
Reports of the Faculty of Engineering, Nagasaki University, Vol.33, No.6l

Effects of viscous dissipation and fluid axial heat conduction on
laminar heat transfer in ducts with constant wall temperature

(Part II: Circular pipes)
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The problem of heat transfer for non-Newtonian fully developed laminar flow has been solved for
circular ducts with constant wall temperature. The effects of viscous dissipation and fluid axial heat
conduction were taken into account and a numerical scheme based on the finite difference method was
applied to solve the governing elliptic type energy equation. The solution yielded the temperature
distribution in the fluid flow for an infinite axial domain of -00 < Z < 00 and the effects of Brinkman
number and Peclet number on developing temperature distribution and Nusselt number at the wall
are discussed.

1. Introduction

This is an extension of the previous work[l]
which considered the heat transfer in parallel­
plates ducts of constant wall temperatures. The
problem of entrance region heat transfer with vis­
cous dissipation and fluid axial heat conduction
has been studied for circular pipes at constant
wall temperature. The present work deals with
the steady heat transfer for laminar flow of non­
Newtonian fluids and the fluid is assumed to obey
the power-law model.

In this paper, various relevant results and fig­
ures have been discussed mainly from the point of
view on the validity of the numerical scheme, while
the effects of viscous dissipation and fluid axial
heat conduction on the heat transfer are also dis­
cussed. The results of the present study are pre­
sented in form of graphs and in order to ascertain
the accuracy of the finite difference scheme, our
results are compared with those reported in tab­
ular forms by the previous researchers [2] - [7J . A
literature survey revealed that there is abundant
information on heat transfer analyses for ducts at
uniform wall temperature.

Dang[8] has solved the present problem by
applying two semi-infinite regions of z ::; 0 and
z 2 0 and the solutions for the two domains were
matched at the origin z = O. In his study the vis-

cous dissipation was considered only in the region
of z 2 o. The fully developed Nusselt numbers
for various non-Newtonian power-law fluids have
been derived for the cases of non-zero Brinkman
number. Hennecke[2] analyzed thermally develop­
ing flow of Newtonian fluids in a tube and pre­
sented Nusselt number for different Peclet values.
In his study the viscous dissipation was neglected.
Singh[3j reported Nusselt number and bulk tem­
perature of a Newtonian fluid flowing in tubes for
Pe = 50. In his study the viscous dissipation effect
was also neglected. For the laminar heat trans­
fer of a Bingham plastic in a circular pipe with
uniform wall temperature, Min l9] has obtained a
correlation formula between Nusselt number and
Peclet number in thermally developed region and
investigated the effects of viscous dissipation and
fluid axial heat conduction in the thermally devel­
oping region. Olek[4j has studied developing heat
transfer to laminar non-Newtonian fluids in circu­
lar and parallel-plates ducts including axial heat
conduction, for the cases of (1) one wall insulated
and the other with heat convection and (2) con­
stant temperature at the walls. For the negligi­
ble fluid axial heat conduction case, the results of
Nusselt number and bulk temperature were tab~

ulated for the flow index, n = 1/3, 1 and 3, and
compared with those of other researchers. He also
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Nomenclature

compared his results of Nusselt numbers for Pe
= 50 and n = 1 with those of by Singh[3].
Zanchini[l0] has studied the effect of viscous dis­
sipation on the asymptotic behavior of laminar
forced convection in circular tubes under the as­
sumption of the negligible fluid axial heat conduc­
tion. He reported the analytic expression of the
asymptotic temperature profile for Newtonian flu­
ids. Laminar heat transfer of Newtonian fluids in
tube by considering the viscous dissipation effect
was studied by Basu and Roy[ll] for constant wall
temperature case and constant wall heat flux case.
They showed for the constant wall temperature
case that the asymptotic Nusselt number attains
the value 9.6 if Brinkman is other than zero. Vis­
cous dissipation effects on laminar heat transfer in
cylindrical pipes with constant wall temperature
have been studied also by Manglik and Prusa[6],
Barletta and Zanchini[12] , Lin[13] and others by
neglecting the fluid axial heat conduction effects.
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2. Analysis

• There is a step change in the wall tempera­
ture at z = O. For z :::; 0 the wall is kept
at Te . For 0 < z, the wall is at a constant
temperature Tw .

• The flow is steady, laminar and fully devel­
oped hydrodynamically.

• The fluid is non-Newtonian with constant
physical properties. The shear stress may be
discribed by the power-law modeL

• The body forces are neglected.

• The entering fluid temperature, Te , is con­
stant at upstream infinity (z -7 -(0).

