

Side-on coordination mode of a pyrazolyl group in the structure of a divalent [Sm{B(3-Mepz)₄}₂] complex (3-Mepz is 3-methylpyrazol-1-yl)

Yasuhiro Arikawa, Kei-ichiro Inada and Masayoshi Onishi

Acta Cryst. (2016). C72, 838-841

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

scorpionates

Received 28 April 2016 Accepted 15 July 2016

Edited by G. P. A. Yap, University of Delaware, USA

Keywords: scorpionate; side-on interaction; tetrakis(3-methylpyrazolyl)borate; divalent; samarium; crystal structure.

CCDC reference: 1493971

Supporting information: this article has supporting information at journals.iucr.org/c

© 2016 International Union of Crystallography

Side-on coordination mode of a pyrazolyl group in the structure of a divalent $[Sm{B(3-Mepz)_4}_2]$ complex (3-Mepz is 3-methylpyrazol-1-yl)

Yasuhiro Arikawa,^a* Kei-ichiro Inada^b and Masayoshi Onishi^c*

^aDivision of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan, ^bGraduate School of Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan, and ^cDepartment of Applied Chemistry, Faculty of Engineering, Nagasaki University, Bunkyomachi 1-14, Nagasaki 852-8521, Japan. *Correspondence e-mail: arikawa@nagasaki-u.ac.jp, onishi@nagasaki-u.ac.jp

The discovery of polypyrazolylborate ligands allowed the development of various chemical fields and these ligands are an alternative to cyclopentadienyl, because both ligands have the same charge and donate the same number of electrons, as well as adopting the same facial geometry. Easy control of the bulkiness of polypyrazolylborate ligands is possible by modification of the substituents in the 3- and 5-positions of the pyrazolyl rings. The title complex, bis[tetrakis(3-methyl-1*H*-pyrazol-1-yl)borato]samarium(II), [Sm(C₁₆H₂₀BN₈)₂], was synthesized from the reaction of SmI₂ with potassium tetrakis(3-methyl-1*H*-pyrazol-1-yl)borate, denoted K[B(3-Mepz)₄], in tetrahydrofuran. The X-ray structure analysis revealed an unusual side-on coordination mode of a 3-methylpyrazolyl group through an N=N group in the B(3-Mepz)₄ ligand. The distortion is defined by the B-N-N-Sm torsion angle [85.5 (4)°]. This is in contrast to the structure of the similar divalent samarium complex [Sm(Tp^{Me₂})₂] [Tp^{Me₂} is tris(3,5-dimethylpyrazol-1-yl)borate], which displays normal κ^3 -bonding modes of the Tp^{Me₂} ligands.

1. Introduction

Thanks to Trofimenko's discovery of polypyrazolylborate (Trofimenko, 1966), marvelous chemical fields have been opened up. Many interesting results have been reported and developments still continue (Trofimenko, 1999; Pettinari, 2008). The polypyrazolylborate ligands have been an alternative for cyclopentadienyl derivatives which are one of the most useful types of ligands, because both ligands have the same charge and donate the same number of electrons, as well as adopting the same facial geometry. The cone angle of polypyrazolylborate ligands is usually wider than that of the corresponding cyclopentadienyl derivatives; thus, in the lanthanide and actinide complexes, which have a larger metal ionic radius, the polypyrazolylborate ligands have often been used (Marques et al., 2002; Santos & Marques, 1995). Easy control of the bulkiness by modification of the substituents on the 3- and 5-positions of the pyrazolyl rings is also an attractive feature of these ligands. We are interested in samarium complexes having polypyrazolylborate ligands (Onishi et al., 1998, 2004). In connection with interesting reduction reactions of divalent lanthanides complexes, five divalent hydridotris(pyrazolyl)borate complexes of samarium have been characterized, namely $[Sm(Tp^{tBu,MetBu,Me})_2]$ structurally [Tp^{tBu,Me} is tris(3-tert-butyl-5-methylpyrazol-1-yl)borate] (Zhang et al., 1995), $[Sm(Tp^{Me_2})_2]$ $[Tp^{Me_2}$ is tris(3,5-dimethylpyrazol-1-yl)-

Figure 1

Schematic illustration of the divalent hydridotris(pyrazolyl)borate samarium complexes.

borate], $[Sm(Tp^{Me_2,4-Et})_2]$ $[Tp^{Me_2,4-Et}$ is tris(4-ethyl-3,5-dimethylpyrazol-1-yl)borate] and $[Sm(Tp^{Ph})_2]$ $[Tp^{Ph}$ is tris(3phenylpyrazol-1-yl)borate] (Hillier *et al.*, 2001), and $[Sm-(Tp^{iPr_2})_2]$ $[Tp^{iPr_2}$ is tris(3,5-diisopropylpyrazol-1-yl)borate] (Momin *et al.*, 2014; Kuhling *et al.*, 2015) (Fig. 1). The coordination of the substituted Tp ligands in these complexes is in the normal κ^3 -bonding mode, except for $[Sm(Tp'^{Bu,Me})_2]$,

Schematic illustration of the side-on coordination mode of pyrazolyl-borate.

