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Free Vibration Analysis of Simply Supported Square Plates Resting
on Non-homogeneous Elastic Foundations |

by

Mei Huang* X.Q. Ma** Takeshi Sakiyama*
Hiroshi Matsuda* Chihiro Morita* * *

A discrete method is developed for analyzing the free vibration problem of square plates resting on

non-homogeneous elastic foundations. The fundamental differential equations are established for the bend-

ing problem of the plate on elastic foundations. The Green function, which is obtained by transforming

these differential equations‘into integral equations and using numerical integration, is used to get the

characteristic equation of the free vibration. The effect of the modulus of the foundation on the frequency

* parameters is discussed. By comparing the present numerical results with those previously published, the

é_fficiency and-accuracy of the present method are investigated.

1. Introduction

The free vibration problems of the plates on the
elastic foundations have been studied for many years.
Several numerical methods, such as the Rayleigh-Ritz
method [1,2] a mixed finite element method [3,4],
the method of powér series expansion [5], the finite
strip method [6] and the finite element method [7],
_were used to solve this kind of problem.

In this paper, a discrete-method is proposed for
analyzing the free vibration of square plates resting on
non-homogeneous elastic foundations. No prior as-
sumption of shape of deflection, such as éhape func-
tions used in the finite element method, is employed in
this method. Therefore there is no need to consider the
continuity of the element. The spring system is used to

_simulate the foundations. The fundamental differen-
. tial equations of a plate on nbn—homogeneous founda-
tions are established and satisfied exactly throughout
the whole plate. By tranéforming these equations into
integral equations and using numerical integration, the
solutions are obtained at the discrete points. The
Green function, which is the solution for deflection, is

used to obtain the characteristic equation of the free
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vibration. Numerical results are obtained for the plates
on homogeneous foundations, local uniformly dis-
tributed sﬁpports and nén-homogeneous foundations.
The effect of the foundation modulus on the frequency
parameter is discussed. The efficiency and accuracy of
the present method for the free vibration of square

plates on elastic foundation are investigated.

2. Fundamental Differential Equations
Figure 1 shows a square plate of length ¢, thickness
k. and density p resting on non-homogeneous founda-
tions of foundation modulus %/( /=1 or 2). The founda-
tion modulus in the central square part is &;, and that
for the other part is 2;. An xyz coordinate system is
used in the present study with its x — y plane contained
in middle plane of the square plate, the z-axis perpen-

. dicular to the middle plane of the plate and the origin

at one of the corners of the plate.

In this paper, the elastic foundation is modelled as a
spring system and the intensity of the reaction of the
foundation is assumed to be proportional to the deflec-
tion w of the plate. By considering the reaction of the

foundation as a kind of lateral load, the fundamental
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Figure 1 : A square plate resting on non-homogenous

. elastic foundations.

differential equations of the plate having a-concentrat-
ed load P at a point (%, ¥,) and resting on a Winkler

foundation of the foundation modulus % are as fol-

lows:
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where @,, @, are.the shearing forces, M, the twisting
moment, M, M, the bending moments, ¢, 6, the
slopes, w the deflection, D=En3/(12(1- v2)) the
bending rigidity, E, G modulus, shear modulus of elas-
ticity, respectively, v Poisson’s ratio, % the thickness
of plate, =h/1.2, 3 (x—=x,), &(x—x,) Dirac’s delta
functions. "

By introducing the non-dimensional expressions,

2
[X1, X531 =D0_(f—Tz)[Q"’ Q1

. . : a .
(X3, X4, X5] =m[Mxy, M, M.],

[Xﬁ, X7,- XSJ = [By, 0::; ’M)/ll:l,

the equation(i) is rewritten as the following non--

dimensional forms:
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where g =1.0,D=p(1—v?) (he/h)3, H=((1+v)/5)
(ho/@)*ho/h, P=Pa/(Dy(1-v?)), Dy=Eh}/(12(1—
v?)) is the standard bending rigidity, % is the stan-

ZE8 4y X~ p HX = (2)

dard thickness of the plate, 2=5/6 is the shear correc-
tion factor, 8 (3 —7,) and 6 (L —¢,) are Dirac’s delta
functions, k= p Ky/ (1= v2), Kjis the dimensionless
modulus of the foundation, it is defined as follows:

Kf: kfd4/Do (f= 1,2) ,

N
2

The equation (2) can also be expressed as the fol-

lowing simple form.

