Free Vibration Analysis of Simply Supported Square Plates Resting on Non-homogeneous Elastic Foundations

by
Mei Huang* X.Q. Ma** Takeshi Sakiyama*
Hiroshi Matsuda* Chihiro Morita***

Abstract

A discrete method is developed for analyzing the free vibration problem of square plates resting on non-homogeneous elastic foundations. The fundamental differential equations are established for the bending problem of the plate on elastic foundations. The Green function, which is obtained by transforming these differential equations into integral equations and using numerical integration, is used to get the characteristic equation of the free vibration. The effect of the modulus of the foundation on the frequency parameters is discussed. By comparing the present numerical results with those previously published, the efficiency and accuracy of the present method are investigated.

1. Introduction

The free vibration problems of the plates on the elastic foundations have been studied for many years. Several numerical methods, such as the Rayleigh-Ritz method $[1,2]$ a mixed finite element method [3,4], the method of power series expansion [5], the finite strip method [6] and the finite element method [7], were used to solve this kind of problem.

In this paper, a discrete method is proposed for analyzing the free vibration of square plates resting on non-homogeneous elastic foundations. No prior assumption of shape of deflection, such as shape functions used in the finite element method, is employed in this method. Therefore there is no need to consider the continuity of the element. The spring system is used to simulate the foundations. The fundamental differential equations of a plate on non-homogeneous foundations are established and satisfied exactly throughout the whole plate. By transforming these equations into integral equations and using numerical integration, the solutions are obtained at the discrete points. The Green function, which is the solution for deflection, is used to obtain the characteristic equation of the free
vibration. Numerical results are obtained for the plates on homogeneous foundations, local uniformly distributed supports and non-homogeneous foundations. The effect of the foundation modulus on the frequency parameter is discussed. The efficiency and accuracy of the present method for the free vibration of square plates on elastic foundation are investigated.

2. Fundamental Differential Equations

Figure 1 shows a square plate of length a, thickness h and density ρ resting on non-homogeneous foundations of foundation modulus $k_{f}(f=1$ or 2$)$. The foundation modulus in the central square part is k_{2}, and that for the other part is k_{1}. An $x y z$ coordinate system is used in the present study with its $x-y$ plane contained in middle plane of the square plate, the z-axis perpendicular to the middle plane of the plate and the origin at one of the corners of the plate.
In this paper, the elastic foundation is modelled as a spring system and the intensity of the reaction of the foundation is assumed to be proportional to the deflection w of the plate. By considering the reaction of the foundation as a kind of lateral load, the fundamental

[^0]

Figure 1: A square plate resting on non-homogenous elastic foundations.
differential equations of the plate having a concentrated load \bar{P} at a point $\left(x_{q}, y_{r}\right)$ and resting on a Winkler foundation of the foundation modulus k_{f} are as follows:

$$
\begin{align*}
& \frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+\bar{P} \delta\left(x-x_{q}\right) \delta\left(y-y_{r}\right)-k_{f} w=0 \\
& \frac{\partial M_{x y}}{\partial x}+\frac{\partial M_{y}}{\partial y}-Q_{y}=0 \\
& \frac{\partial M_{x}}{\partial x}+\frac{\partial M_{x y}}{\partial y}-Q_{x}=0 \\
& \frac{\partial \theta_{x}}{\partial x}+\nu \frac{\partial \theta_{y}}{\partial y}=\frac{M_{x}}{D} \\
& \frac{\partial \theta_{y}}{\partial y}+\nu \frac{\partial \theta_{x}}{\partial x}=\frac{M_{y}}{D} \\
& \frac{\partial \theta_{x}}{\partial y}+\frac{\partial \theta_{y}}{\partial x}=\frac{2}{(1-\nu)} \frac{M_{x y}}{D} \\
& \frac{\partial w}{\partial x}+\theta_{x}=\frac{Q_{x}}{G t_{s}} \\
& \frac{\partial w}{\partial y}+\theta_{y}=\frac{Q_{y}}{G t_{s}} \tag{1}
\end{align*}
$$