The geometry of the problem and the coordi­
nate system for the analysis is shown in Fig.l.
The assumptions and conditions used in the anal­
ysis are:

With the assumptions described above, the gov­
erning momentum equation with the non-slip con­
dition is

Fluid Flow

Brinkman number
specific heat at constant pressure
hydraulic diameter (= 2R)
friction factor
thermal conductivity
flow index
fluid consistency index
Nusselt number
radius of the tube
Peclet number
radial coordinate
dimensionless radial coordinate
temperature
fully developed velocity profile

fluid average velocity (= ~ Jt urdr)

dimensionless velocity (=u/urn )

axial coordinate
dimensionless axial coordinate

Br

n

m
Nu
R
Pe

z
z*

Urn

u

U*

r

r*
T

Greek Symbols

p density
7 shear stress
e dimensionless temperature

The shear stress, 7, in Eq.(l) is

7 = _mjdUl n
-

1
du

dr dr
(3)

By solving the momentum equation for the power­
law fluids, the flow velocity is obtained as

Subscripts

b bulk
e entrance or inlet
f d fully developed
w wall

_ n [1 ( dP)]~( n+l n+l)u------ Rn-r n
n+ 1 2m dz

(4)
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Then the average velocity of the flow is The following dimensionless quantities are in­
troduced

R

Urn == ~2 JU r dr
o

Introducing the following dimensionless parame­
ters

z*= z/(Pe·Dh) (13)

Pe = PCpUrnDh/k (14)

e=
T-Te (15)
Tw -Te

m un+ 1 D 1- n
Br = m h (16)

k(Tw - Te )

Heat Transfer

The energy equation together with the assump­
tions above is written as

The bulk temperature and Nusselt number are de­
fined as

(19)

(20)

( dU*)n+l (17)+Br --
dr*

1
andin 0< r* < 2 -00 < z* < 00

of) = 0 at r* = 0 for -oo<z*<oo
or*

e=1 at * 1 for o< z*r =-
2

e=o at * 1 for z* :S 0 (18)r =-
2

19=0 for
1

lim 0< r* < 2Z*---7-<XJ

lim 19 = efd(r*) for
1

0< r* < 2"Z*---7+<XJ

The substitution of the above quantities into the
dimensional formulation gives

* oe 1 0 (* oe ) 1 0
2

f)
U oz* = r* or* r or* + Pe2 0z*2

Nu = 1 of) I
(1 - eb) or* r*=1/2

In the fully developed region the dimensionless
temperature is a function of r* alone. Then the di­
mensionless temperature 19fd corrtsponding to the
boundary condition of constant wall temperature
is the particular solution of the following equation.

~~ (r*defd) _ -Br (_ dU*)n+l (21)
r* dr* dr* - dr*

The bulk temperature in the dimensionless form
is calculated as

r1
/
2

f)b == 8 J
o

u* 19 r* dr*

Nusselt number at the wall is

(6)

(8)

(10)

(11)

du
-T­

dr

* rr =-
Dh

Nu= hDh
- k

_ foRuTrdr
Tb = -"-R=---­

f o urdr

* uu =­,
Urn

u* = 3n + 1[1 _ (2r*) n~l] (7)
n+l

in 0 < r < R and -00 < z < 00

The boundary conditions are:

oT = 0 at r=O for -oo<z<oo
or

T=Tw at r=R for o<z

T=Te at r=R for z:SO (9)

lim T=Te for 0< r < R
Z---7-<XJ

lim T = Tfd(r) for 0< r < R.
Z---7+<XJ

yields the exact solution for the velocity as

where

qw = k~~1
r=R

(12)

o at r*

1 at r*

o
1

2

(22)
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3. Results and Discussion

The solution for 0fd is

The asymptotic values of Nusselt number for the
different fluid behaviours are calculated as

dissipation and fluid axial heat conduction or for
Pe ---+ 00 and Br = O. The circles show the results
by Olek[41. Figure 2.(b) displays the temperature
profile development for the case of considerable
viscous dissipation and fluid axial heat conduc­
tion or for Pe = 10 and Br = 0.1. At z* = 0,
there is a step change in the wall temperature.
The solid lines in Fig. 2(b) correspond to the ax­
ial locations listed in Fig. 2(a). The dashed lines
are for the temperature profiles at z* :s; 0, where
the wall temperature is kept equal to the entering
fluid temperature. By comparing the temperature
development in Figs. 2(a) and 2(b), it is seen that
the fluid temperature increases due to fluid axial
heat conduction and viscous dissipation before the
fluid enters into the region of z* > a or into the
heated wall region.

In the following figures the heat transfer results
are illustrated in terms of the conventional Nus­
selt number at the wall. Figure 3 presents the
results in the thermally developing range for the
three different fluids. It is worthwhile to com­
pare the present results with those reported by
Blackwell[51 and by Prusa and Manglik[61 for the
limiting case of neglected viscous dissipation and
fluid axial heat conduction for the power-law flu­
ids. Even at small values of z*, the agreement is
excellent.

In Fig. 4, the Nusselt number is shown as a
function of the axial coordinate with Peclet num­
ber as a parameter. These Nusselt curves are
for the case of negligible viscous dissipation and
for Newtonian fluids. The circles show results by
Hennecke[2] and the triangles are for the results
of Singh[3] . It is also seen that the agreement is
good.