Z{Flts S+F2tsaaXs+F3tsXs}
+P6'<n W5 (C—0)ou=0 (t=1~8),  (3)

where 6 1; is Kronecker’s delta, F'y1=Fi94=F133=Fs6
=Figg=Figg=1, Fus=v, Fupy=Fu3=Fu=Fuy=
Fye=p, Fosr=pv, Fos=1, F318=—%f> F33,=F33
=—u, Faus=Fssu=—p(1—v)D, Fyg=—2p(1+v)
D, Fyy=—((1+v)/5) (hy/a)?DT, Fsp=1, Fap=
—p((1+v)/5) (ho/a)?DT, Fsg=p, other Fys=0.
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3. Discrete Green Function
As given in Ref[8], by dividing a square plate verti-
cally into m equal-length parts and horizontally into #
equal-length parts as shown in Figure 2, the plate can
be considered as a group of discrete points which are
the intersections of the (m+1)-vertical and (n+1)-
horizontal dividing lines. To describe the present
method conveniently, the rectangular area, 0<» <73,
0<{<{; corresponding to the arbitrary intersection
(4, 7) as shown in Figure 1 is denoted as the area [3, 7],
the intersection (i, 7) denoted by O is called the main
point of the area [4, 71, the intersections denoted by ©
are called the inner dependent points of the area, and
the intersections denoted by ® are called the boundary
dependent points of the area.

By integrating the equation (3) over the area [ 71,

the following integral equation is obtained:
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n
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z
1
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Figure 2 : Discrete points on a rectangular plate.
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where u(yp—7,) and u({—¢,) are the unit step func-
tions.

Next, by applying the numerical integration method,
the simultaneous equation for the unknown quantities
Xoi=X,;(y;, {;) at the main pomt (3, ]) of the area [, 7]

is obtained as follows:
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where Ba=ap/m, Bip=ap/n, ap=1-Gu+dw)/2,
ap=1-0u+tdp) /2, t=1~8, i=1~m, j=1~n, uy=
u<7/i‘77‘q)v ujr=u(Cj_Cr)'

By retaining the quantities at main point (7, j) on the
left hand side of the equation and putting other quanti-

‘ties on the right hand side, and using the matrix transi-

tion, the solution Xj; of the above equation (5) is ob-

tained as follows:
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where p=1~8, Ay, Byrand Cyy are given in Ref[8]. -

In the equation (6), the quantity X,; is not only
related to the quantities Xz and Xy at the boundary
dependent points but also the quantities Xp;, X and
Xy at the inner dependent points. The maximal num-
ber of the unknown quantities is 6 (m —1) (n—1) +3(m
+#n+1). In order to reduce the unknown quantities,
the area [4, ] is spread according to the regular order
as [1,1], [1,2], -+, [1,»], [2,1], [2,2], -, [2,
nl, -+, Um,1], [m,2], -+, [m, n]. With the
spread of the area according to the above mentioned
order, the quantities Xy;, Xéil and Xy, at the inner de-
pendent points can be eliminated by substituting the
obtained results into the corresponding terms of the
right hand side of equation (6). By repeating this
process, the quantity X,; at the main point is only
related to the quantities X,z (r=1,3,4,6,7,8) and Xy
(s=2,8,5,6,7,8) at the boundary dependent points.
The maximal number of the unknown quantities is
reduced to 3(m+#x+1). It can be noted the number
of the unknown quantities of the pfesent method is

fewer than that of the finite element method for the
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same divisional number m(=3) and #(>3). Based
on the above consideration, the equation (6) is rewrit-

ten as follows.