where Q_{x}, Q_{y} are the shearing forces, $M_{x y}$ the twisting moment, M_{x}, M_{y} the bending moments, θ_{x}, θ_{y} the slopes, w the deflection, $D=E h^{3} /\left(12\left(1-\nu^{2}\right)\right)$ the bending rigidity, E, G modulus, shear modulus of elasticity, respectively, ν Poisson's ratio, h the thickness of plate, $t_{s}=h / 1.2, \delta\left(x-x_{q}\right), \delta\left(x-x_{r}\right)$ Dirac's delta functions.
By introducing the non-dimensional expressions,

$$
\begin{aligned}
& {\left[X_{1}, X_{2}\right]=\frac{a^{2}}{D_{0}\left(1-v^{2}\right)}\left[Q_{x}, Q_{y}\right]} \\
& {\left[X_{3}, X_{4}, X_{5}\right]=\frac{a}{D_{0}\left(1-v^{2}\right)}\left[M_{x y}, M_{y}, M_{x}\right]} \\
& {\left[X_{6}, X_{7}, X_{8}\right]=\left[\theta_{y}, \theta_{x}, w / a\right]}
\end{aligned}
$$

the equation(1) is rewritten as the following nondimensional forms:

$$
\begin{align*}
& \mu \frac{\partial X_{2}}{\partial \eta}+\frac{\partial X_{1}}{\partial \zeta}+P \delta\left(\eta-\eta_{q}\right) \delta\left(\zeta-\zeta_{r}\right)-\bar{k}_{f} X_{8}=0 \\
& \mu \frac{\partial X_{3}}{\partial \eta}+\frac{\partial X_{4}}{\partial \zeta}-\mu X_{1}=0 \\
& \mu \frac{\partial X_{5}}{\partial \eta}+\frac{\partial X_{3}}{\partial \zeta}-\mu X_{2}=0 \\
& \mu \frac{\partial X_{7}}{\partial \eta}+\nu \frac{\partial X_{6}}{\partial \zeta}-\bar{D} X_{5}=0 \\
& \nu \mu \frac{\partial X_{7}}{\partial \eta}+\frac{\partial X_{6}}{\partial \zeta}-\bar{D} X_{4}=0 \\
& \mu \frac{\partial X_{6}}{\partial \eta}+\frac{\partial X_{7}}{\partial \zeta}-\frac{2}{1-\nu} \bar{D} X_{3}=0 \\
& \frac{\partial X_{8}}{\partial \eta}+X_{7}-\bar{H} X_{2}=0 \\
& \frac{\partial X_{8}}{\partial \zeta}+\mu X_{6}-\mu \bar{H} X_{1}=0 \tag{2}
\end{align*}
$$

where $\mu=1.0, \bar{D}=\mu\left(1-\nu^{2}\right)\left(h_{0} / h\right)^{3}, \bar{H}=((1+\nu) / 5)$ $\left(h_{0} / a\right)^{2} h_{0} / h, P=\bar{P} a /\left(D_{0}\left(1-\nu^{2}\right)\right), D_{0}=E h_{0}^{3} /(12(1-$ $\left.\nu^{2}\right)$) is the standard bending rigidity, h_{0} is the standard thickness of the plate, $k=5 / 6$ is the shear correction factor, $\delta\left(\eta-\eta_{q}\right)$ and $\delta\left(\zeta-\zeta_{r}\right)$ are Dirac's delta functions, $\bar{k}_{f}=\mu K_{f} /\left(1-\nu^{2}\right), K_{f}$ is the dimensionless modulus of the foundation, it is defined as follows:

$$
K_{f}=k_{f} a^{4} / D_{0} \quad(f=1,2),
$$

The equation (2) can also be expressed as the following simple form.