which has an agostic $B-H \cdot \cdot \cdot Sm$ interaction as a result of the steric demand of the tert-butyl groups. Also, X-ray diffraction analysis has revealed that the structure of $[Sm(Tp^{iPr_2})_2]$ has a 'bent sandwich-like' geometry. The lack of the tetrakis-(pyrazolyl)borate congeners motivated us to prepare them. Although the divalent tetrakis(pyrazolyl)borate [B(pz)₄] complex $[Sm{B(pz)_4}_2(thf)_2]$ (thf is tetrahydrofuran) has been prepared, the solid-state structure has not been reported (Domingos et al., 1995). In this paper, we report the synthesis of $[Sm{B(3-Mepz)_4}_2]$, (1), which was determined by X-ray diffraction. Interestingly, an unusual side-on interaction through the N=N group in one of the 3-methylpyrazolyl groups was found. To the best of our knowledge, six similar side-on coordination modes of pyrazolylborate, not including coordination to alkali metal ions, have been observed, i.e. in $[Tl{B(3-Pypz)_4}]$ [3-Pypz is 3-(pyridin-3-yl)-1*H*-pyrazol-1-yl; Adams et al., 2005], [Gd(Cp)(Tp^{Me2})(amidinato)] (Cp is cyclopentadienyl; Zhang et al., 2014), [UI(Tp^{Me2})2] (Sun et al., 1994), $[Yb(C_5H_4SiMe_3)(Tp'^{Bu,Me})]$ (Ferrence *et al.*, 2000), and $[Sm(Tp^{Me_2})(SePh)]$ and $[Sm(Tp^{Me_2})(SeC_6H_4^{t}Bu-4)]$ (Hillier et al., 2000) (Fig. 2).

2. Experimental

2.1. General

The title divalent samarium complex is extremely air sensitive and, therefore, the preparation and subsequent manipulation were carried out in a glove-box under an argon atmosphere. Anhydrous tetrahydrofuran (THF) and ether were commercially available and used without further purification. A THF solution of SmI_2 (0.1 *M*) was purchased from Aldrich and used as received.

2.2. Synthesis and crystallization

Potassium tetrakis(3-methylpyrazolyl)borate (K[B(3-Mepz)₄]) was prepared according to a literature method with a slight modification (Niedenzu *et al.*, 1985). A mixture of potassium

scorpionates

Crystal data		
Chemical formula	$[Sm(C_{16}H_{20}BN_8)_2]$	
M _r	820.80	
Crystal system, space group	Monoclinic, $P2_1/c$	
Temperature (K)	293	
a, b, c (Å)	11.2742 (10), 22.304 (3), 14.4624 (3)	
β(°)	95.3065 (6)	
$V(Å^3)$	3621.2 (6)	
Ζ	4	
Radiation type	Μο Κα	
$\mu (\text{mm}^{-1})$	1.67	
Crystal size (mm)	$0.60 \times 0.50 \times 0.30$	
Data collection		
Diffractometer	Rigaku Quantum	
Absorption correction	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)	
T_{\min}, T_{\max}	0.391, 0.605	
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflec- tions	26604, 6237, 5131	
R _{int}	0.029	
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.116, 1.14	
No. of reflections	6237	
No. of parameters	468	
H-atom treatment	H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0391P)^{2} + 12.5843P]$ where $P = (F_{o}^{2} + 2F_{o}^{2})/3$	Figure 3 The molecul ellipsoids dra
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	3.071.41	for clarity.

Computer programs: d*TREK (Rigaku, 2014), SIR2004 (Burla et al., 2005) SHELXL2014 (Sheldrick, 2015) and CrystalStructure (Rigaku, 2016).

tetrahydroborate (KBH₄) and 3-methylpyrazole (3-MepzH) in a 1:5 molar ratio was heated to maintain gentle reflux of the excess 3-MepzH until evolution of H_2 was complete (for 10 h). After cooling to room temperature, the solid was crushed under benzene, filtered and washed with a small amount of benzene. The solid was extracted with methanol and dried. After washing with dichloromethane, the resulting solid was dried under vacuum at 373 K to remove unreacted 3-MepzH.

To a THF solution of SmI_2 (3.0 ml, 0.3 mmol) was added a THF (10 ml) suspension of K[B(3-Mepz)_4] (227 mg, 0.61 mmol). The mixture immediately turned from a dark-blue to a dark-green suspension. After stirring for 2 h, the mixture was filtered and the resulting white solid was washed with a small amount of THF. The dark-green filtrate and washings were dried to give [Sm{B(3-Mepz)_4}_2], (1), quantitatively. X-ray-quality single crystals were obtained from THF/diethyl ether.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Seven preliminary data frames were measured at 0.5° increments of ω in order to assess the crystal quality and preliminary unit-cell parameters. The intensity images were obtained with ω scans of 0.5° interval per frame for a duration of 35 s. The frame data were

The molecular structure of $[Sm{B(3-Mepz)_4}_2]$, (1), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

integrated using the d^*TREK program package (Rigaku, 2014). H atoms were placed in calculated positions (0.96 and 0.93 Å), treated as riding and constrained with $U_{iso}(H) = 1.2U_{eq}(\text{parent})$. The high value of the maximum residual electron density may be accounted for by the heavy Sm atom or the data collection at room temperature.

3. Results and discussion

The title complex was prepared by the reaction of SmI_2 with potassium tetrakis(3-methylpyrazolyl)borate (K[B(3-Mepz)₄]). Addition of a THF suspension of two equivalents of K[B(3-Mepz)₄] to a THF solution of SmI_2 resulted in an immediate colour change from dark blue to dark green and the precipitation of KI. After work-up, [Sm{B(3-Mepz)_4}_2], (1), was obtained quantitatively. Use of Na[B(3-Mepz)_4] instead of K[B(3-Mepz)_4] failed to produce complex (1).

Complex (1) crystallized from a THF/ether mixture in the space group $P2_1/c$. There are no crystallization solvents in the lattice. The molecular structure of (1) is shown in Fig. 3, and selected bond lengths and angles are listed in Table 2. The complex consists of two [B(3-Mepz)_4] ligands without coordination of the crystallization solvents. On the other hand, in the 'parent' {B(pz)_4} ligand, *i.e.* [Sm{B(pz)_4}_2(thf)_2], containing two thf ligands has been reported. One of the [B(3-Mepz)_4] ligands in (1) is bonded to samarium through three N atoms (N9, N11 and N13), while the other ligand shows an unusual distortion. Two of the 3-methylpyrazolyl groups are aligned

Table 2Selected geometric parameters (Å, °).