6 i i
Xpis= Z { Giga X+ 2 bpijngsOg} +3p P,
a=1  f=0 £=0
where ayja, bpijga and Gy; are given in Appendix A.
The equation (7) gives the discrete solution of the
fundamental differential equation (3) of the bending

problem of a plate resting on an elastic foundation and

having a concentrated load, and the discrete Green
function is chosen as Xst]az/ [PDo(l —v?)1, thatisw
(x()ly[), ,_’,V)/P

4. Characteristic equation

By applying the Green function w(xg,¥9,%,y) /P Wthh

is the displacement at a point (xg,5¢) of a plate with a .

concentrated load P at a point (x, y), the displace-
ment amplitude w(xy,y;) at a point (xg,3) of the
. square plate during the free vibration is given as fol-

lows:
- _
i (%0, 0) =f0 fophwzﬁJ(x,y) Cw (x0,30,%,y) / Pldxdy, (8)

where p is the mass density of the plate material.
By using the numerical integration method and the

following non-dimensional expressions,

_POh—Oa’_a_ E=1/(pi9),
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where p is the standard mass density, the characteris-

tic equation is obtained from the equation (8) as

Ko Ko Ke Ko
Kiw Kiu Ki - Kig
Ko Ko Kz - K;m =0 9
Km() Kml KmZ o Kmm
where
BuwHjGiojo— ki - BunHinGinjn
BuwHioGig BunHinGitjn
Ki=Bmi |  BulpGij BunHljnGin
BuoHinGinjo * BundLinGinjn — R0y

5. Numerical results _

To investigate the validity of the proposed method, the
frequency parameters are given for the plate shown in
Figure 1. T he standard thickness ho is chosen as £
and ko/a=1/1000 is used. All the convergent values of
the frequency parameters are obtained for simply sup-
ported plates by using Richardson’s extrapolation for-
mula for two cases of divisional numbers m(=#).
Some of the results are compared with those reported

previously.

5.1. A square plate on homogeneous
foundations

Table 1 shows the numerical values -for the lowest

4 natural frequency parameter 1 of square plates on

homogeneous foundation with K=0,10,100,1000,

10000. The convergent results of frequency parameter

Table 1:Natural frequency parameter 1 for a SSSS

square plate on homogeneous foundations

Mode sequence number
K References 1st 2nd 3rd 4th
0  Present '

12% 12 4,575 7.336 7.336 9.311
16x16  4.564 7.272 7.272  9.216
Ex. 4.549  7.190 7.190 9.094
Ref.[5] 4,549 - - -
Exact[9]  4.549 . 7.192 7.192 9.098
10  Present - '
12x12 4.603 7.343 7.343 9.315
16 x 16 4.592  7.279 7.279 9.220
Ex. 4.578 7.198° 7.198 9.098
Ref.[5] 4.578 - - -
102 Present
12x12 4.838 7.405 7.405 9.345
16 x 16 4.829 7.343 7.348 9.251
Ex.12 4.816 7.263 7.263 9.131
Ref.[5] 4.816 - - -
10  Present
12% 12 6.261 7.950 7.950 9.635
16% 16 6.257 7.900 7.900 9.549
Ex. 6.251 7.836 7.836 9.439
Ref.[5] 6.251 - - -

10¢  Present
12x12 10.339 10.855 10.855 11.664
16 < 16 10.338 10.836 10.836 11.616
Ex. 10.337 10.811 10.811 11.554
Ref.[5] 10.337 - - —
Ex.: The values. obtained by using Richardson’s
extrapolation formula.
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are obtained by using Richardson’s extrapolation for-
mula for two cases of divisional numbers m(=n) of
12 and 16. The results obtained by Matsunaga [5]
and the exact values of the plate with K=0[9] are also
shown in the table. It can be seen that the numerical
results of the present method have satisfactory accura-
cy. From this table, it can be also seen that the effect
of the constant K on the fundamental frequency
parameter is much rhore significant than that on
higher frequency parameters, the frequency parameters

Table 2:Natural frequency parameter 2 for a SSSS
square plate with the central part on local

uniform supports (¢/a=0.6)