$$
\begin{align*}
& \sum_{s=1}^{8}\left\{F_{1 t s} \frac{\partial X_{s}}{\partial \zeta}+F_{2 t s} \frac{\partial X_{s}}{\partial \eta}+F_{3 t s} X_{s}\right\} \\
& +P \delta\left(\eta-\eta_{q}\right) \delta\left(\zeta-\zeta_{r}\right) \delta_{1 t}=0 \quad(t=1 \sim 8) \tag{3}
\end{align*}
$$

where $\delta_{1 t}$ is Kronecker's delta, $F_{111}=F_{124}=F_{133}=F_{156}$ $=F_{167}=F_{188}=1, \quad F_{146}=\nu, F_{212}=F_{223}=F_{235}=F_{247}=$ $F_{266}=\mu, F_{257}=\mu \nu, F_{278}=1, F_{318}=-\bar{k}_{f}, \quad F_{321}=F_{332}$ $=-\mu, \quad F_{345}=F_{354}=-\mu\left(1-\nu^{2}\right) \bar{D}, \quad F_{363}=-2 \mu(1+\nu)$ $\bar{D}, \quad F_{372}=-((1+\nu) / 5)\left(h_{0} / a\right)^{2} \overline{D T}, \quad F_{377}=1, \quad F_{381}=$ $-\mu((1+\nu) / 5)\left(h_{0} / a\right)^{2} \overline{D T}, \quad F_{386}=\mu$, other $F_{k t s}=0$.

3. Discrete Green Function

As given in Ref[8], by dividing a square plate vertically into m equal-length parts and horizontally into n equal-length parts as shown in Figure 2, the plate can be considered as a group of discrete points which are the intersections of the $(m+1)$-vertical and $(n+1)$ horizontal dividing lines. To describe the present method conveniently, the rectangular area, $0 \leq \eta_{\eta} \eta_{\eta_{\mathrm{i}}}$, $0 \leq \zeta \leq \zeta_{\mathrm{j}}$, corresponding to the arbitrary intersection (i, j) as shown in Figure 1 is denoted as the area [i,j], the intersection (i, j) denoted by \bigcirc is called the main point of the area $[i, j]$, the intersections denoted by \circ are called the inner dependent points of the area, and the intersections denoted by \bullet are called the boundary dependent points of the area.

By integrating the equation (3) over the area $[i, j]$, the following integral equation is obtained:

Figure 2 : Discrete points on a rectangular plate.

$$
\begin{align*}
& \sum_{s=1}^{8}\left\{F_{1 t s} \int_{0}^{\eta_{i}}\left[X_{s}\left(\eta, \zeta_{j}\right)-X_{s}(\eta, 0)\right] d \eta\right. \\
& \quad+F_{2 t s} \int_{0}^{\zeta_{j}}\left[X_{s}\left(\eta_{i}, \zeta\right)-X_{s}(0, \zeta)\right] d \zeta \\
& \left.\quad+F_{3 t s} \int_{0}^{\eta_{i}} \int_{0}^{\zeta_{j}} X_{s}(\eta, \zeta) d \eta d \zeta\right\} \\
& \quad+P u\left(\eta-\eta_{q}\right) u\left(\zeta-\zeta_{r}\right) \delta_{1 t}=0 \tag{4}
\end{align*}
$$

where $u\left(\eta-\eta_{q}\right)$ and $u\left(\zeta-\zeta_{r}\right)$ are the unit step functions.
Next, by applying the numerical integration method, the simultaneous equation for the unknown quantities $X_{s i j}=X_{s}\left(\eta_{i}, \zeta_{j}\right)$ at the main point (i, j) of the area $[i, j]$ is obtained as follows:

$$
\begin{align*}
& \sum_{s=1}^{8}\left\{F_{1 t s} \sum_{k=0}^{i} \beta_{i k}\left(X_{s k j}-X_{s k 0}\right)\right. \\
& +F_{2 t s} \sum_{l=0}^{j} \beta_{j l}\left(X_{s i l}-X_{s 0 l}\right) \\
& \left.+F_{3 t s} \sum_{k=0}^{i} \sum_{l=0}^{j} \beta_{i k} \beta_{j l} X_{s k l}\right\} \\
& +P u_{i q} u_{j r} \delta_{1 t}=0 \tag{5}
\end{align*}
$$

where $\beta_{i k}=\alpha_{i k} / m, \beta_{j l}=\alpha_{j l} / n, \alpha_{i k}=1-\left(\delta_{0 k}+\delta_{i k}\right) / 2$, $\alpha_{j l}=1-\left(\delta_{0 l}+\delta_{j l}\right) / 2, \quad t=1 \sim 8, i=1 \sim m, j=1 \sim n, u_{i q}=$ $u\left(\eta_{i}-\eta_{q}\right), u_{j r}=u\left(\zeta_{j}-\zeta_{r}\right)$.

By retaining the quantities at main point (i, j) on the left hand side of the equation and putting other quantities on the right hand side, and using the matrix transition, the solution $X_{p i j}$ of the above equation (5) is obtained as follows:

$$
\begin{align*}
X_{p i j}= & \sum_{t=1}^{8}\left\{\sum_{k=0}^{i} \beta_{i k} A_{p t}\left[X_{t k 0}-X_{t k j}\left(1-\delta_{i k}\right)\right]\right. \\
& +\sum_{l=0}^{j} \beta_{j l} B_{p t}\left[X_{t 0 l}-X_{t i l}\left(1-\delta_{j l}\right)\right] \\
& \left.\left.+\sum_{k=0}^{i} \sum_{l=0}^{j} \beta_{i k} \beta_{j l} C_{p t k l} X_{t k l}\left(1-\delta_{i k} \delta_{j l}\right)\right]\right\} \\
& -A_{p 1} P u_{i q} u_{j r}, \tag{6}
\end{align*}
$$

where $p=1 \sim 8, A_{p t}, B_{p t}$ and $C_{p t k l}$ are given in Ref[8].
In the equation (6), the quantity $X_{p i j}$ is not only related to the quantities $X_{t k 0}$ and $X_{t 0 l}$ at the boundary dependent points but also the quantities $X_{t k j}, X_{t i l}$ and $X_{t h l}$ at the inner dependent points. The maximal number of the unknown quantities is $6(m-1)(n-1)+3(m$ $+n+1$). In order to reduce the unknown quantities, the area $[i, j]$ is spread according to the regular order as $[1,1],[1,2], \cdots,[1, n],[2,1],[2,2], \cdots,[2$, $n], \cdots,[m, 1],[m, 2], \cdots,[m, n]$. With the spread of the area according to the above mentioned order, the quantities $X_{t k j}, X_{t i l}$ and $X_{t k l}$ at the inner dependent points can be eliminated by substituting the obtained results into the corresponding terms of the right hand side of equation (6). By repeating this process, the quantity $X_{p i j}$ at the main point is only related to the quantities $X_{r k 0}(r=1,3,4,6,7,8)$ and $X_{s 0 l}$ $(s=2,3,5,6,7,8)$ at the boundary dependent points. The maximal number of the unknown quantities is reduced to $3(m+n+1)$. It can be noted the number of the unknown quantities of the present method is fewer than that of the finite element method for the
same divisional number $m(\geq 3)$ and $n(\geq 3)$. Based on the above consideration, the equation (6) is rewritten as follows.

$$
X_{p i j}=\sum_{d=1}^{6}\left\{\sum_{f=0}^{i} a_{p i j f d} X_{v f 0}+\sum_{g=0}^{i} b_{p i j g d} X_{s 0 g}\right\}+\bar{q}_{p i j} P,
$$

where $a_{p i j f d}, b_{p i j g d}$ and $\bar{q}_{p i j}$ are given in Appendix A.
The equation (7) gives the discrete solution of the fundamental differential equation (3) of the bending problem of a plate resting on an elastic foundation and having a concentrated load, and the discrete Green function is chosen as $X_{8 i j} a^{2} /\left[P D_{0}\left(1-\nu^{2}\right)\right]$, that is w $\left(x_{0}, y_{0}, x, y\right) / \bar{P}$.

