## 弾性支持される変断面片持ち長方形板の振動,座屈 および動的安定性

#### 高橋和雄\*•古谷寿章\*\*

## Vibration, Buckling and Dynamic Stability of a Non-Uniform Rectangular Cantilever Plate with Elastic End Support

by

### Kazuo TAKAHASHI\* and Hisaaki FURUTANI\*\*

Vibration , buckling and dynamic stability of a non-uniform rectangular cantilever plate with elastic end support are studied. Vibration and buckling problems are solved by Rayleigh-Ritz method. Dynamic stability is solved by Hamilton method and the harmonic balance method. The effects of non-uniform parameter and the stiffness of the elastic end support are discussed.

#### 1. まえがき

はりや平板の動的安定性の研究はこれまで数多く行 われ、解法および現象も明確になってきている。しか し、動的安定性の汎用的な解法がないため、不安定領 域が単純共振しか得られていないことや、解析の自由 度が限定されていることなど不十分な点が認められ る。このため、複雑な構造特性をもつ構造部材の動的 安定性は十分に解析されていない。最近、動的不安定 領域の解析の新しい手法の開発1)や計算機の活用によ って複雑な構造特性を解析することが可能になりつ つある。弾性拘束、変断面を考慮した構造部材の動 的安定性の研究として, Kar による自由端で弾性支持 された変断面片持ちばりの解析2)がある。Kar は, Bolotin の方法<sup>3)</sup>を用いて単純共振のみを求めている。 しかし、動的不安定現象が生じるような片持ちばりは 薄肉材であることから、はりに断面変形が生ずること が予想される。したがって、平板として解析すること がより適切である。

そこで、本論文では境界部で弾性拘束を受ける変断

#### 平成7年4月28日受理

面長方形板の動的安定を明らかにする。Kar によって 提案された問題を平板に拡張する。自由辺を含む平板 を解析する場合、幾何学的境界条件と力学的境界条件 を満足する座標関数を仮定することは不可能であるた め、平板の運動方程式を Galerkin 法を用いて解析す ることは無理である。本論文では、幾何学的境界条件 のみを満足する座標関数を用いて解が得られるエネル ギー法<sup>4)</sup>に基づく Rayleigh-Ritz 法を用いて固有振動 形を得る。次いで、得られた固有振動形を用いて、 Hamilton の原理に基づいて、時間に関する係数励振 振動型の運動方程式に変換する手法を採用する。動的 安定解析には、Bolotin の方法で得られない結合共振 も得られる解法1)を採用し、動的不安定領域の全体像 を得る。解析にあたっては、変断面長方形板の固有振 動、座屈および動的不安定領域に及ぼす変断面、弾性 支持などの各種のパラメータの影響を明らかにする。

弾性支持される変断面長方形板の動的安定性では, 自由辺に Kar が仮定した鉛直バネ<sup>2)</sup>の他に回転バネ を設定する。これにより,自由辺でのたわみを抑制す

<sup>\*</sup>社会開発工学科 (Depertment of Civil Engineering) \*\*日立造船(株) (Hitachi Zosen Co.)

ると同時にたわみ角を抑制する。

数値解析において,弾性支持される変断面長方形板 の固有振動特性,座屈特性および動的不安定領域を, 変断面およびバネに関する無次元パラメータのもとに 明らかにする。

2. 解法



Fig. 1 Geometry of plate

Fig. 1 に示すような,自由辺で弾性支持された変断 面長方形板が,x方向に一様分布の静的面内力 $N_{xx}$ と 変動面内力 $N_{xt} \cos\Omega t$ を受ける場合を考える。本研究 で特に用いた仮定は,次のとおりである。

(1) 基本的仮定

本研究で用いる変断面長方形板は薄板と仮定するの で、板厚方向(z方向)の応力成分を無視する。

長方形板の板厚は x 方向に線形的に変化し, y 方向 に対しては一定である

(2) Hamilton の原理による解法

弾性支持される変断面長方形板のひずみエネルギー Vは、変断面長方形板の曲げによるひずみエネルギ -<sup>6)</sup>,鉛直バネおよび回転バネのひずみエネルギーか ら構成される。したがって、本研究では、ひずみエネ ルギーVを次のように定義する。

$$V(\mathbf{w}) = \frac{1}{2} \int_0^b \int_0^a D\Big\{ (\nabla^2 w)^2 - 2 (1 - \nu) \Big[ \frac{\partial^2 w \partial^2 w}{\partial x^2 \partial y^2} \\ - \Big( \frac{\partial^2 w}{\partial x \partial y} \Big)^2 \Big] \Big\} dx dy + \frac{K_\nu}{2} \int_0^b w(a, y)^2 dy \\ + \frac{K_r}{2} \int_0^b \Big( \frac{\partial w(a, y)}{\partial x} \Big)^2 dy \tag{1}$$