Sm1-N1	2.835 (5)	N13-N14	1.375 (6)
Sm1-N2	2.926 (4)	N15-N16	1.378 (6)
Sm1-N3	2.647 (4)	N2-B1	1.563 (7)
Sm1-N5	2.616 (4)	N4-B1	1.547 (7)
Sm1-N9	2.597 (4)	N6-B1	1.531 (7)
Sm1-N11	2.614 (4)	N8-B1	1.525 (7)
Sm1-N13	2.602 (4)	N10-B2	1.557 (7)
N1-N2	1.351 (6)	N12-B2	1.559 (7)
N3-N4	1.376 (6)	N14-B2	1.544 (7)
N5-N6	1.385 (6)	N16-B2	1.533 (6)
N7-N8	1.369 (6)	Sm1-B1	3.463 (6)
N9-N10	1.370 (6)	Sm1-B2	3.695 (6)
N11-N12	1.375 (6)		
N2-N1-Sm1	80.3 (3)	N3-N4-B1	118.1 (4)
N4-N3-Sm1	117.0 (3)	N5-N6-B1	121.8 (4)
N6-N5-Sm1	113.8 (3)	N7-N8-B1	121.8 (4)
N10-N9-Sm1	120.2 (3)	N9-N10-B2	124.8 (4)
N12-N11-Sm1	119.6 (3)	N11-N12-B2	121.2 (4)
N14-N13-Sm1	123.9 (3)	N13-N14-B2	119.9 (4)
N1-N2-B1	124.8 (4)	N15-N16-B2	121.4 (4)
Sm1-N1-N2-B1	-85.5 (4)	Sm1-N9-N10-B2	5.0 (6)
Sm1-N3-N4-B1	-10.0(5)	Sm1-N11-N12-B2	27.6 (5)
Sm1-N5-N6-B1	-16.3 (5)	Sm1-N13-N14-B2	-7.4 (6)

approximately parallel to the B-Sm vector, while the third is twisted sideways such that the N-N bond is brought into sideon bonding interaction. The average Sm-N bond length for a normal pyrazolyl coordination is 2.615 Å, which is similar to those of $[Sm(Tp^{Me_2})_2]$. The Sm1-N1 bond [2.835 (5) Å] is shorter than Sm1-N2 [2.926 (4) Å]. This tendency is observed in other complexes having a similar side-on coordination mode, except for [Tl{B(3-Pypz)₄}] and [Sm(Tp^{Me₂})(Se- C_6H_4 ^tBu-4)]. The B1-N2-N1-Sm1 torsion angle is $85.5 (4)^{\circ}$, which is comparable to the average value of the six compounds displaying a similar side-on coordination mode of pyrazolylborate (average 83.9°) (Table 3). The N1-N2 [1.351 (6) Å] and N2-B1 [1.563 (7) Å] bond lengths are not different from the other N-N and N-B bond lengths, respectively, except for N8-B1 [1.525 (7) Å] and N16-B2 [1.533 (6) Å]. The side-on interaction shortens the Sm1 \cdots B1 distance [3.463 (6) Å] compared to the other Sm1···B2 distance [3.695 (6) Å]. The former is the shortest distance among divalent hydridotris(pyrazolyl)borate samarium com-

Table 3

 $B\!-\!N\!-\!N\!-\!Sm$ torsion angles (°) of the side-on coordination mode of pyrazolylborate.

3-Mepz is 3-methyl-1*H*-pyrazol-1-yl, 3-Pypz is 3-(pyridin-3-yl)-1*H*-pyrazol-1-yl, Tp^{Me_2} is tris(3,5-dimethylpyrazol-1-yl)borate, Tp^{fBu,Me} is tris(3-*tert*-butyl-5-methylpyrazol-1-yl)borate and Cp is cyclopentadienyl (see Fig. 2).

Complex	B-N-N-Sm	Reference
$[Sm{B(3-Mepz)_4}_2], (1)$	85.5 (4)	This work
$[Tl{B(3-Pypz)_4}]$	95.6	Adams et al. (2005)
$[Gd(Cp)(Tp^{Me_2})(amidinato)]$	70.0	Zhang et al. (2014)
$[UI(Tp^{Me_2})_2]$	87.4	Sun et al. (1994)
$[Yb(C_5H_4SiMe_3)(Tp^{tBu,Me})]$	75.3	Ferrence et al. (2000)
$[Sm(Tp^{Me_2})(SePh)]$	83.7	Hillier et al. (2000)
$[Sm(Tp^{Me_2})(SeC_6H_4^{t}Bu-4)]$	91.3	Hillier et al. (2000)

plexes. The B1···Sm1···B2 angle is almost linear [176.54 (13)°], although the 'bent sandwich-like' divalent Sm complex [Sm(Tp^{iPr₂})₂] [B1···Sm1···B2 = 151.19 (5)°] have been reported. In contrast to this side-on interaction, the pyrazolyl groups of [Sm(Tp^{Me₂})₂] display the normal κ^3 -bonding mode. This may be accounted for by the electron-withdrawing character of the uncoordinated 3-methyl-pyrazolyl group (Onishi *et al.*, 2001).

In summary, we succeeded in the preparation and structural characterization of a divalent samarium complex having two tetrakis(3-methylpyrazolyl)borate ligands. From the X-ray structure analysis, an unusual side-on interaction of the pyrazolylborate was revealed. This is the first structurally characterized example in divalent samarium complexes.