4. Characteristic equation

By applying the Green function $w\left(x_{0}, y_{0}, x, y\right) / \bar{P}$ which is the displacement at a point $\left(x_{0}, y_{0}\right)$ of a plate with a concentrated load \bar{P} at a point (x, y), the displacement amplitude $\hat{w}\left(x_{0}, y_{0}\right)$ at a point $\left(x_{0}, y_{0}\right)$ of the square plate during the free vibration is given as follows:
$\hat{w}\left(x_{0}, y_{0}\right)=\int_{0}^{b} \int_{0}^{a} \rho h \omega^{2} \hat{w}(x, y)\left[w\left(x_{0}, y_{0}, x, y\right) / \bar{P}\right] d x d y$,
where ρ is the mass density of the plate material.
By using the numerical integration method and the following non-dimensional expressions,

$$
\begin{aligned}
& \lambda^{4}=\frac{\rho_{0} h_{0} \omega^{2} a^{4}}{D_{0}\left(1-\nu^{2}\right)}, \quad k=1 /\left(\mu \lambda^{4}\right) \\
& H(\eta, \zeta)=\frac{\rho(x, y)}{\rho_{0}} \frac{h(x, y)}{h_{0}}, W(\eta, \zeta)=\frac{\hat{w}(x, y)}{a} \\
& G\left(\eta_{0}, \zeta_{0}, \eta, \zeta\right)=\frac{w\left(x_{0}, y_{0}, x, y\right)}{a} \frac{D_{0}\left(1-\nu^{2}\right)}{\bar{P} a}
\end{aligned}
$$

where ρ_{0} is the standard mass density, the characteristic equation is obtained from the equation (8) as

$$
\left(\begin{array}{ccccc}
\mathrm{K}_{00} & \mathrm{~K}_{01} & \mathrm{~K}_{02} & \cdots & \mathrm{~K}_{0 \mathrm{~m}} \tag{9}\\
\mathrm{~K}_{10} & \mathrm{~K}_{11} & \mathrm{~K}_{12} & \cdots & \mathrm{~K}_{\mathrm{m}} \\
\mathrm{~K}_{20} & \mathrm{~K}_{21} & \mathrm{~K}_{22} & \cdots & \mathrm{~K}_{2 \mathrm{~m}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathrm{~K}_{\mathrm{m} 0} & \mathrm{~K}_{\mathrm{m} 1} & \mathrm{~K}_{\mathrm{m} 2} & \cdots & \mathrm{~K}_{\mathrm{mm}}
\end{array}\right)=0
$$

where
$\mathrm{K}_{\mathrm{ij}}=\beta_{m j}\left[\begin{array}{ccc}\beta_{n 0} H_{j 0} G_{i j j 0}-k \delta_{i j} & \cdots & \beta_{n n} H_{j n} G_{i j j n} \\ \beta_{n 0} H_{j 0} G_{i l j 0} & \cdots & \beta_{n n} H_{j n} G_{i j n} \\ \beta_{n 0} H_{j 0} G_{i 2 j 0} & \cdots & \beta_{n n} H_{j n} G_{i 2 j n} \\ \vdots & \vdots & \vdots \\ \beta_{n 0} H_{j 0} G_{i n j 0} & \cdots & \beta_{n n} H_{j n} G_{i n j n}-k \delta_{i j}\end{array}\right]$

5. Numerical results

To investigate the validity of the proposed method, the frequency parameters are given for the plate shown in Figure 1. The standard thickness h_{0} is chosen as h and $h_{0} / a=1 / 1000$ is used. All the convergent values of the frequency parameters are obtained for simply supported plates by using Richardson's extrapolation formula for two cases of divisional numbers $m(=n)$. Some of the results are compared with those reported previously.

