
Reports of the Faculty of Engineering, Nagasaki University, Vol.34, No.52 35

Fully developed laminar heat transfer to non-Newtonian fluids
flowing in a concentric annulus with a moving core

(The case of first kind of thermal boundary condition)

by

Odgerel Jambal*, Toru Shigechi**, Ganbat Davaa*,
Satoru Momoki** and Tomokazu Yamamoto*

The fully developed laminar heat transfer to non-Newtonian fluids flowing in a concentric annulus
with a moving core is analyzed by taking into account the viscous dissipation of the flowing fluid.
Applying the shear stress described by the modified power-law model, the energy equation together
with the fully developed velocity profile is solved numerically for the thermal boundary conditions
of the tube walls being kept at constant but different temperatures. The effects of the flow index,
the relative velocity of the moving core, the dimensionless shear rate parameter and the Brinkman
number on the temperature distribution and Nusselt numbers at the tube walls are discussed.

1. Introduction

The problems of the fully developed heat trans
fer to non-Newtonian fluids in a concentric an
nulus with an axially moving core were studied
previously[lj-[2j for the thermal boundary condi
tion of constant heat flux at either tube wall.

In this paper, the fully developed heat transfer
. is studied for the thermal boundary condition of

the tube walls being kept at constant but differ
ent temperatures or for the first kind of boundary
condition[3] . The case of the inner tube wall tem
perature being kept higher than that of the outer
tube wall is referred to CASE A and the counter
part is referred to CASE B. Because of the space
restraint only CASE A has been discussed in the
present paper.

Applying the velocity profile of the modi
fied power law fluids obtained in the previous
report[4j, the energy equation including the
viscous dissipation term is solved numerically.
The effects of the relative velocity of the moving
core, the flow index and the dimensionless shear
rate parameter and the Brinkman number on the
temperature distribution and Nusselt number are
discussed.

Nomenclature

Br Brinkman number
specific heat at constant pressure
hydraulic diameter = 2(Ro - R i )

k thermal conductivity
n flow index
Nu Nusselt number
r radial coordinate
r* dimensionless radial coordinate
R tube radius
T temperature
u fully developed velocity profile
Urn average velocity of the fluid
u* dimensionless velocity (=u/u rn )

Greek Symbols

a radius ratio
(3 dimensionless shear rate parameter
'rJa apparent viscosity
'rJ~ dimensionless apparent viscosity
'rJo : viscosity at zero shear rate
p density
T shear stress
() dimensionless temperature
~ transformed dimensionless radial

coordinate = [2(1 - a)r* - exJl(1 - ex)

Subscripts

b bulk
i inner wall or inner tube
o outer wall or outer tube

2. Analysis

The geometrical configuration and the coordi
nate system for the analysis are shown in Fig.l.
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Fig.1 Geometrical configuration

The assumptions and conditions used in the
analysis are:

• The flow is steady, laminar and fully devel
oped hydrodynamically.

The bulk temperature is defined as

(7)

• The fluid is non-Newtonian with constant
physical properties. The shear stress may be
described by the modified power-law model.

• The body forces and the fluid axial heat con
duction are neglected.

The Nusselt numbers at the walls are

Nu . = hjDh
J- k

where j = i for the inner tube wall and j = 0 for
the outer tube wall and

The energy equation together with the assump
tions above is written as

{
T = Ti at r = Ri (2)
T = To at r = R o

The velocity, u, of the modified power-law flu
ids in concentric annuli with moving cores was
evaluated and reported in the previous paper(l).

The following dimensionless quantities are in
troduced

k~~ (raT) +T du
= 0rar ar dr

The thermal boundary conditions are:
CASE A

(1)
(8)

(9)

(10)

(11)

where
T in Eq.(I) is the shear stress defined by

du
T == ''la dr (3)

where ''la is the apparent viscosity defined as
Dimensionless apparent viscosity, 'TJ~, is defined

as

for n > 1, (13)

for n < 1, (12)

for n < 1, (14)

* 'TJo
'TJ = 1+13

'TJ* = 'TJo (1 +~)

(4)for n < 1,
_ 'TJo

'TJa = I 1
1- n

1 + '!JQ du.
m dr

(
m IdUln-1)

'TJa == 'TJo 1 + 'TJo dr for n > 1. (5)
I
du* In -

1

* _ 'TJa 13 + dT*
'TJa = 'TJ* = 13 + 1

for n> 1 (15)
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The substitution of the above quantities into
the dimensional formulation gives

~~ (r* of) ) + Br7]* (dU*) 2 = 0 (16)
r* or* or* dr*

In these figures the Nusselt numbers are shown as
a function of the dimensionless shear rate, {3, and
the Brinkman number is a parameter. With an
increase in Br, the Nusselt number at the inner
tube decreases while N U o increases.

are
Nusselt number at the inner and outer tube walls

References

4. Conclusions

The fully developed laminar heat transfer of the
modified power-law fluids in a concentric annulus
with an axially moving core was analyzed taking
into account the viscous dissipation. In this work,
the numerical solutions for the thermal bound
ary condition of constant but different tempera
tures at the tube walls or for the thermal bound
ary condition of first kind were obtained. The
effects of the flow index, the relative core veloc
ity, the dimensionless shear rate parameter and of
the Brinkman number on the temperature distri
bution and on the Nusselt numbers at the tube
walls have been discussed.

(17)

(18)

* 0r = 2(1-0)
* 1r = 2(1-0){

f) = 1 at

f) = 0 at

The bulk temperature in the dimensionless form
is calculated as

f) - 8(I-a) j2(1~<» * f) * d *
b= 1+ u r ra -<>-

2(1-<»

Nu, ~ -1 ~ 8
b
::.1 <>_ (19)

r -2(1-<»

Nuo = -~ Of) I

f)b or* * 1
r =2(1-<»

3. Results and Discussion

In the following figures the solutions are illus
trated for the annulus of radius ratio a = 0.5 and
for the three values of the core velocity namely, U*
= -1,0 and 1. The effect of the viscous dissipation
is demonstrated by the Brinkman number. The ef
fect of the Brinkman number on the temperature
distributions across the channel is demonstrated
in Figs.2-4. Figure 2 is for the pseudoplastic fluid
of n = 0.5 and {3 = 1 while Figs. 3-4 demonstrate
the temperature distributions for the Newtonian
fluid n = 1 and for the dilatant fluid of n = 1.5 and
{3 = 1. .~ = 0 corresponds to the inner tube wall
and ~ = 1 is the outer tube wall. The parameter in
these figures are the Brinkman number. It is seen
that the results for the Newtonian (n = 1) flutd
and for the non-Newtonian fluids are similar qual
itatively. The dimensionless temperature increase
due to the viscous dissipation is more pronounced
for U* = - 1 and U* = 0 and this is attributed
to the velocity gradient reported in the previous
report[4j. For U* = - 1.0, f) greatly increases with
an increase in Br near the moving core while for
U* = 1.0, the increas in f) is small near the mov
ing core or ~ = O. Also it is seen, the temperature
of the Newtonian fluid is more sensitive to the
Brinkman number than that of the pseudoplastic
fluids, but less than for the dilatant fluid.

Nusselt numbers at the inner core, N Ui, and at
the outer tube wall, Nuo , are shown in Figs.5-6.
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Fig. 2 Temperature profiles for the pseudoplastic fluid (U* = -1; 0; 1)
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Fig. 5 Nusseltnumber at the inner tube vs {3 (U* = -1; 0; 1)
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Fig. 6 Nusselt number at the outer tube vs {3 (U* = -1; 0; 1)


