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Free Vibration Analysis of Simply Supported Square Plates Resting
on Non-homogeneous Elastic Foundations

by

Mei Huang* X.Q. Ma** Takeshi Sakiyama*
Hiroshi Matsuda* Chihiro Morita***

A discrete method is developed for analyzing the free vibration problem of square plates resting on

non-homogeneous elastic foundations. The fundamental differential equations are established for the bend

ing problem of the plate on elastic foundations. The Green function, which is obtained by transforming

these differential equations into integral equations. and using numerical integration, is used to get the

characteristic equation of the free vibration. The effect of the modulus of the foundation on the frequency

parameters is discussed. By comparing the present numerical results with those previously published,. the

efficiency and accuracy of the present method are investigated.

1. Introduction

The free vibration problems of the plates on the

elastic foundations have been studied for many years.

Several numerical methods, such as the Rayleigh-Ritz

method [1,2J a mixed finite element method [3,4J,

the method ofpower series expansion [5], the finite

strip method [6J and the finite element method [7J,

,were used to solve this kind of problem.

In this paper, a discrete method is proposed for

analyzing the free vibration of square plates resting on

non-homogeneous elastic foundations. No prior as

sumption of shape of deflection, such as shape func

tions used in the finite element method, is employed in

this method. Therefore there is noneed to consider the

continuity of the element. The spring system is used to

simulate the foundations. The fundamental differen

tial equations of a plate on non-homogeneous founda

tions are established and satisfied exactly throughout

the whole plate. By transforming these equations into

integral equations and using numerical integration, the

solutions are obtained at the discrete points. The

Green function, which is the solution for deflection, is

used to obtain the characteristic equation of the free
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vibration. Numerical results are obtained for the plates

on homogeneous foundations, local uniformly dis

tributed supports and non-homogeneous foundations.

The effect of the foundation modulus on the frequency

parameter is discussed. The efficiency and accuracy of

the present method for the free vibration of square

plates on elastic foundation are investigated.

2. Fundamental Differential Equations

Figure 1 shows a square plate of length a, thickness

h and density p resting on non-homogeneous founda

tions of foundation modulus kf(f= lor 2). The founda

tion modulus in the central square part is k2, and that

for the other part is k1• An xyz coordinate system is

used in the present study with its x - y plane contained

in middle plane of the square plate, the z-axis perpen-

, dicular to the middle plane of the plate and the origin

at one of the corners of the plate.

In this paper, the elastic foundation is modelled as a

spring system and the intensity of the reaction of the

foundation is assumed to be proportional to the deflec

tion w of the plate. By considering the reaction of the

foundation as a kind of lateral load, the fundamental
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Figure 1 : A square plate resting on non-homogenous

elastic' foundations.

differential equations of the plate having aconcentrat

ed load Pat a point (xq, Yr) and resting on a Winkler

foundation of the foundation modulus kf are as fol

lows:

aQx' aQy ~ ( ) (y ) k -0
~a-+-a-+Po x-xq a -Yr - fW- ,xy ,

aMxy+ aMY _ Q =0
ax ay y ,

aMx+ aMiY _ Q =0
ax ay x ,

aox+ aOy_Mx
ax J.i ay - D'

aoy+ aOx_My
ay J.i ax - D'

aW +0 = Qx
ax x Gts'

aW _ Qy-;;y + 0y - Gts'

where Qx, Qy are the shearing forces, Mxy the twisting

moment,Mx, My the bending moments, Ox, 0y the

slopes, W the deflection, D = Eh3I (12 (1- J.i 2)) the

bending rigidity, E, G modulus, shear modulus of elas

ticity, respectively, J.i Poisson's ratio, h the thickness

of plate, ts =hl1.2, a(X-Xq) , a(x-xr) Dirac's delta

functions.