5.1. A square plate on homogeneous foundations

Table 1 shows the numerical values for the lowest 4 natural frequency parameter λ of square plates on homogeneous foundation with $K=0,10,100,1000$, 10000 . The convergent results of frequency parameter

Table 1:Natural frequency parameter λ for a SSSS square plate on homogeneous foundations

K	References	Mode sequence number			
		1st	2nd	3rd	4th
0	Present				
	12×12	4.575	7.336	7.336	9.311
	16×16	4.564	7.272	7.272	9.216
	Ex.	4.549	7.190	7.190	9.094
	Ref.[5]	4.549	-	-	-
	Exact[9]	4.549	7.192	7.192	9.098
10	Present				
	12×12	4.603	7.343	7.343	9.315
	16×16	4.592	7.279	7.279	9.220
	Ex.	4.578	7.198	7.198	9.098
	Ref.[5]	4.578	-	-	-
10^{2}	Present				
	12×12	4.838	7.405	7.405	9.345
	16×16	4.829	7.343	7.343	9.251
	Ex. 12	4.816	7.263	7.263	9.131
	Ref.[5]	4.816	-	-	-
10^{3}	Present				
	12×12	6.261	7.950	7.950	9.635
	16×16	6.257	7.900	7.900	9.549
	Ex.	6.251	7.836	7.836	9.439
	Ref.[5]	6.251	-	-	-
10^{4}	Present				
	12×12	10.339	10.855	10.855	11.664
	16×16	10.338	10.836	10.836	11.616
	Ex.	10.337	10.811	10.811	11.554
	Ref.[5]	10.337	-	-	-

Ex.: The values obtained by using Richardson's extrapolation formula.
are obtained by using Richardson's extrapolation formula for two cases of divisional numbers $m(=n)$ of 12 and 16. The results obtained by Matsunaga [5] and the exact values of the plate with $K=0[9]$ are also shown in the table. It can be seen that the numerical results of the present method have satisfactory accuracy. From this table, it can be also seen that the effect of the constant K on the fundamental frequency parameter is much more significant than that on higher frequency parameters, the frequency parameters

Table 2:Natural frequency parameter λ for a SSSS square plate with the central part on local uniform supports ($c / a=0.6$)

K_{1}	K_{2}	References	Mode sequence number		
			1st	2nd	3 rd
0	320	Present			
		10×10	5.156	7.552	7.552
		15×15	5.157	7.434	7.434
		Ex.	5.158	7.341	7.341
		Ref.[2]	5.168	-	-
		Ref.[7]	5.123	-	-
0	800	Present			
		10×10	5.766	7.736	7.736
		15×15	5.782	7.627	7.627
		Ex.	5.794	7.540	7.540
		Ref.[2]	5.813	-	-
		Ref.[7]	5.774	-	-
0	1600	Present			
		10×10	6.491	8.000	8.000
		15×15	6.514	7.907	7.907
		Ex.	6.533	7.833	7.833
		Ref.[2]	6.563	-	-
		Ref.[7]	6.517	-	-
320	0	Present			
		15×15	4.757	7.346	7.346
		20×20	4.747	7.296	7.296
		Ex:	4.733	7.232	7.232
		Ref.[2]	4.715	-	-
		Ref.[7]	4.656	-	-
800	0	Present			
		15×15	4.998	7.447	7.447
		20×20	4.971	7.425	7.425
		Ex.	4.936	7.397	7.397
		Ref.[2]	4.937	-	-
		Ref.[7]	4.871	-	-
1600	0	Present			
		15×15	5.316	7.618	7.618
		20×20	5.281	7.595	7.595
		Ex.	5.235	7.566	7.566
		Ref.[2]	5.250	-	-
		Ref.[7]	5.161	-	-

increase with increase of the constant K, and they increase quickly when K is larger than 100 .