ここに、w:たわみ、 $D(x) = Eh(x)^3/12(1-\nu^2)$ :板 剛度, E:ヤング率、h(x):板厚、 $\nu$ :ポアソン比、 $\nabla^2$  $= (\partial^2/\partial x^2 + \partial^2/\partial y^2)$ ,  $K_{\nu}$ :鉛直バネ定数,  $K_r$ :回転 バネ定数, x, y:平板中央面の座標系.

変断面長方形板の運動エネルギーTと面内力による 仕事Uは、次のように与えられる。

$$T(w) = \frac{\rho}{2} \int_0^b \int_0^a h\left(\frac{\partial w}{\partial t}\right)^2 dx dy$$
<sup>(2)</sup>

$$U(w) = -\frac{N_x}{2} \int_0^b \int_0^a \left(\frac{\partial w}{\partial x}\right)^2 dx dy$$
(3)

ここに、 $\rho$ : 板の密度、 $N_x = N_{xo} + N_{xt} \cos \Omega t$ : 面内力 (圧縮を正とする)、 $N_{xo}$ : 静的面内力、 $N_{xt}$ : 変動面内力 の振幅、 $\Omega$ :変動面内力の円振動数、t: 時間.

一般解を次のように仮定する。

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} T_{mn}(t) W_{mn}(x, y)$$
(4)

ここに、 $T_{mn}$ : 未知の時間関数、 $W_{mn}$ : 境界条件を満 足する座標関数.本研究では、面内力を受けない、弾 性支持された変断面長方形板の固有振動形を用いる (Appendix A)。

一般座標に関する運動方程式を誘導するために, Hamilton の原理を用いる。すなわち,

$$\delta \int_{t_1}^{t_2} L dt = \delta \int_{t_1}^{t_2} \left\{ T - (V - U) \right\} dt = 0$$
(5)

 $\mathbb{CCK}, \ \delta T_{mn}(t_1) = \delta T_{mn}(t_2) = 0 \ .$ 

次に,式(5)の変分を行い,部分積分してまとめると,次式が得られる。

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{T}_{kl}}\right) + \frac{\partial V}{\partial T_{kl}} - \frac{\partial U}{\partial T_{kl}} = 0 \ (k, l; 1, 2, \dots, N)$$
(6)

式(6)に式(1),(2),(3)を代入し,偏微分した後, x,y 座標,時間 *t* および面内力 *N*<sub>x</sub> に関して無次元化する と,一般座標に関する運動方程式が得られる。

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \sum_{\ell=1}^{\infty} \left[ C_{mn}^{k\ell} \ddot{T}_{mn} + \left\{ \frac{1}{K_{11}^4} A_{mn}^{k\ell} - \frac{\lambda_b \pi^2}{K_{11}^4} (\bar{N}_{xo} + \bar{N}_{xt} \cos\bar{\omega} \tau) B_{mn}^{k\ell} \right\} T_{mn} \right] = 0$$
(7)

ここに、 $\lambda_b = N_o b^2 / D_1 \pi^2$ :座屈固有値,  $D_1$ ,  $h_1$ , : x = a での板剛度,板厚,  $K_{11}^{A} = \rho h_1 \omega_{11}^A b^4 / D_1$ :弾性支 持された一様断面正方形板の1次振動固有値, $\bar{\omega} = \Omega$   $/\omega_{11}$ ,  $\omega_{11}$ :一様断面正方形板の1次振動の固有円振動 数, $\bar{N}_{x0} = N_{x0} / N_{cr}$ :無次元静的面内力, $\bar{N}_{xt} = N_{xt} / N_{cr}$ : 無次元変動面内力の振幅, $N_{cr}$ :座屈荷重, $\tau = \omega_{11}t$ ,  $\tau$ :無次元時間, $A_{mn}^{kn}$ , $B_{mn}^{kn}$ , $C_{mn}^{kn}$ (Appendix B). 式(7)を行列表示すると,次式になる。