By introducing the non-dimensional expressions,

the equation (1) is rewritten as the following non

dimensional forms:

aX2 aXI (- ) ( ) - _
P-a-+~+Po r;-r;q a (-(r -kfXS-O,

r; .

aX3 ,ax4 _
p---a;;+~- pxl-o,

aX5 aX3 _
p---a;;+~- pX2-0,

aX7 ax6 -
p---r;; + J.i~-DX5 = 0,

aX7+ ax6 _ D---;v =0
J.i P ar; a ( A4 ,

ax6+ aX7__2- DX3 =0
Par; a( 1~J.i '

ax -
a / + X 7- HX2= 0,

axs - -)ar:+pX6-pHXI-0, (2

where p = 1.0, D"'; P (1- J.i 2) (holh) 3, H= ((1 + J.i) 15)

(hoia) 2hol h, P~Pal (Do (1- J.i 2)), Do = Eh31 (12 (1-

.' J.i 2)) is the standard bending rigidity, ho is the stan

dard thickness of the plate, k = 5I 6 is the shearcorrec

tion factor, a(r; - r; q) and a(( - (r) are Dirac's delta

functions, kf = p Kf I (1~ J.i 2), Kf is the dimensionless

modulus of the foundation, it is defined as follows:

The' equation (2) can also be expressed as the fol

lowing simple form.

where aIt is Kronecker's delta, F lll = F l24 = F l33 = F 156

= F l67 = F ISS =1, F l46 = J.i, FZ12 = F223 = F 235 = F 247 =

F 266 -= p, F257 = P J.i, FZ7S = 1, F3lS = - kf , F 321 = F 332

= -p, F 345 =F354 = -p(1- J.i 2)D, F 363 = -2p(1+J.i)

D, F372,=-((I+J.i)/5)(hola)2DT, F 377 =1, F 381 =

- P ((1 + J.i ) 15) (hoia) 2DT, F386 = p, other Fkts = 0.
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Figure 2 : Discrete points on a rectangular plate.

where U(Yj - Yjq) and U(( - (r) are the unit step func

tions.

Next, by applying the numerical integration method,

the simultaneous equation for the unknown quantities

X sij = X s(Yji, () atthe main point Ci, j) ofthe area [i, jJ

is obtained as follows:

3. Discrete Green. Function

As given in Ref[8J, by dividing a square plate verti

cally into m equal-length parts and horizontally into n

equal-length parts as shown in Figure 2, the plate can

be considered as a group of discrete points which are

the intersections of the (m + 1) -vertical and (n+ 1)

horizontal dividing lines. To describe the present

method conveniently, the rectangular area, 0~ Yj~ Yj j,

o~ (~(]' corresponding to the arbitrary intersection

(i, j) as shown in Figure 1 is denoted as the area [i, jJ,

the intersection (i, j) denoted by 0 is called the main

point of the area [i, jJ, the intersections denoted by 0

are called the inner dependent points ofthe area, and

the intersections denoted by • are called the boundary

dependent points of the area.

By integrating the equation (3) over the area Ii, j],

the following integral equation is obtained:

±{Flts fJi[Xs( Yj, (j) - X s( Yj, 0) Jd Yj

s=l

+F2tS {(tXS(Yji, ()-Xs(O, ()Jd(

+ F3tS{~i {(jxs( Yj, ( )d Yj d ( }

+ Pu(Yj - Yjq)u(( - (r) Olt= 0

(5)

(6)

i j }
+ F 3ts L L {3ik {3jlXskl

k=O 1=0

+PUiqUjrOlt= 0,

i j }
+L L {3ik (3jICptkIXtkl(l- OikOjl) J

k=O 1=0

- Ap1PUiqUjr>

8 i

L {Flts L {3ik (Xskj - X skO)
s=l k=O

j

+ F 2tsL {3jl (Xsil - XsOI)
1=0

8 i

XPij=L{L (3zk A pt[XtkO - Xtkj(l- Oik) J
t=l k=O

j

+L {3jlEpt [XtOl - XtiI (1 - Ojl) J
1=0

where p = 1"-'8, Apt, Ept'and CPtkl are given in Ref[8J.