5.2 A square plate on non-homogenous foundations

Table 2 shows the numerical values for the lowest 3 natural frequency parameter λ of the plate shown in Figure 1 with $K_{1}=0$ or $K_{2}=0$, which is the case of the local uniformly distributed support. The side ratio of the local square part and the plate $c / a=0.6$ and the thickness ratio $h_{1} / h_{2}=1.0$ are adopted. The convergent results of frequency parameter are obtained by using Richardson's extrapolation formula for two cases of divisional numbers $m(=n)$ pointed in Table 2. The present results are compared with those obtained by Laura and Gutiérrez[2] and Ju, Lee and Lee [7]. They are in good agreement.
Table 3 shows the numerical values for the lowest 3 natural frequency parameter λ of the plate on nonhomogeneous foundations with $h_{1} / h_{2}=1.0, c / a=0$. 6 and four kinds of combination of K_{1} and K_{2}. The convergent results of frequency parameter are obtained by using Richardson's extrapolation formula for two cases of divisional numbers $m(=n)$ pointed in Table 3. The present results are also in good agreement

Table 3: Natural frequency parameter λ for a SSSS square plate with the central part on nonhomogeneous foundations ($c / a=0.6$)

K_{1}	K_{2}	References	Mode sequence number		
			1st	2nd	3rd
320	800	Present			
		10×10	5.878	7.798	7.798
		15×15	5.883	7.695	7.695
		Ex.	5.887	7.613	7.613
		Ref.[2]	5.895	-	-
		Ref.[3]	5.862	-	-
320	1600	Present			
		10×10	6.571	8.063	8.063
		15×15	6.588	7.974	7.974
		Ex.	6.602	7.902	7.902
		Ref.[2]	6.620	-	-
		Ref.[7]	6.584	-	-
800	320	Present			
		15×15	5.476	7.602	7.602
		20×20	5.456	7.596	7.596
		Ex.	5.430	7.589	7.589
		Ref.[2]	5.446	-	-
		Ref.[7]	5.402	-	-
1600	320	Present			
		15×15	5.729	7.767	7.767
		20×20	5.710	7.731	7.731
		Ex.	5.685	7.684	7.684
		Ref.[2]	5.685	-	-
		Ref.[7]	5.627	-	-

with those obtained by Laura and Gutiérrez[2] and Ju, Lee and Lee[7]. From Tables 1~3, it can be seen the present method can be used to solve the problem of plates on homogeneous foundations, local uniformly distributed supports and non-homogeneous foundations.

6 . Conclusions

A discrete method is extended for analyzing the free vibration problem of square plates with stepped thickness on the elastic foundations. No prior assumption of shape of deflection, such as shape functions used in the Finite Element Method, is employed in this method. Therefore there is no need to consider the continuity of the element. The spring system is used to simulate the foundations. The characteristic equation of the free vibration is gotten by using the Green function. The effects of the elastic constant of the foundations and the stepped thickness on the frequencies are considered. The results by the present method have been compared with those previously reported. It shows that the present results have a good convergence and satisfactory accuracy.

ACKNOWLEDGEMENTS

The present study was sponsored by Takahashi Industrial and Economic Research Foundation.