References

- Adams, H., Batten, S. R., Davies, G. M., Duriska, M. B., Jeffery, J. C., Jensen, P., Lu, J., Motson, G. R., Coles, S. J., Hursthouse, M. B. & Ward, M. D. (2005). *Dalton Trans.* pp. 1910–1923.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Domingos, Â., Marçalo, J., Marques, N., Matos, A. P. D., Galvão, A., Isolani, P. C., Vicentini, G. & Zinner, K. (1995). *Polyhedron*, 14, 3067–3076.
- Ferrence, G. M., McDonald, R., Morissette, M. & Takats, J. (2000). J. Organomet. Chem. 596, 95–101.
- Hillier, A. C., Liu, S.-Y., Sella, A. & Elsegood, M. R. J. (2000). Inorg. Chem. 39, 2635–2644.
- Hillier, A. C., Zhang, X. W., Maunder, G. H., Liu, S. Y., Eberspacher, T. A., Metz, M. V., McDonald, R., Domingos, Â., Marques, N., Day, V. W., Sella, A. & Takats, J. (2001). *Inorg. Chem.* 40, 5106– 5116.
- Kuhling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617–7625.
- Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2160.
- Momin, A., Carter, L., Yang, Y., McDonald, R., Essafi, S., Nief, F., Del Rosal, I., Sella, A., Maron, L. & Takats, J. (2014). *Inorg. Chem.* 53, 12066–12075.
- Niedenzu, K., Niedenzu, P. M. & Warner, K. R. (1985). *Inorg. Chem.* **24**, 1604–1606.
- Onishi, M., Itoh, K., Hiraki, K., Oda, R. & Aoki, K. (1998). Inorg. Chim. Acta, 277, 8–13.
- Onishi, M., Kayano, K.-h., Inada, K.-i., Yamaguchi, H., Nagaoka, J., Arikawa, Y. & Takatani, T. (2004). *Inorg. Chim. Acta*, **357**, 4091– 4101.
- Onishi, M., Kumagae, S., Asai, K., Kawano, H. & Shigemitsu, Y. (2001). *Chem. Lett.* **30**, 96–97.
- Pettinari, C. (2008). In *Scorpionates II: Chelating Borate Ligands*. London: Imperial College Press.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2014). d*TREK. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Santos, I. & Marques, N. (1995). New J. Chem. 19, 551-571.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sun, Y., McDonald, R., Takats, J., Day, V. W. & Eberspacher, T. A. (1994). *Inorg. Chem.* 33, 4433–4434.
- Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.

Zhang, X. W., McDonald, R. & Takats, J. (1995). New J. Chem. 19, 573–585.

Trofimenko, S. (1999). In Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.

Acta Cryst. (2016). C72, 838-841 [https://doi.org/10.1107/S2053229616011578]

Side-on coordination mode of a pyrazolyl group in the structure of a divalent [Sm{B(3-Mepz)₄}₂] complex (3-Mepz is 3-methylpyrazol-1-yl)

Yasuhiro Arikawa, Kei-ichiro Inada and Masayoshi Onishi

Computing details

Data collection: *D*TREK* (Rigaku, 2014); cell refinement: *D*TREK* (Rigaku, 2014); data reduction: *D*TREK* (Rigaku, 2014); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *CrystalStructure* (Rigaku, 2016); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2016).

Bis[tetrakis(3-methyl-1H-pyrazol-1-yl)borato]samarium(II)

Crystal data	
$[Sm(C_{16}H_{20}BN_8)_2]$ $M_r = 820.80$ Monoclinic, $P2_1/c$ a = 11.2742 (10) Å b = 22.304 (3) Å c = 14.4624 (3) Å $\beta = 95.3065 (6)^{\circ}$ $V = 3621.2 (6) Å^3$ Z = 4	F(000) = 1664.00 $D_x = 1.505 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 17171 reflections $\theta = 3.0-27.6^{\circ}$ $\mu = 1.67 \text{ mm}^{-1}$ T = 293 K Block, dark-green $0.60 \times 0.50 \times 0.30 \text{ mm}$
Data collection	
Rigaku Quantum diffractometer Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (REQAB; Rigaku, 1998) $T_{min} = 0.391, T_{max} = 0.605$ 26604 measured reflections	6237 independent reflections 5131 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 3.0^\circ$ $h = -13 \rightarrow 13$ $k = -25 \rightarrow 26$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.116$ S = 1.14 6237 reflections 468 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 12.5843P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 3.07$ e Å ⁻³ $\Delta\rho_{min} = -1.41$ e Å ⁻³

