Br and Pe on Nusselt number for n = 1.5

In Fig. 4, the Nusselt number is shown as a
function of the axial coordinate with Peclet num­
ber as a parameter. These Nusselt curves are for
the case of negligible viscous dissipation and for
Newtonian fluids. The circles show the results by
Cotta and Ozisik[2] and the triangles are for the
results by Nguen[3].

The effects of both Peclet number and
Brinkman number on Nusselt number are demon­
strated in Figs. 5-7 for Newtonian (n = 1),
pseudoplastic (n = 0.5) and dilatant (n = 1.5)
fluids, respectively. The solid lines stand for
the case of negligible viscous dissipation. The
dashed lines are the Nusselt curves for non-zero
Brinkman numbers. In this study, according
to the Brinkman number definition, for minus
Brinkman numbers the fluid is considered as be­
ing cooled and positive Brinkman numbers show
that the fluid is being heated from the wall. The
results for Nusselt numbers in the fully developed
range was in excellent agreement with those of by
Dang[6]. Equation (26) ensures that the asymp­
totic Nusselt number has a single value for any
non-zero Br for a given fluid,

4. Conclusions

Thermally developing heat transfer of non­
Newtonian power-law fluids flowing in parallel­
plates duct under the boundary conditions of con­
stant wall temperature has been analyzed taking
into account of the effects of viscous dissipation
and fluid axial heat conduction. In view of the
mathematical formulation, the energy equation
was an elliptic type problem and it was solved by
considering two semi-infinite axial domains.

The results are presented graphically in dimen­
sionless form. In order to verify the numerical
scheme applied in this study, our results for spe­
cial case studies are compared with the available
data sets.

An inspection of the temperature profile reveals
that the fluid temperature increases at z :::; 0 due
to fluid axial heat conduction and viscous dissipa­
tion before the fluid enters the heated wall region.

The results indicate that for a given fluid the
asymptotic value of Nusselt number at the wall
was a single value for different non-zero values of
Brinkman number. For non-zero Brinkman num­
bers, the asymptotic Nusselt number does not
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depend on the Peclet number values. However,
for zero Brinkman numbers, the asymptotic Nus­
selt numbers depend on Peclet number values and
with a decrease in Peclet .number the asymptotic
Nusselt numbers increase slightly.
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