$$[C]\{\ddot{T}\} + [A]\{T\} + (\bar{N}_{x0} + \bar{N}_{xt} \cos \bar{\omega} \tau)$$

$$[B]\{T\} = \{0\} \qquad (8)$$

$$[C]: C\{\iota + (k-1)L, n + (m-1)L\} C_{mn}^{k_{\ell}}.$$

$$[A]: A\{\iota + (k-1)L, n + (m-1)L\} = \frac{1}{K_{11}^4} A_{mn}^{k_{\ell}}.$$

$$[B]: B\{\iota + (k-1)L, n + (m-1)L\} = \frac{\lambda_b}{K_A} B_{mn}^{k_{\ell}}.$$

式(8)に, [C] の逆行列 [C]<sup>-1</sup>を左側から掛けると 次式になる。

$$[I]{\ddot{T}} + [F]{T} + (\bar{N}_{x0} + \bar{N}_{xt} \cos\bar{\omega} \tau) [G]{T}$$
$$= \{ 0 \}$$
(9)

 $CCK, [F] = [C]^{-1}[A], [G] = [C]^{-1}[B].$ 

式(9)は連立の *Mathieu* の方程式である。式(9)にお いて行列 [I], [F] および [G] の性質を調べると, [I] は単位行列, [F] は対角線に固有円振動数の 2 乗が並んだ対角行列である。行列 [G] は零要素を 多く含んでいる係数励振行列である。したがって, 行 列 [G] の行と列の並び換えを行えば, いくつかの非 零要素からなる小行列に分割することができる。

本題の長方形版の場合,行列[G]の要素のうち, 半分は0である。時間関数 {T}の順番を並び替える ことにより,行列[G]の要素を零と非零のグループ にまとめる。

このときの並び替えによって、行列[I]と[F] も対角行列になるので、式(9)は2つに分割することが できる。いま、小行列[ $G_1$ ]と[ $G_2$ ]の大きさが同 じになるように時間関数 {T}の要素を選ぶと、式(9) は次のように分割される。

$$\begin{split} & [I]\{\ddot{T}_i\} + [F_i]\{T_i\} + (\bar{N}_{xo} + \bar{N}_{xt} \cos \bar{\omega} \tau) \\ & [G_i]\{T_i\} = \{0\} \\ & \{T_1\} = \{T_{11}T_{21}T_{13}T_{23}T_{31}T_{33}T_{41}T_{15}\}^T, \\ & \{T_2\} = \{T_{12}T_{22}T_{14}T_{32}T_{24}T_{42}T_{34}T_{16}\}^T, \quad i = 1, 2. \end{split}$$

上式において、 $\{T_1\}$ は y 方向の変形が y = b/2 に対して対称な固有振動形をもつ自由度によって構成 される。 $\{T_2\}$ は y 方向の変形が y = b/2 に対して 逆対称な固有振動形をもつ自由度によって構成され る。時間関数  $T_{ij}$ のサフィックス i は x 方向の振動波 形の次数を意味し、片持ちはりの振動次数に対応する。 サフィックス j は y 方向の振動波形の次数を意味し、

j = 1は両端自由はりの並進剛体モード, j = 2は回転の剛体モードに対応し,  $j \ge 3$ は両端自由はりの曲 げ振動の(j - 2)次の振動次数に対応する。したがって, y方向の振動次数が偶数,奇数となるような結 合共振が発生する。

以上の処理によって計算自由度を減らすことがで き,かつ不安定領域の種類の判定を容易にすることが できる。

縮小された式(1)の一般解を,次のようにフーリエ級 数を使って仮定する。

$$\{T\} = e^{\lambda \tau} \left\{ \frac{1}{2} \mathbf{b}_0 + \sum_{k=1} \left( \mathbf{a}_k \sin k \bar{\omega} \tau + \mathbf{b}_k \cos k \bar{\omega} \tau \right) \right\}$$
(1)