electronic reprint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sm1	0.74099 (2)	-0.00402 (2)	0.26183 (2)	0.03783 (12)
N1	0.6111 (4)	-0.0883 (2)	0.1460 (3)	0.0429 (11)
N2	0.7113 (4)	-0.12031 (19)	0.1689 (3)	0.0363 (9)
N3	0.9218 (4)	-0.08012 (19)	0.2706 (3)	0.0391 (10)
N4	0.9317 (4)	-0.11596 (18)	0.1943 (3)	0.0335 (9)
N5	0.8174 (4)	-0.00323 (18)	0.0965 (3)	0.0386 (10)
N6	0.8268 (3)	-0.05977 (18)	0.0582 (3)	0.0323 (9)
N7	0.9275 (4)	-0.1858 (2)	0.0100 (3)	0.0487 (12)
N8	0.8294 (4)	-0.17157 (18)	0.0547 (3)	0.0387 (10)
N9	0.8460 (4)	0.09306 (19)	0.3259 (3)	0.0398 (10)
N10	0.7864 (4)	0.13287 (17)	0.3770 (3)	0.0318 (9)
N11	0.5904 (4)	0.08526 (18)	0.2444 (3)	0.0367 (10)
N12	0.5660 (4)	0.11727 (17)	0.3217 (3)	0.0316 (9)
N13	0.6910 (4)	0.01137 (18)	0.4323 (3)	0.0374 (9)
N14	0.6561 (4)	0.06526 (18)	0.4672 (3)	0.0329 (9)
N15	0.6637 (4)	0.18440 (19)	0.5557 (3)	0.0415 (10)
N16	0.6282 (4)	0.17856 (17)	0.4624 (3)	0.0345 (9)
C1	0.4060 (6)	-0.0852 (4)	0.1895 (6)	0.080 (2)
H1A	0.3887	-0.0682	0.1288	0.096*
H1B	0.3984	-0.0548	0.2356	0.096*
H1C	0.3510	-0.1171	0.1981	0.096*
C2	0.5294 (5)	-0.1091 (3)	0.1987 (4)	0.0448 (13)
C3	0.5764 (6)	-0.1550 (4)	0.2550 (5)	0.071 (2)
Н3	0.5378	-0.1773	0.2974	0.086*
C4	0.6914 (6)	-0.1603 (3)	0.2349 (5)	0.0650 (19)
H4	0.7469	-0.1872	0.2624	0.078*
C5	1.0410 (6)	-0.0540 (3)	0.4146 (4)	0.0624 (17)
H5A	1.0371	-0.0829	0.4634	0.075*
H5B	0.9788	-0.0249	0.4181	0.075*
H5C	1.1170	-0.0343	0.4213	0.075*
C6	1.0255 (5)	-0.0847 (2)	0.3237 (4)	0.0413 (12)
C7	1.1016 (5)	-0.1229 (3)	0.2814 (4)	0.0448 (13)
H7	1.1787	-0.1337	0.3038	0.054*
C8	1.0410 (5)	-0.1414 (2)	0.2008 (4)	0.0399 (12)
H8	1.0698	-0.1672	0.1575	0.048*
C9	0.8216 (7)	0.1009 (3)	0.0477 (5)	0.0656 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H9A	0.8248	0.1083	0.1133	0.079*
H9B	0.7484	0.1166	0.0180	0.079*
H9C	0.8877	0.1202	0.0228	0.079*
C10	0.8273 (5)	0.0351 (2)	0.0307 (4)	0.0417 (12)
C11	0.8451 (5)	0.0062 (3)	-0.0526 (4)	0.0444 (13)
H11	0.8563	0.0237	-0.1096	0.053*
C12	0.8426 (5)	-0.0530(3)	-0.0319(4)	0.0468 (14)
H12	0.8506	-0.0841	-0.0737	0.056*
C13	0.9776 (8)	-0.2540(3)	-0.1129 (5)	0.078(2)
H13A	1.0573	-0.2425	-0.0908	0.094*
H13B	0.9594	-0.2394	-0.1750	0.094*
H13C	0.9713	-0.2969	-0.1126	0.094*
C14	0.8923 (7)	-0.2280(2)	-0.0513(4)	0.0541 (16)
C15	0.7739 (7)	-0.2410(3)	-0.0458(5)	0.070 (2)
H15	0.7286	-0.2693	-0.0808	0.084*
C16	0.7356 (6)	-0.2043(3)	0.0213 (5)	0.0599 (17)
H16	0.6590	-0.2025	0.0401	0.072*
C17	1 0420 (6)	0.0855(3)	0.2649(5)	0.0682(19)
H17A	1.0031	0.0552	0.2260	0.082*
H17B	1 1015	0.0673	0.3077	0.082*
H17C	1 0791	0 1141	0.2271	0.082*
C18	0.9522(5)	0.1167(3)	0.2271 0.3177(4)	0.002 0.0454 (13)
C19	0.9622(5)	0.1716(3)	0.3624(5)	0.0548 (15)
H19	1 0295	0.1971	0.3663	0.066*
C20	0.8582(5)	0.1800(2)	0.3995(4)	0.0461 (13)
H20	0.8388	0.2129	0.4346	0.055*
C21	0.4913 (6)	0.2129 0.0609 (3)	0.0904(4)	0.0535 (15)
H21A	0.1519 (0)	0.0349	0.0884	0.064*
H21R	0.4942	0.0917	0.0442	0.064*
H21C	0.4942	0.0380	0.0781	0.064*
C22	0.4194 0.4934 (5)	0.0388(2)	0.0701 0.1840 (4)	0.004 0.0382(12)
C22	0.4954(5)	0.0000(2) 0.1223(3)	0.2215(4)	0.0362(12)
H23	0.3300	0.1225 (5)	0.1936	0.055*
C24	0.3500	0.1310 0.1389(2)	0.1930 0.3087 (4)	0.033 0.0418 (12)
С2 4 Н24	0.4540 (5)	0.1507 (2)	0.3515	0.050*
C25	0.4139 0.7131 (7)	-0.0031(3)	0.3313 0.4839 (5)	0.050
U25	0.7151(7)	-0.0931(3)	0.4039 (3)	0.0018 (18)
H25R	0.7355	-0.1184	0.4218	0.074
H25C	0.0400	-0.1041	0.4923	0.074
C26	0.7787	-0.0296(2)	0.3270	0.074°
C20	0.0803(3)	-0.0290(2)	0.4991(4)	0.0432(13)
U27	0.0370(3)	-0.0028(2)	0.5757 (5)	0.0400 (12)
П27 С29	0.0221	-0.0213	0.0310	0.046°
C28	0.6228 (5)	0.0560 (2)	0.5555 (5)	0.0395 (12)
П2ð С20	0.3942	0.0853	0.3913	$0.04/^{*}$
C29	0.0/36(/)	0.2636 (3)	0.0737 (4)	0.067 (2)
H29A	0./50/	0.2842	0.6/81	0.080*
н29В	0.6803	0.2301	0./155	0.080*
H29C	0.6144	0.2905	0.6898	0.080*