In the equation (6), the quantity X pij is not only

related to the quantities X tkO and XtOl at the boundary

dependent points but also the quantities Xtkj, Xti/ and

X tkl at the inner dependent points. The maximal num

ber of the unknown quantities is 6 (m -1) (n -1) + 3(m

+n + 1). In order to reduce the unknown quantities,

the area [i, j] is spread according to the regular order

as [1,1], [1,2J, .. ~, [l,n], [2,1], [2,2J, "', [2,

nJ, "', [m,lJ, [m,2J, "', em, nJ. With the

spread of the area according to the above mentioned

order, the quantities X tkj, Xti/ and Xtkl at the inner de

pendent points can be eliminated by substituting the

obtained results into the corresponding terms of the

right hand side of equation (6). By repeating this

process, the quantity X pij at the main point is only

related to the quantities X rkO (r= 1,3,4,6,7,8) and X sOI

(s = 2,3,5,6,7,8) at the boundary dependent points.

The maximal number of the unknown quantities is

reduced to 3(m + n + 1). It can be noted the number

of the unknown quantities of the present method is

fewer than that of the finite element method for the

where {3ik =aik/m, {3jl= ajI!n, aik =.1- (0 Ok + aik) /2,

ajl= 1- (0 01+ Ojl) /2, t= 1"-'8, i= 1"-'m, j= 1"-'n, Uiq =

U(Yji-Yjq), Ujr=u((j-(r)'

By retaining the quantities at main point Ci, j). on the

left hand side of the equation and putting other quanti

ties on the right hand side, and using the matrix transi

tion, the solution Xpij of the above equation (5) is ob

tained as follows:

(4)

i

y

n

"

...l(i j)
".....

xa

o 1 2

2
1

n

j
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same divisional number m(~3) and n(~3). Based

on the above consideration, the equation (6) is rewrit

ten as follows.

6 i i

Xpij=L { L apijfdXrjO+ L bpijgdXSOg} +qPijP,
d=l f=O g=O

where apijfd, bpijgd and· qpij are given in Appendix A.

The equation (7) gives the discrete solution of the

fundamental differential equation (3) of the bending

problem ofa plate resting on an elastic foundation and

having a concentrated load, and the discrete Green

function is chosen as X Sip2I [PDo (1- IJ 2) ], that is w

(XO,Yo,x,y) /P.

4·. Characteristic equation

By applying the Green function w (xo ,Yo ,x ,y) /p which

is the displacement at a point (xo ,Yo) of a plate with a .

concentrated load P at a point (x, y), the displace

ment amplitude w(xo ,Yo) at a point (xo ,Yo) of the

square plate during the free vibration is given as fol

lows:

5. Numerical results

To investigate the validity of the proposed method, the

frequency parameters are given for the plate shown in

Figure ·1. The standard thickness ho is chosen as h

and hoia = 1/1000 is used. All the convergent values of

the frequency parameters are obtained for simply sup

ported plates by using Richardson's extrapolation for

mula for two cases of divisional numbers m( =n):

Some of the results are compared with those reported

previously.

5.1. A square plate on homogeneous

foundations

Table 1· shows the immerical values· for the lowest

4 natural frequency parameter Aof square plates on

homogeneous foundation with K = 0,10,100,1000,

10000. The convergent results of frequency parameter

Table 1:Natural frequency parameter A for a SSSS

square plate on homogeneous foundations

Mode sequence number

Ex.: The values obtained by using Richardson's
extrapolation formula.