ここに、 $\lambda$ :未定定数、 $\mathbf{b}_0$ ,  $\mathbf{a}_k$ ,  $\mathbf{b}_k$ :未知のベクトル. 式(1)を式(0)に代入し調和バランス法を適用すると、 以下の様な代数方程式が与えられる。

 $([M_0] - \lambda [M_1] - \lambda^2 [M_2]) \{X\} = \{0\}$  (12)

ここに, $[M_0]$ ,  $[M_1]$ ,  $[M_2]$ : 係数行列,

 $\{X\} = \{\mathbf{b}_0 \mathbf{b}_1 \mathbf{b}_2 \cdots \mathbf{a}_1 \mathbf{a}_2 \cdots\}^T$ 

いま、 $\{Y\}=\lambda\{X\}$ なる新しいベクトルを代入すれば、式(2)は2倍サイズの固有値問題に変換される<sup>1)</sup>。

$$\begin{bmatrix} \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} I \end{bmatrix} \\ \begin{bmatrix} M_2 \end{bmatrix}^{-1} \begin{bmatrix} M_0 \end{bmatrix} - \begin{bmatrix} M_2 \end{bmatrix}^{-1} \begin{bmatrix} M_1 \end{bmatrix} \begin{cases} X \\ Y \end{cases} = \lambda \begin{cases} X \\ Y \end{cases}$$
(13)

#### 3.計算パラメータ

x=a での板剛度  $D_1$ , 板厚  $h_1$ を用いると, 断面内 のx 点における諸値は次のように設定される<sup>2)</sup>。

$$\begin{split} h(\xi) &= h_1 \{ 1 + \beta^* (1 - \xi) \} = h_1 G(\xi), \\ D(\xi) &= D_1 \{ 1 + \beta^* (1 - \xi) \}^3 = D_1 G(\xi)^3, \ \xi = \mathbf{x}/\mathbf{a}. \end{split}$$

ここに, *G*(ξ):ξの関数.

変断面パラメータ $\beta^*$ の存在によって板厚は増大する。長方形板の縦横比を $\beta = a/b$ とし、弾性拘束を表す定数としては、無次元鉛直バネ定数  $k_{\mu} = K_{\nu}b^3/D_1$ 、無次元回転バネ定数  $k_{r} = K_{r}b/D_1$ を用いる (Appendix A)。

#### 4. 固有振動特性

#### (1) 収束性の検討

数値解析の前に、本解法の解の収束性を検討する。 自由辺 x=a で鉛直バネのみによって弾性支持されて いる場合  $(k_r=10^7, k_r=0.0)$  は、一辺固定他辺単純 支持、他対辺自由の正方形板 (Fig.2 (a))の固有振 動数と比較する。鉛直バネおよび回転バネによって弾 性支持されている場合  $(k_r=k_r=10^7)$  は、二辺固定 他対辺自由の正方形板 (Fig.2 (b))の固有振動数と 比較する。

なお、以後の比較検討が容易となるように、鉛直バネのみが存在する場合を CASE A、鉛直バネと回転 バネの両方が存在する場合を CASE B とする。

Fig. 2 は, それぞれ CASE B  $(k_v = k_r = 10^7)$  の場 合の, 一様断面正方形板の固有振動数の収束状況を表 す。縦軸 $\lambda_i^2$ は正方形板の固有振動数を表し, 横軸N は項数を表す。図中に引かれた点線は, 文献5) によ る近似解である。CASEAはx = aの辺が単純支持の 場合とよく一致しているが, CASEBは x = aの辺が



Fig. 2 Convergence of solution:  $\beta = 1.0$  and  $\beta^* = 0.0$ 

固定の場合と5~6%の差が見受けられる。これは, 本研究で採用している試行関数の精度上の問題であ り,自由辺 x=a でのたわみとたわみ角を同時に定義 することは無理なためである。このように精度上の問 題が存在するが,以後の計算には項数 N=16の値を 使用する。