References

[1] P.A.A.Laura and R.H.Gutiérrez 1984 Journal of Sound and Vibration 95, 531-536. Vibration of plates elastically supported on a non-homogeneous foundation.
[2] P.A.A.LAura, R.G.Gutiérrez 1985 Journal of Sound and Vibration 101, 307-315. Transverse vibrations of rectangular plates on inhomogeneous foundations, part I: Rayleigh-Ritz method.
[3] M.H.Omurtag, A.ÖzÜTok, A.Y.AköZ and Y.ÖzCELIKÖRS 1997 International Journal for Numerical Method in Engineering 40, 295-317. Free vibration analysis of Kirchhoff plates resting on elastic foundation by fixed finite element formulation based on Gâteaux differential.
[4] M.H.OMURTAG and F.Kadioḡlu 1998 Computers \& Structures 67, 253-265. Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation.
[5] Hiroyuki Matsunaga 2000 Journal of Engineering Mechanics 126, 27-34. Vibration and stability of thick plates on elastic foundations.
[6] M.-H.Huang and D.P.Thambiratnam 2001 Computers \& Structures 79, 2547-2557. Analysis of plate resting on elastic supports and elastic foundation by finite strip method.
[7] F.Ju, H.P.LeE and K.H.Lee 1995 Journal of Sound and Vibration 183, 533-545. Free vibration of plates with stepped variations in thickness on nonhomogeneous elastic foundations.
[8] T.SAKiyama and M.Huang 1998 Journal of Sound and Vibration 216 379-397. Free vibration analysis of rectangular plates with variable thickness.
[9]1976 Japan Society of Civil Engineering. The Structural Mechanics Handbook.

Appendix A

$$
\begin{aligned}
& a_{1 i 0 i 1}=a_{3 i 0 i 2}=a_{4 i 0 i 3}=1, \quad a_{6 i 0 i 4}=a_{7 i 0 i 5}=a_{8 i 0 i 6}=1 \\
& b_{20 j 11}=b_{30 j 22}=b_{50 j j 3}=1, \quad b_{60 j j 4}=b_{70 j j 5}=b_{80 j i 6}=1, \quad b_{30002}=0 \\
& a_{p i j f d}=\sum_{t=1}^{8}\left\{\sum_{k=0}^{i} \beta_{i k} A_{p t}\left[a_{t k 0 f d}-a_{t k j f d}\left(1-\delta_{k i}\right)\right]\right. \\
& +\sum_{l=0}^{j} \beta_{j l} B_{p t}\left[a_{t i l f d}-a_{t i l f d}\left(1-\delta_{l j}\right)\right] \\
& \left.\left.+\sum_{k=0}^{i} \sum_{l=0}^{j} \beta_{i k} \beta_{j l} C_{p t k l} a_{t k l f d}\left(1-\delta_{k i} \delta_{l j}\right)\right]\right\} \\
& b_{p i j f d}=\sum_{i=1}^{8}\left\{\sum_{k=0}^{i} \beta_{i k} A_{p t t}\left[b_{t k 0 g d}-b_{t k j g d}\left(1-\delta_{k i}\right)\right]\right. \\
& +\sum_{l=0}^{j} \beta_{j l} B_{p t t}\left[b_{i 0 l g d}-b_{t i l g d}\left(1-\delta_{l j}\right)\right] \\
& \left.\left.+\sum_{k=0}^{i} \sum_{l=0}^{j} \beta_{i k} \beta_{j l} C_{p t k l} b_{t h l g d}\left(1-\delta_{k i} \delta_{l j}\right)\right]\right\} \\
& \bar{q}_{p i j}=\sum_{t=1}^{8}\left\{\sum_{k=0}^{i} \beta_{i k} A_{p t t}\left[\bar{q}_{t k 0}-\bar{q}_{t k j}\left(1-\delta_{k i}\right)\right]\right. \\
& +\sum_{l=0}^{j} \beta_{j l} B_{p t}\left[\bar{q}_{t 0 l}-\bar{q}_{t i l}\left(1-\delta_{l j}\right)\right] \\
& \left.+\sum_{k=0}^{i} \sum_{l=0}^{j} \beta_{i k} \beta_{j l} C_{p t t l}\right\}-A_{p 1} u_{i q} u_{j r}
\end{aligned}
$$

[^0]: Received on Apr. 16, 2004
 *Department of Structural Engineering
 **Heibei University of Technology
 ***Graduate School of Science and Technology