C30	0.6467 (5)	0.2417 (2)	0.5765 (4)	0.0437 (13)	
C31	0.6026 (6)	0.2735 (2)	0.4978 (4)	0.0514 (15)	
H31	0.5837	0.3141	0.4940	0.062*	
C32	0.5930 (5)	0.2328 (2)	0.4280 (4)	0.0455 (13)	
H32	0.5666	0.2408	0.3664	0.055*	
B1	0.8269 (5)	-0.1167 (3)	0.1173 (4)	0.0330 (12)	
B2	0.6593 (5)	0.1227 (2)	0.4078 (4)	0.0318 (12)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Sm1	0.04262 (17)	0.03988 (17)	0.03085 (17)	0.00649 (12)	0.00262 (11)	-0.01103 (11)
N1	0.040 (2)	0.044 (2)	0.046 (3)	0.004 (2)	0.013 (2)	0.001 (2)
N2	0.035 (2)	0.042 (2)	0.032 (2)	-0.0026 (18)	0.0047 (19)	0.0006 (17)
N3	0.036 (2)	0.043 (2)	0.037 (2)	0.0040 (18)	-0.004 (2)	-0.0096 (18)
N4	0.035 (2)	0.035 (2)	0.030 (2)	0.0036 (17)	-0.0009 (18)	-0.0041 (16)
N5	0.044 (2)	0.035 (2)	0.039 (2)	-0.0049 (19)	0.0118 (19)	-0.0022 (18)
N6	0.029 (2)	0.039 (2)	0.029 (2)	0.0004 (17)	0.0032 (17)	-0.0061 (17)
N7	0.054 (3)	0.045 (3)	0.048 (3)	0.003 (2)	0.010 (2)	-0.015 (2)
N8	0.041 (2)	0.035 (2)	0.041 (2)	-0.0012 (18)	0.007 (2)	-0.0062 (18)
N9	0.038 (2)	0.043 (2)	0.040 (2)	-0.0053 (19)	0.013 (2)	-0.0119 (19)
N10	0.036 (2)	0.031 (2)	0.028 (2)	-0.0027 (17)	0.0060 (18)	-0.0052 (16)
N11	0.043 (2)	0.035 (2)	0.031 (2)	0.0056 (18)	-0.004 (2)	-0.0045 (17)
N12	0.039 (2)	0.030 (2)	0.025 (2)	0.0017 (17)	0.0014 (18)	-0.0010 (15)
N13	0.046 (2)	0.033 (2)	0.034 (2)	0.0053 (18)	0.0051 (19)	-0.0066 (17)
N14	0.035 (2)	0.034 (2)	0.030 (2)	-0.0001 (17)	0.0036 (18)	-0.0014 (16)
N15	0.060 (3)	0.035 (2)	0.030 (2)	0.003 (2)	0.005 (2)	-0.0088 (17)
N16	0.046 (2)	0.030 (2)	0.028 (2)	0.0023 (18)	0.0055 (19)	-0.0014 (16)
C1	0.051 (4)	0.107 (6)	0.088 (6)	0.002 (4)	0.032 (4)	0.001 (5)
C2	0.040 (3)	0.061 (4)	0.034 (3)	-0.012 (3)	0.010 (2)	-0.008(2)
C3	0.053 (4)	0.102 (6)	0.060 (4)	-0.011 (4)	0.014 (3)	0.031 (4)
C4	0.050 (4)	0.080 (5)	0.065 (4)	0.005 (3)	0.007 (3)	0.037 (4)
C5	0.059 (4)	0.079 (5)	0.046 (4)	0.001 (3)	-0.011 (3)	-0.011 (3)
C6	0.041 (3)	0.042 (3)	0.039 (3)	-0.004 (2)	-0.004 (2)	0.002 (2)
C7	0.033 (3)	0.054 (3)	0.046 (3)	0.004 (2)	-0.002 (3)	0.006 (3)
C8	0.037 (3)	0.041 (3)	0.043 (3)	0.007 (2)	0.009 (2)	-0.001 (2)
C9	0.078 (5)	0.049 (4)	0.072 (5)	0.002 (3)	0.014 (4)	0.008 (3)
C10	0.033 (3)	0.045 (3)	0.047 (3)	-0.001 (2)	0.006 (2)	0.017 (2)
C11	0.045 (3)	0.055 (3)	0.035 (3)	0.006 (3)	0.009 (2)	0.011 (2)
C12	0.047 (3)	0.066 (4)	0.028 (3)	0.006 (3)	0.007 (3)	-0.002 (2)
C13	0.106 (6)	0.067 (5)	0.063 (5)	0.028 (4)	0.017 (4)	-0.024 (4)
C14	0.085 (5)	0.036 (3)	0.041 (3)	0.011 (3)	0.010 (3)	-0.010 (2)
C15	0.083 (5)	0.054 (4)	0.072 (5)	-0.012 (4)	-0.001 (4)	-0.033 (3)
C16	0.056 (4)	0.050 (3)	0.073 (5)	-0.012 (3)	0.009 (3)	-0.021 (3)
C17	0.053 (4)	0.078 (5)	0.077 (5)	-0.010 (3)	0.022 (4)	-0.015 (4)
C18	0.041 (3)	0.061 (4)	0.034 (3)	-0.004 (3)	0.004 (2)	-0.002 (2)
C19	0.047 (3)	0.057 (4)	0.061 (4)	-0.017 (3)	0.009 (3)	-0.010 (3)
C20	0.047 (3)	0.043 (3)	0.048 (3)	-0.011 (2)	0.004 (3)	-0.009 (2)