(2) 鉛直バネおよび回転バネの影響

Fig. 3 (a), (b) は境界条件がCASEA, CASE Bの場合の一様断面片持ち正方形板 ( $\beta$ =1.0, $\beta$ \* =0. 0) の固有振動数に対する鉛直バネおよび回転バネの 影響を表したものである。両図の縦軸  $\lambda_s^2$  は固有振動 数である。横軸は Fig.3 (a) が無次元鉛直バネ定数  $k_r$ で, Fig.3 (b) が無次元鉛直バネ定数  $k_r$  および無 次元回転バネ定数  $k_r$  である。図中に引かれた点線は, 文献11) による x=a が単純支持 ( $k_s=\infty$ ,  $k_r=0$ に相 当) の固有振動数と, x=a が固定 ( $k_s=\infty$ ,  $k_r=0$ に 相当) の固有振動数である。CASEA, CASEB とも にバネ定数の増大に伴い,固有振動数は一定値に収束 していく。従って,本論文では固有振動数が収束した とみなされる,  $k_s=10^7$ ,  $k_r=10^7$ を以後の解析に使用 する。

バネ定数が一様断面正方形板 ( $\beta$ =1.0,  $\beta$ \*=0.0) の固有振動形に与える影響を Fig.4 (a), (b) に示 す。両図は正方形板の1次の固有振動形を y=b/2の 断面で切り取ったものである。両図の縦軸は、最大た わみで無次元化したたわみWで、横軸は長方形板の断 面方向の座標をである。Fig.4 (a) は CASEAの場合 で、Fig.4 (b) は CASEBの場合である。無次元鉛 直バネ定数  $k_{\mu}$  あるいは無次元回転バネ定数  $k_{\mu}$  の値が



Fig. 3 Natural frequencies of the plate: $\beta = 1.0$  and  $\beta^* = 0.0$ 

増加していくに従い、CASEAの場合は一端固定他端 単純支持,他対辺自由の正方形板の固有振動形に漸近 し、CASEBの場合は二辺固定,他対辺自由の正方形 板の固有振動形に漸近していく。 (3) 変断面パラメータの影響

変断面パラメータ β\* が固有振動形に与える影響を, Fig. 5 に示す。Fig. 5 も Fig. 4 と同様に, 1 次の





Fig. 4 Vibration mode of the uniform plate  $(\beta = 1.0 \text{ and } \beta^* = 0.0)$ 



 $(b)\beta = 1.0, k_{\nu} = k_r = 10^7$ 

Fig. 5 Vibration mode of the non-uniform plate

固有振動形を y=b/2の断面で切り取ったものである。 Fig.5 (a)は、片持ち正方形板 ( $k_{\mu} = k_{r} = 0.0$ )と CASEAの場合の正方形板 ( $k_{\mu} = 10^7$ ,  $k_r = 0.0$ )の固 有振動形を,一様断面(β\*=0.0)と変断面(β\*=0. 6)の場合に対して描いたものである。図の縦軸 W は最大たわみで無次元化したたわみで、横軸とは平板 の断面方向の座標である。図中の実線は変断面パラ メータを考慮しない場合 ( $\beta^*=0.0$ )の固有振動形で, 点線は考慮した場合(β\*=0.6)の固有振動形である。 平板が変断面になると、k<sub>k</sub>=107, k<sub>r</sub>=0.0のときの振 動形の腹が板厚の薄い方に移動している。Fig.5(b) は,正方形板 k<sub>v</sub>=k<sub>r</sub>=0.0) と CASEBの場合の正方 形板(k<sub>x</sub>=10<sup>7</sup>, k<sub>r</sub>=0.0)の固有振動形を,一様断面 (β\*=0.0) と変断面(β\*=0.6)の場合に対して描 いたものである。Fig.5 (a)と同様に,  $k_{\mu} = k_r = 10^7$ ) のときの板厚の薄い方へ固有振動形の腹が移動してい る。

#### 5. 座屈特性

Fig.6は, x=a で弾性支持された,変断面片持ち長 方形板の座屈曲線を示す。3本の曲線は,おのおの鉛 直バネがある場合 ( $k_v$ =10,  $k_r$ =0.0),鉛直バネと回 転バネがある場合 ( $k_v$ = $k_r$ =10)およびバネなしの場 合 ( $k_v$ = $k_r$ =0.0)を示す。鉛直バネおよび回転バネ により,長方形板の剛性が増大するため,座屈固有値  $\lambda_b$ は増大する。