9.311
9.216
9.094

9.098

9.635
9.549
9.439

9.345
9.251
9.131

9.315
9.220
9.098

7.336
7.272
7.190

7.192

7.405
7.343
7.263

7.343
7.279
7.198

7.950
7.900
7.836

7.192

7.405
7.343
7.263

7.343
7.279
7.198

7.336
7.272
7.190

7.950
7.900
7.836

1st 2nd 3rd 4th

4.603
4.592
4.578
4.578

4.575
4.564
4.549
4.549
4:549

4.838
4.829
4.816
4.816

6.261
6.257
6.251
6.251

K References

10

o Present
12 x 12
16 x 16

Ex.
Ref. [5]

Exact[9]
Present
12 x 12
16 x 16

Ex.
Ref. [5]

102 Present
12 x 12
16 x 16
Ex. 12

Ref. [5]
103 Present

12 x 12
16 x 16

Ex.
Ref. [5]

104 Present
12x 12 10.339 10.855 10.855 11.664
16x16 10.338 10.836 10.836 11.616

Ex. 10.337 10.811 10.811 11.554
Ref. [5] 10.337

Pohoill 2a4 _ 4)
A4 Do(1-1J2)' k-1/(pA ,

H( 7J ' , ) = P.J&il h (x
h
' y), W( 1] , , ) = w(x, y) ,

po . 0 a

w(xo,yo,x,y) Do(1-1J 2)
a Pa

where po is the standard mass density, the characteris

tic equation is obtained from the equation (8) as

where p is the mass density of the plate material.

By using the numerical integration method and the

following non-dimensional expressions,

Koo KOl K02 KOm
KlO K ll KI2 KIm
K20 K2I K22 K2m =0 (9)

Krrto Kmi Km2 K mm

where

r""lljOG,1ljO - ko. P..H~Gm~ ]
f3nolljOGiIjO f3 nnHjnGiIjn

Kij =f3mj f3n40Gi2jO f3 nnHjnGi2jn

f3 nnHjndinjn - kOijf3 nolljOGinjO
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Table 2: Natural frequency parameter A. for a SSSS

square plate with the central part on local

uniform supports (ela= 0.6)

are obtained by using Richardson's extrapolation for

mula for two cases of divisional numbers m( =n) of

12 and 16. The results obtained by Matsunaga [5J

and the exact values of the plate with K = 0[9J are also

shown in the table. It can be seen that the numerical

results of the present method have satisfactory accura

cy. From this table, it can be also seen that the effect

of the constant K on the fundamental frequency

parameter is much more significant than that on

higher frequency parameters, the frequency parameters

Mode sequence number
1st 2nd 3rd

increase with increase of the constant K, and they in~

crease quickly when K is larger than 100.

7.767
7.731
7.684

7.798
7.695
7.613

7.602
7.596
7.589

8.063
7.974
7.902

7.798
7.695
7.613

7.767
7.731
7.684

7.602
7.596
7.589

8.063
7.974
7.902

5.878
5.883
5.887
5.895
5.862

5.729
5.710
5.685
5.685
5.627

5.476
5.456
5.430
5.446
5.402

6.571
6.588
6.602
6.620
6.584

Mode sequence number
1st 2nd 3rdK 2 References

800 Present
10 x 10
15 x 15

Ex.
Ref.[2J
Ref.[3J

1600 Present
10 x 10
15 x15

Ex.
Ref.[2J
Ref. [7]

320 Present
15 x 15
20 x 20

Ex.
Ref.[2J
Ref.[7J
Present
15 x 15
20 x 20

Ex.
Ref.[2J
Ref. [7]

320

320

800

1600 320

Table 3: Natural frequency parameter A. for a SSSS
. square plate with the central part on non
homogeneous foundations Cc!a = 0.6)

5.2 A square plate on non-homogenous
foundations

Table 2 shows the numerical values for the lowest
3 natural frequency parameter A. of the plate shown in
Figure 1 with K 1 = aor K 2 = 0, which is the case of the
local uniformly distributed support. The side ratio of
the local square part and, the plate ela= 0.6 and the
thickness ratio hdh2 = 1.0 are adopted. The conver
gent results of frequency parameter are obtained by
using Richardson's extrapolation formula for two
cases of divisional numbers m ( = n) pointed in Table
2. The present results are compared with those ob
tained by Laura and Gutierrez[2J and Ju, Lee and Lee
[7J. They are in good agreement.

