Supplementary Data

Potential-dependent morphological change of n-hexadecane small droplet on a Au(1 1 1) electrode in aqueous solution: a voltammetric and electrochemical fluorescence microscopic study

Tetsuro Morooka^a, Shoma Murakawa^b, Azusa Konomi^b, Daisaku Goto^b, Takamasa Sagara^c*

- b Department of Materials Engineering and Molecular Science, Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
- c Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.

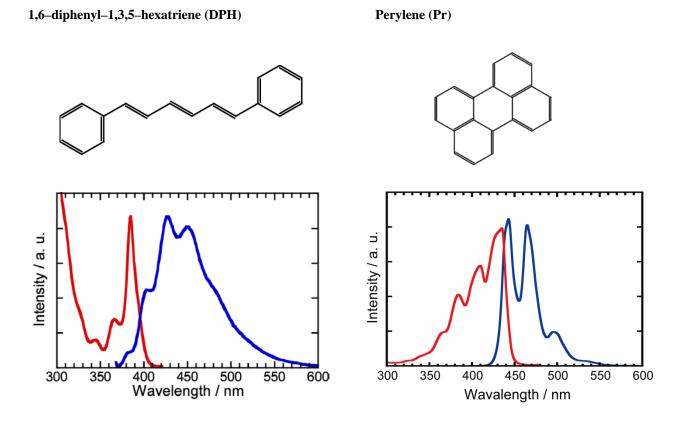

Contents

Fig. 1. Fluorescence and excitation spectra of probe dyes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and perylene (Pr).

Fig. 2. Effect of addition of DPH in n-hexadecane on $Au(1 \ 1 \ 1)$ electrode upon the *C*-E curve when touching method was used for deposition.

Video Movie. A typical example of video movie of the fluorescence microscopic image.

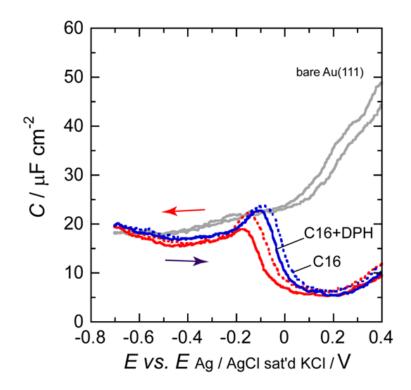

a Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.

Fig. S1 Fluorescence and excitation spectra of probe dyes, 1,6–diphenyl–1,3,5–hexatriene (DPH) and perylene (Pr). Fluorescence spectrophotometer used: Shimadzu RF-5300PC.

Left: Molecular structure and spectra for DPH. Blue line, fluorescence spectrum with excitation at 365 nm. Red line, excitation spectrum with fluorescence monitoring at 425 nm. Solvent: *n*-hexane.

Right: Molecular structure and spectra for Pr. Blue line, fluorescence spectrum with excitation at 386 nm. Red line, excitation spectrum with fluorescence monitoring at 496 nm. Solvent: *n*-hexane.

Fig. S2 Effect of addition of DPH in n-hexadecane on $Au(1 \ 1 \ 1)$ electrode upon the C-E curve when touching method was used for deposition.

Description of video movie data

A typical example of a real time video movie of the fluorescence microscopic image.

Fluorescence Microscope: eclipse TE300 (Nikon) CCD video camera: JAI, 755 Intelligent ICCD Camera, 30 frame/s Objective lens: Nikon, Plan Fluor, ×10 Electrode: Au(1 1 1) in 0.05 M KClO₄ Measurement details: *n*-Hexadecane of an amount of 2500 ML equivalent with Pr was deposited on a Au(1 1 1) electrode surface by the macroscopic casting method. Potential was scanned first to negative direction from 0.4 V to -0.7 V and then turned at -0.7 V to positive direction back to 0.4 V at a sweep rate of 5 mV s⁻¹.