Fig. 6 Buckling curves:  $\beta^* = 0.6$ 

#### 6. 動的不安定領域

Fig. 7 に, x=a で弾性支持された変断面正方形板( $\beta$ =1.0,  $\beta$ \*=0.6,  $k_{\nu}$ =50,  $k_{r}$ =0.0)の動的不安定領 域を示す。図の縦軸  $\bar{N}_{xt}$  は無次元変動面内力の振幅で, 横軸 $\bar{\omega}$ は静的面内力  $\bar{N}_{x0}$ =0.0の時の1次の固有円振 動数で無次元化した無次元励振振動数である。図中の 不安定領域は,  $\bar{N}_{xt}$ =0.5の時の励振振動数 $\bar{\omega}$ の幅が0. 1以上のものをプロットしている。不安定領域には単



Fig. 7 Unstable regions: $\beta = 1.0$  and  $\beta^* = 0.6$ ,  $k_{\nu} = 50$  and  $k_r = 0.0$ 

純共振の主不安定領域(2 $\omega_{ij}/k; k=1$ )と結合共振 の主不安定領域{( $\omega_{ij}+\omega_{mn}$ )/k; k=1}があり,両者 の副不安定領域は不安定領域幅が狭いため本論文では 省略する。発生する不安定領域のほとんどが主不安定 領域であり,不安定領域幅も結合共振のそれと比較し て広い。

(1) 変断面パラメータの影響

Fig.8は、自由辺 x=0で弾性支持された変断面正 方形板 ( $\beta=1.0$ ,  $\beta^*=0.6$ ,  $k_s=50$ ,  $k_r=0.0$ )の不安 定領域と変断面パラメータ $\beta^*$ の関係を示す。変断面 パラメータの増大に従い、不安定領域幅の発生域が高 くなる。またその幅は、わずかながら狭くなる。

(2) 鉛直バネの影響 Fig.9に,鉛直バネ  $k_{\nu}$ の変化 による不安定領域変動図を示す。縦軸 $\omega$ は無次元励 振振動数である。鉛直バネ  $k_{\nu}$ の増大に伴い固有振動 数が増加し,それと同時に不安定領域の発生域が高く なる。しかし, $k_{\nu}$ =0.1と $k_{\nu}$ =10<sup>7</sup> ( $k_{\nu}$ =∞に相当)の 場合では片持ち長方形板の剛性が著しく異なり,長方



Fig. 8 Unstable regions:  $\beta = 1.0$ ,  $k_{\nu} = 50$  and  $k_{r} = 0.0$ 



Fig. 9 Unstable regions:  $\beta = 1.0$ ,  $\beta * = 0.0$  and  $k_r = 0.0$ 

形板の固有振動形も変化する。したがって,不安定領域は Fig.9のような複雑な変化を示す。

#### 7. まとめ

本研究は、自由辺で弾性支持された変断面長方形板 の固有振動特性,座屈特性および動的安定性を Rayleigh -Ritz 法と調和バランス法を用いて明らかにしたもの である。本論文によって、変断面パラメーター、鉛直 ばねおよび回転パラメーターの影響を明らかにするこ とができた。

本研究の数値計算には長崎大学総合情報処理センターの電子計算機FACOM VP-1200モデル10を使用したことを付記する。

**Appendix** A **Ritz** 法による固有振動解析および 座屈解析

式(1)および(3)より全ポテンシャルエネルギー Wは以下のようになる。

$$W(w) = V(w) - U(w) \qquad (A-1)$$

固有振動および座屈解析のために、上式 (A-1)において  $N_{xt}=0$ とする。次いで、式 (A-1)の一般 解を次のように仮定する。

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} h_m(\xi) \bar{h}_n(\eta) e^{i\omega t} \qquad (A-2)$$

ここに、 $h_m$ ,  $\bar{h}_n$ :はりの固有振動形 (Appendix C),  $A_{mn}$ :未定定数、 $\omega$ :固有円振動数.