The effects of both Peclet number and
Brinkman number on the Nusselt number are
demonstrated iIi Figs. 5 - 7 for Newtonian, pseu­
doplastic and dilatant fluids. The solid lines stand
for the case of negligible viscous dissipation. The
dashed lines are for the heat transfer with con­
siderable viscous dissipation. The case with Br
= a and Pe ---+ 00 is the limiting case of ne­
glected viscous dissipation and axial heat conduc­
tion. It is worthwhile to compare the results for
this particular case with those reported by LawaI
and MUjumdar[7] whose predictions were consid­
ering the effect of viscous dissipation for Newto­
nian fluids. However, in their studies the domain
of -00 < z < awas not considered as the fluid ax­
ial heat conduction was assumed to be negligible.
Therefore their results for non-zero Brinkman in

(26)

(23)

(24)

andOfd = 1

.( 3n+l 3n+l)x Br 2- -n- - r* n

Nu d = 2(3n + 1)(5n + 1)
f n(4n+ 1)

(n+l)2 ( n ) I-n
Ofd = 1 + 2-n- --­

3n+ 1

dOfd = a
dr* '

In the fully developed region, the temperature
gradient is

dOfd (n+l)2 (3n+1)n *2n,;t-l
-- = -Br 2 n --- r
dr n

from Eqs. (23) - (25).

_ (~)n-l (4n+1)(3n+1)n-l
Ob fd - 1 + Br n (5n + 1) (25)

The bulk temperature in the fully developed re­
gion is

for non-zero Brinkman numbers. For Br = 0, the
value of NUfd cannot be determined as

The temperature distribution of the non­
Newtonian power-law fluids flowing in a circu­
lar pipe was calculated for an axial domain of
-00 < Z < 00, where at the origin (z = 0) there
is a step jump in the wall temperature. The cal­
culation has been carried out by using the finite
difference method. The range of parameters con­
sidered are:

Brinkman number: -1, -0.5, -0.1, 0.0, 0.1, 0.5, 1
Peclet number: 00, 100, 50, 20, 10, 5, 2
Flow index: 1, 1/3, 0.5, 1.5 and 3.
The computed results are shown graphically in

the following fi~ures and the main features are
discussed. Typical developing temperature pro­
files are given in Fig. 2 to show the effects of vis­
cous dissipation and fluid axial heat conduction.
The two figures compare the case of negligible vis­
cous dissipation and fluid axial heat conduction
with the case of considerable viscous dissipation
and fluid axial heat conduction. The curves in
Fig. 2(a) illustrate the development of local tem­
perature profile for the case ofnegligible viscous
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(a) Negligible viscous dissipation and fluid axial heat conduction (Br = 0 and Pe ---+ 00).
(b) Both viscous dissipation and fluid axial heat conduction are considerable (Br = 0.1 and Pe = 10).
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Fig. 7 Effects of Br and Pe on Nusselt number for n = 1.5

the thermally developing region are not shown in
Fig. 5 which shows the Nusselt curves for Newto­
nian fluids. The results for Nusselt numbers in the
fully developed range by LawaI and Mujumdar[7j ,
and the asymptotic Nusselt values by Dang[8] are
in excellent agreement with our corresponding re­
sults. In this study, according to the Brinkman
number definition, for minus Brinkman numbers
the fluid is considered as being cooled and posi­
tive Brinkman numbers show that fluid is being
heated from the wall. Thus Figs. 5 - 7 illustrate
the cases of negligible viscous dissipation and also
the cases of cooling and heating processes with
considerable viscous dissipation. It is seen there
is a singular value of the fully developed Nusselt
number for various non-zero Br for a given fluid.
Equation (26) ensures that for a particular fluid,
the asymptotic N u has a single value for any non­
zero values of Br.

4. Conclusions

Thermally developing heat transfer of non­
Newtonian power-law fluids in a circular tube un­
der the boundary conditions of constant wall tem­
perature has been analyzed taking into account
of the effects of viscous dissipation and fluid axial
heat conduction. In view of the mathematical for-

mulation, the energy equation was an elliptic type
problem and it was solved by considering two
semi-infinite axial domains.

The results are presented graphically in dimen­
sionless form. In order to verify the numerical
scheme applied in this study, our results for spe­
cial case studies are compared with data sets pub­
lished in open literature.

An inspection of the temperature profile reveals
that the fluid temperature increases at z < a due
to fluid axial heat conduction and viscous dissipa­
tion before the fluid flow reaches the heated wall.
The results indicate that, for a given fluid the
asymptotic value of Nusselt number at the wall
has a single value for different non-zero values of
Brinkman number. For non-zero Brinkman num­
bers, the asymptotic Nusselt number does not de­
pend on the Pec1et number values. However, for
zero Brinkman number, the asymptotic Nusselt
number depends on the Pec1et number value and
with a decrease in Pec1et number the asymptotic
Nusselt number increases slightly.
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