Mode sequence number
K Ky References Ist 2nd 3rd

0 320 Present
10x 10 5.1566  7.652  7.5b2
15x 15 5.167 7.434 7.434
Ex. 5.158 7.341 7.341
Ref.[2] 5.168 - -
Ref.[7] 5.123 - -
0 800  Present ‘
10x 10 5.766 7.736 7.736
1515 5.782 7.627 7.627
Ex. 5.794 7.540 7.540
Ref.[2] 5.813 - -
Ref.[7] 5.774 - -
0 1600 Present
10x10 6.491  8.000 8.000
156% 15 6.514 7.907 7.907
Ex. 6.5633 7.833 7.833
Ref.[2] -6.563 - -
Ref.[7] 6.517 - -
320 0 Present )
15x15 4.757 7.346  7.346
T 20 % 20 4,747 7.296 7.296
‘ Ex. 4,733 7.232 7.232
Ref.[2] 4.715 - -
Ref.[7] 4,656 — -
800 0 Present
15x 15 4.998  T.447  7.447
20 20 4,971 - 7.425  7.425
Ex. 4,936  7.397 7.397
Ref.[2] 4,937 - -
Ref.[7] 4.871 - -
1600 0 Present :
a2 15x15  5.316 7.618 7.618
20 % 20 5.281 T7.595 7.595
Ex. 5.235 7.566 7.566
Ref.[2] 5.250 - —
Ref.[7] 5.161 — -

i
increase with increase of the constant X, and they in-
crease quickly when K is larger than 100.

5.2 A square plate on non-homogenous
foundations

Table 2 shows the numerical values for the lowest

3 natural frequency parameter 1 of the plate shown in

Figure 1 with K, =0 or K;=0, which is the case of the

~ local uniformly distributed support. The side ratio of

the local square part and the plate ¢/a=0.6 and the
thickness ratio %1/h;=1.0 are adopted. The conver-
gent results of frequency parameter are obtained by
using Richardson’s extrapolation formula for two
cases of divisional numbers m(=#) pointed in Table
2. The present results are compared with those ob-
tained by Laura and Gutiérrez[2] and Ju, Lee and Lee
[7]. They are in good agreement.

Table 3 shows the numerical values for the lowest
3 natural frequency parameter 1 of the plate on non-
homogeneous foundations with %,/k,=1.0, ¢/a=0.
6 and four kinds of combination of K; and K,. The
convergent results of frequency parameter are ob-
tained by using Richardson’s extrapolation formula for
two cases of divisional numbers m (=#) pointed in Ta-
ble 3. The present results are also in good agreerhent

Table 3:Natural frequency parameter 1 for a SSSS
square plate with the central part on non-
homogeneous foundations (¢/a=0.6)

Mode sequence number

K, K, References st 2nd 3rd
320 800 Present :
10x 10 5.878 7.798 7.798
15x15 5.883 7.695 7.695
Ex. 5.887 T7.613 7.613
Ref.[2] 5.895 - -
Ref.[3] 5.862 - -
320 1600 Present )
10x 10 6.5671 8.063 8.063
15 %15 6.588 7.974 7.974
Ex. 6.602 7.902  7.902
Ref.[2] 6.620 - -
Ref.[7] 6.584 - -
800 320  Present '
15x15 5.476  7.602 7.602
20 %20 5.456  7.596 7.596
Ex. 5.430 7.589 7.589
Ref.[2] 5.446 - -
. Ref.[7] 5.402 - -
1600 320 Present
15x15 5.729 T7.767 T7.767
20%20 5.710 7.731 7.731
Ex. 5.685 7.684 7.684
Ref.[2] 5.685 - -
Ref.[7] 5.627 - -
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with those obtained by Laura and Gutiérrez[ 2] and Ju,
Lee and Lee[7]. From Tables 1~3, it can be seen
4 the present method can be used to solve the problem of
plates on homogenéous » foundatio"hs,l local uniformly
distributed supports and non-homogenéous ‘fouhda-

tions.

6 . Conclusions o

A_ discrete method is extended for anaiyzing the free
vibration problem of square plates with stepped thick-
ness on the elastic foundations. No prior assumption of
shape of deflection, such as shape functions used in the
Finite'Elem'ent Method, is employed in this method.
Therefore there is no need to cbns_ider the co'ntinuity
of the element. The spring system is used to simulate
the foundations. The characteristic equation of the
free vibration is gotten by using the Green function.
The effects of the elastic constant of the foundations
and the stepped thickness on the frequencies are consi-
dered. The results by the present method have been
compared with those previously reported. It shows
that the present results have a good convergence and

satisfactory accuracy.
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Appendix A
@1ipit = @sinis = Qaiis= 1, @sivis = Qrivis = Asiois = 1

baoiin = bsgjin = bsojs=1, beojia = brojis = bsozis =1, bso002 =0
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