無次元化した式(A-1)に式(2)および式

(A-2)を代入し、Ritz 法を適用すると次式が得られる。

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}A_{mn}(E_{mrns}-\lambda_{\nu}^{4}F_{mrns}-\bar{N}_{x0}G_{mrns})=0$$
(A-3)

ここに,

$$\begin{split} E_{mrns} &= \frac{1}{\beta^4} I_{mr}^2 \bar{I}_{ns}^1 + \frac{\nu}{\beta^2} (I_{mr}^3 \bar{I}_{ns}^2 + I_{mr}^4 \bar{I}_{ns}^3) \\ &+ I_{mr}^1 \bar{I}_{ns}^5 \\ &+ \frac{2 (1-\nu)}{\beta^4} I_{mr}^5 \bar{I}_{ns}^4 + \frac{\kappa_r}{\beta} I_{mr}^7 \bar{I}_{ns}^1 + \frac{\kappa_r}{\beta^3} I_{mr}^9 \bar{I}_{ns}^1, \end{split}$$

$$G_{mrns} = \frac{1}{\beta^2} I_{mr}^8 \bar{I}_{ns}^1, \ F_{mrns} = I_{mr}^6, \ \bar{I}_{ns}^1, \ I_{mr}^1, \ I_{mr}^2, \ \cdots$$

: 固有関数の定積分 (Appendix C)  $(m,n,r,s=1,2, \cdot , N)$ .

ここに,  $k_{\nu} = K_{\nu} b^3 / D_1$ : 無次元鉛直バネ定数,  $k_r = K_r$  $b/D_1$ : 無次元回転バネ定数.

式(A-3)は次のように行列表示される。

 $([E] - \lambda_{\nu}^{4} [F] - \bar{N}_{x0} [G]) \{x\} = \{0\}$  (A-4)  $\exists \exists E \{s + (r-1)N, n + (m-1)N\} = E_{mrns},$   $[F] = F\{s + (r-1)N, n + (m-1)N\} = F_{mrns},$   $[G] = G\{s + (r-1)N, n + (m-1)N\} = G_{mrns},$   $\{x\} = \{A_{11}A_{12}A_{13} \cdots A_{1N}A_{21} \cdots A_{1N}A_{NN}\}^{T}.$ 

 $\bar{N}_{x0}$ とおけば,自由振動の固有値 $\lambda_{\nu}$ が得られる。 また、 $\lambda_{\nu} = 0$ とおけば、 $\bar{N}_{x0} = \lambda_{b}$ の座屈の固有値が得 られる。数値解析において、式(A-4)は行列の固有 値問題に変換される。ベクトル {X}を用いて、1次、 2次、・・・、N次の振動波形を得ることができる。

 $W_{mn} = \sum_{p=1}^{n} a_p^m X_p(\xi) \sum_{q=1}^{n} a_q^n Y_q(\eta)$  (A-5)

ここに、 $\xi = x / a$ 、 $\eta = y / b$ ,  $X_p$ :片持ちばりの固 有振動形、 $Y_q$ :両端自由ばりの固有振動形、 $a_p^m$ 、 $a_q^n$ : 自由振動解析から得られるモード定数.

# Appendix B 定積分 $\mathbf{A}_{\min}^{k_{\ell}}, \mathbf{B}_{\min}^{k_{\ell}}, \mathbf{C}_{\min}^{k_{\ell}}$ $A_{\min}^{k_{\ell}} = \int_{0}^{1} \int_{0}^{1} G(\xi) \,^{3} \left\{ \frac{1}{\beta^{4}} \overline{W}_{mn, \xi\xi} \overline{W}_{k\ell, \xi\xi} + \overline{W}_{mn, \gamma\gamma} \overline{W}_{k\ell, \gamma\gamma} + \frac{\nu}{\beta^{2}} (\overline{W}_{mn, \xi\xi} \overline{W}_{k\ell, \gamma\gamma} + \overline{W}_{mn, \gamma\gamma} \overline{W}_{k\ell, \xi\xi}) \right.$ $\left. + \frac{2(1-\nu)}{\beta^{2}} \overline{W}_{mn, \xi\gamma} \overline{W}_{k\ell, \xi\gamma} \right\} d\xi d\gamma + \frac{K_{\nu}}{\beta} \int_{0}^{1} \overline{W}_{mn} \overline{W}_{k\ell} d\gamma$ $\left. + \frac{K_{\nu}}{\beta^{2}} \int_{0}^{1} \overline{W}_{mn, \xi\xi} \overline{W}_{k\ell} d\gamma, \right\}$