C21	0.066 (4)	0.056 (4)	0.035 (3)	0.002 (3)	-0.011 (3)	-0.004 (2)	
C22	0.040 (3)	0.041 (3)	0.031 (3)	-0.002 (2)	-0.009(2)	0.004 (2)	
C23	0.034 (3)	0.059 (3)	0.043 (3)	0.001 (2)	-0.011 (2)	0.003 (3)	
C24	0.036 (3)	0.050 (3)	0.039 (3)	0.003 (2)	0.002 (2)	-0.003 (2)	
C25	0.089 (5)	0.035 (3)	0.064 (4)	0.008 (3)	0.021 (4)	0.003 (3)	
C26	0.049 (3)	0.037 (3)	0.044 (3)	0.000(2)	0.000 (3)	0.009(2)	
C27	0.058 (3)	0.034 (3)	0.029 (3)	-0.005 (2)	0.008 (2)	0.002 (2)	
C28	0.057 (3)	0.039 (3)	0.025 (2)	0.002 (2)	0.012 (2)	-0.001 (2)	
C29	0.106 (6)	0.051 (4)	0.046 (4)	-0.007 (4)	0.021 (4)	-0.021 (3)	
C30	0.057 (3)	0.035 (3)	0.041 (3)	-0.004 (2)	0.015 (3)	-0.011 (2)	
C31	0.064 (4)	0.028 (3)	0.063 (4)	0.005 (2)	0.008 (3)	-0.007(2)	
C32	0.057 (3)	0.035 (3)	0.045 (3)	0.007 (2)	0.002 (3)	0.002 (2)	
B1	0.028 (3)	0.037 (3)	0.034 (3)	0.001 (2)	0.001 (2)	-0.003 (2)	
B2	0.034 (3)	0.034 (3)	0.027 (3)	-0.002 (2)	-0.001 (2)	-0.004 (2)	

Geometric parameters (Å, °)

Sm1—N1	2.835 (5)	C6—C7	1.392 (8)
Sm1—N2	2.926 (4)	C7—C8	1.360 (8)
Sm1—N3	2.647 (4)	С7—Н7	0.9300
Sm1—N5	2.616 (4)	C8—H8	0.9300
Sm1—N9	2.597 (4)	C9—C10	1.490 (8)
Sm1—N11	2.614 (4)	С9—Н9А	0.9600
Sm1—N13	2.602 (4)	С9—Н9В	0.9600
N1—N2	1.351 (6)	С9—Н9С	0.9600
N3—N4	1.376 (6)	C10—C11	1.398 (8)
N5—N6	1.385 (6)	C11—C12	1.356 (8)
N7—N8	1.369 (6)	C11—H11	0.9300
N9—N10	1.370 (6)	C12—H12	0.9300
N11—N12	1.375 (6)	C13—C14	1.489 (9)
N13—N14	1.375 (6)	C13—H13A	0.9600
N15—N16	1.378 (6)	C13—H13B	0.9600
N2—B1	1.563 (7)	C13—H13C	0.9600
N4—B1	1.547 (7)	C14—C15	1.376 (10)
N6—B1	1.531 (7)	C15—C16	1.370 (9)
N8—B1	1.525 (7)	C15—H15	0.9300
N10—B2	1.557 (7)	C16—H16	0.9300
N12—B2	1.559 (7)	C17—C18	1.495 (9)
N14—B2	1.544 (7)	C17—H17A	0.9600
N16—B2	1.533 (6)	C17—H17B	0.9600
Sm1—B1	3.463 (6)	C17—H17C	0.9600
Sm1—B2	3.695 (6)	C18—C19	1.386 (8)
N1-C2	1.332 (7)	C19—C20	1.365 (8)
N2C4	1.341 (7)	C19—H19	0.9300
N3—C6	1.342 (7)	C20—H20	0.9300
N4—C8	1.352 (6)	C21—C22	1.489 (7)
N5-C10	1.291 (6)	C21—H21A	0.9600
N6—C12	1.339 (7)	C21—H21B	0.9600

N7 C14	1 229 (7)	C21 U21C	0.0000
N/	1.328 (7)	C2I—H2IC	0.9600
N8—C16	1.338 (7)	C22—C23	1.391 (8)
N9—C18	1.324 (7)	C23—C24	1.378 (8)
N10—C20	1.349 (6)	С23—Н23	0.9300
N11—C22	1.338 (6)	C24—H24	0.9300
N12—C24	1.348 (7)	C25—C26	1.484 (8)
N13—C26	1.343 (7)	C25—H25A	0.9600
N14—C28	1.350 (6)	C25—H25B	0.9600
N15—C30	1.331 (7)	C25—H25C	0.9600
N16—C32	1.353 (7)	C26—C27	1.386 (8)
C1-C2	1 484 (9)	C27—C28	1 359 (7)
C1—H1A	0.9600	C27—H27	0.9300
	0.9600	C_{2}^{2}	0.9300
	0.9000	$C_{20} = C_{20}$	1 405 (9)
	0.9000	C_{29} C_{30}	1.495 (8)
$C_2 = C_3$	1.382 (9)	C29—H29A	0.9600
C3—C4	1.359 (9)	C29—H29B	0.9600
С3—Н3	0.9300	C29—H29C	0.9600
C4—H4	0.9300	C30—C31	1.393 (8)
C5—C6	1.478 (8)	C31—C32	1.355 (8)
С5—Н5А	0.9600	C31—H31	0.9300
C5—H5B	0.9600	C32—H32	0.9300
C5—H5C	0.9600		
N2—N1—Sm1	80.3 (3)	H9A—C9—H9B	109.5
N4—N3—Sm1	117.0 (3)	С10—С9—Н9С	109.5
N6—N5—Sm1	113.8 (3)	Н9А—С9—Н9С	109.5
N10—N9—Sm1	120.2 (3)	H9B—C9—H9C	109.5
N12—N11—Sm1	1196(3)	N5-C10-C11	1110(5)
N14—N13—Sm1	123.9(3)	$N_5 - C_{10} - C_9$	121.5 (6)
N1 N2 B1	123.9(5) 124.8(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.3(0) 127.4(5)
N3 N4 B1	124.0(4)	C_{12} C_{11} C_{10}	127.7(5) 104.5(5)
N5 N6 D1	110.1(4)	C12 - C11 - H11	104.3(3)
$N_{2} = N_{2} = D_{1}$	121.0 (4)		127.7
N/—N8—BI	121.8 (4)		127.7
N9—N10—B2	124.8 (4)	N6-C12-C11	109.4 (5)
N11—N12—B2	121.2 (4)	N6—C12—H12	125.3
N13—N14—B2	119.9 (4)	C11—C12—H12	125.3
N15—N16—B2	121.4 (4)	C14—C13—H13A	109.5
N9—Sm1—N13	71.54 (13)	C14—C13—H13B	109.5
N9—Sm1—N11	70.72 (14)	H13A—C13—H13B	109.5
N13—Sm1—N11	78.18 (13)	C14—C13—H13C	109.5
N9—Sm1—N5	98.22 (13)	H13A—C13—H13C	109.5
N13—Sm1—N5	169.68 (13)	H13B—C13—H13C	109.5
N11—Sm1—N5	99.95 (13)	N7—C14—C15	110.1 (5)
N9—Sm1—N3	101.19 (13)	N7—C14—C13	120.4 (7)
N13—Sm1—N3	105.80 (13)	C_{15} $-C_{14}$ $-C_{13}$	129.5 (6)
N11_Sm1_N3	169.66 (14)	C16-C15-C14	106.6 (6)
N5Sm1N3	74 30 (14)	C16_C15_H15	126.7
NO Sm1 N1	162 25 (14)	$C_{10} = C_{15} = 1115$	120.7
1N7-SIIII-INI	103.23 (14)	UI4-UIJ	120./