Table 3 shows the numerical values for the lowest
3 natural frequency parameter A. of the plate on non
homogeneous foundations with hdh2= 1.0, cla=O.
6 and four kinds of combination of K1and K 2• The
convergent results of frequency parameter are" ob
tained by using Richardson's extrapolation formula for
two cases of divisional numbers m ( = n) pointed in Ta
ble 3. The present results are also in good agreement

7.346
7.296
7.232

7.736
7.627
7.540

7.552
7.434
7.341

8.000
7.907
7.833

7.447
7.425
7.397

7.618
7.595
7.566

7.552
7.434
7.341

7.736
7.627
7.540

7.346
7.296
7.232

7.447
7.425
7.397

7.618
7.595
7.566

8.000
7.907
7.833

4.757
4.747
4.733
4.715
4.656

4.998
4.971
4.936
4.937
4.871

5.766
5.782
5.794
5.813
5.774

5.156
5.157
5.158
5.168
5.123

5.316
5.281
5.23'5
5.250
5.161

6.491
6.514
6.533
6.563
6.517

Present
10 x 10
15 x 15

Ex.
Ref.[2J
Ref. [7]

Present
10 x 10
15.X 15

Ex.
Ref.[2J
Ref. [7]
Present
10 xl0
15 x 15

Ex.
Ref.[2J
Ref. [7]

Present
15 x 15
20 x 20

Ex.
Ref.[2J
Ref. [7]

Present
15 x 15
20 x 20

Ex.
Ref.[2J
Ref. [7]
Present
15 x 15
20 x 20

Ex.
Ref.[2J
Ref. [7]

References

o

a

o

320

800

1600o

o

o

320

800

1600
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with those obtained by Laura and Gutierrez[2J and ]u,

Lee and Lee[7]. From Tables 1~3, it can be seen

the present method can be used to solve the problem of

plates on homogeneous foundations, local uniformly

distributed supports and non-homogeneous founda

tions.

6. Conclusions

A discrete method is extended for analyzing the free

vibration problem of square plates with stepped thick

ness onthe elastic foundations. No prior assumption of

shape of deflection, such as shape functions used in the

Finite· Element Method, is employed in this' method.

Therefore there is no need to consider the continuity

of the element. The spring system is used to simulate

the foundations. The characteristic equation of the

free vibration is gotten by using the Green function.

The effects of the elastic constant of the foundations

and the stepped thickness on the frequencies are consi

dered. The results by the present method have been

compared with those previously reported. It shows

that the present results have a good convergence and

satisfactory accuracy.
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Appendix A

alipil= a3iOi2 = a4iOi3 = 1, a6iOi4 = a7iOi5 = aSiOi6 = 1

b20jjl = b30jj2 = b50jj3= 1, b60jj4 = b70jj5 = bSOjj6 = 1, b30002 = 0

8 i· '

apijfd = L {L j3ilApt[atkOfd - atkjfd (1 - 0ki) J
t=1 k=O

j

+L j3j1B pt[atOlfd - atilfd (1 - Olj) J
1=0

+1:±j3ikj3jlCptklatklfd (1- Oki Oij) J}
k=O 1=0

8 i

bpijfd= L {L j3ikApt[btkOgd-btkjgd(1- Oki) J
t=1 k=O

j

+ L j3jlBpt[btOlgd- bti/gd(1 '- Olj) J
1=0

S. i

qpij= L{Lj3ikA pt[qtkO-qtkj(1- Oki)J
t~1 k=O

j

+Lj3j1B pt[qtOl-qtil(1- Oij) J
1=0