$$\begin{split} B_{mn}^{k} &= \int_{0}^{1} \int_{0}^{1} \overline{W}_{mn, \xi} \overline{W}_{k, \xi} d\xi d\gamma, , \\ C_{mn}^{k} &= \int_{0}^{1} \int_{0}^{1} G\xi \right) \overline{W}_{mn} \overline{W}_{k, \ell} d\xi d\gamma, \\ \overline{W}_{wv} &= \sum_{m=1}^{k} a_{m}^{*} h_{m} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \\ \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \\ \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \\ \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} h_{m}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m} \sum_{n=1}^{k} a_{m}^{*} \overline{h}_{n}, \\ \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} h_{m}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m} \sum_{n=1}^{k} a_{m}^{*} h_{m}, \\ \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} h_{m}, \quad \overline{W}_{wv, \xi \xi} &= \sum_{m=1}^{k} a_{m}^{*} h_{m}^{*} \sum_{n=1}^{k} a_{m}^{*} h_{m}, \\ \overline{A}_{m}^{*} &= \int_{0}^{1} G(\xi)^{3} h_{m} h_{r}^{*} d\xi, \quad I_{m}^{*} = \int_{0}^{1} G(\xi)^{3} h_{m}^{*} h_{r}^{*} d\xi, \\ I_{m}^{*} &= \int_{0}^{1} G(\xi)^{3} h_{m} h_{r}^{*} d\xi, \quad I_{m}^{*} = \int_{0}^{1} h_{m} h_{r}^{*} d\xi, \\ I_{m}^{*} &= \int_{0}^{1} G(\xi)^{3} h_{m} h_{r}^{*} d\xi, \quad I_{m}^{*} = \int_{0}^{1} h_{m} h_{r}^{*} d\xi, \\ I_{m}^{*} &= \int_{0}^{1} h_{m}^{*} h_{r}^{*} d\xi, \quad I_{m}^{*} = \int_{0}^{1} h_{m} h_{r}^{*} d\xi, \\ I_{m}^{*} &= \int_{0}^{1} h_{m}^{*} h_{r}^{*} d\xi, \quad I_{m}^{*} = \int_{0}^{1} h_{m} h_{r}^{*} d\xi, \\ I_{m}^{*} &= \int_{0}^{1$$

| $\alpha_m =$ | $=\frac{\cosh(\beta_m a)+\cos(\beta_m a)}{\sinh(\beta_m a)+\sin(\beta_m a)},$                                                 |                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| $\alpha_r =$ | $\frac{\cosh(\beta,a) + \cos(\beta,a)}{\sinh(\beta,a) + \sin(\beta,a)},$                                                      |                              |
| $\alpha_n =$ | $=\frac{\cos\left(\beta_{n}b\right)-\cosh\left(\beta_{n}b\right)}{\sin\left(\beta_{n}b\right)-\sinh\left(\beta_{n}b\right)},$ |                              |
| $\alpha_s =$ | $\frac{\cos(\beta_s b) - \cosh(\beta_s b)}{\sin(\beta_s b) - \sinh(\beta_s b)},$                                              |                              |
| $\delta_m =$ | $= (1 - \alpha_m), \ \delta_r = (1 - \alpha_r),$                                                                              | $\delta_n = (1 - \alpha_n),$ |
| $\delta_s =$ | $(1-\alpha_s), \gamma_m = (1+\alpha_m),$                                                                                      | $\gamma_r = (1 + \alpha_r),$ |

 $\gamma_n = (1 + \alpha_n), \ \gamma_s = (1 + \alpha_s). \ (m, n, r, s, = 1, 2, \dots N)$ 

参考文献

- 1) Takahashi,K.:Instability of Parametric Dynamic Systems with Non-uniform Damping,Journal of Sound and Vibration,Vol.85, pp.257-262, 1982.
- 2) Kar,R.C.and Sujata,T.:Parametric Instability of a Non-uniform Beam with Thermal Gradient Resting on a Pasternak Foundation,Computer & Structures,Vol.29, No.4, pp.591-599, 1988.
- 3) Bolotin, V.V.: The Dynamic Stability of Elastic Systems, Holden-Day, Inc., San Fransisco, 1964.
- 4)林:軽構造の理論とその応用(上),日科技連出版 社,pp.448-453,1967.
- 5) Leissa, A.W.: Vibration of Plate, NASA SP-160, pp.74-76, 1969.