N13—Sm1—N1	120.15 (13)	N8—C16—C15	106.9 (6)
N11—Sm1—N1	98.81 (13)	N8—C16—H16	126.5
N5—Sm1—N1	70.12 (13)	C15—C16—H16	126.5
N3—Sm1—N1	87.49 (13)	C18—C17—H17A	109.5
N9—Sm1—N2	158.73 (12)	C18—C17—H17B	109.5
N13—Sm1—N2	121.77 (12)	H17A—C17—H17B	109.5
N11—Sm1—N2	125.83 (12)	C18—C17—H17C	109.5
N5—Sm1—N2	67.63 (12)	H17A—C17—H17C	109.5
N3—Sm1—N2	60.55 (12)	H17B—C17—H17C	109.5
N1—Sm1—N2	27.07 (12)	N9—C18—C19	111.0 (5)
C2—N1—N2	106.4 (5)	N9—C18—C17	121.4 (5)
C2—N1—Sm1	103.8 (3)	C19—C18—C17	127.5 (6)
C4—N2—N1	109.6 (5)	C20—C19—C18	104.8 (5)
C4—N2—B1	125.2 (5)	С20—С19—Н19	127.6
C4—N2—Sm1	106.4 (4)	C18—C19—H19	127.6
N1—N2—Sm1	72.7 (3)	N10-C20-C19	109.0 (5)
B1—N2—Sm1	96.2 (3)	N10-C20-H20	125.5
C6—N3—N4	106.5 (4)	С19—С20—Н20	125.5
C6—N3—Sm1	134.6 (3)	C22—C21—H21A	109.5
C8—N4—N3	109.2 (4)	C22—C21—H21B	109.5
C8—N4—B1	132.5 (4)	H21A—C21—H21B	109.5
C10—N5—N6	107.1 (4)	C22—C21—H21C	109.5
C10—N5—Sm1	137.4 (4)	H21A—C21—H21C	109.5
C12—N6—N5	108.0 (4)	H21B—C21—H21C	109.5
C12—N6—B1	130.0 (4)	N11—C22—C23	110.3 (5)
C14—N7—N8	105.9 (5)	N11—C22—C21	120.9 (5)
C16—N8—N7	110.5 (5)	C23—C22—C21	128.9 (5)
C16—N8—B1	126.5 (5)	C24—C23—C22	105.3 (5)
C18—N9—N10	106.4 (4)	С24—С23—Н23	127.4
C18—N9—Sm1	133.3 (4)	С22—С23—Н23	127.4
C20—N10—N9	108.8 (4)	N12—C24—C23	108.6 (5)
C20—N10—B2	126.4 (4)	N12—C24—H24	125.7
C22—N11—N12	106.7 (4)	C23—C24—H24	125.7
C22—N11—Sm1	126.4 (3)	С26—С25—Н25А	109.5
C24—N12—N11	109.1 (4)	С26—С25—Н25В	109.5
C24—N12—B2	129.6 (4)	H25A—C25—H25B	109.5
C26—N13—N14	106.5 (4)	C26—C25—H25C	109.5
C26—N13—Sm1	129.2 (3)	H25A—C25—H25C	109.5
C28—N14—N13	108.6 (4)	H25B—C25—H25C	109.5
C28—N14—B2	131.5 (4)	N13—C26—C27	110.0 (5)
C30—N15—N16	106.1 (4)	N13—C26—C25	120.2 (5)
C32—N16—N15	109.0 (4)	C27—C26—C25	129.8 (5)
C32—N16—B2	127.6 (4)	C28—C27—C26	105.7 (4)
C2-C1-H1A	109.5	С28—С27—Н27	127.1
C2—C1—H1B	109.5	C26—C27—H27	127.1
H1A—C1—H1B	109.5	N14—C28—C27	109.2 (4)
C2—C1—H1C	109.5	N14—C28—H28	125.4
H1A—C1—H1C	109.5	C27—C28—H28	125.4

H1B—C1—H1C	109.5	С30—С29—Н29А	109.5
N1—C2—C3	110.3 (5)	С30—С29—Н29В	109.5
N1-C2-C1	121.1 (6)	H29A—C29—H29B	109.5
C3—C2—C1	128.6 (6)	С30—С29—Н29С	109.5
C4—C3—C2	105.1 (6)	H29A—C29—H29C	109.5
С4—С3—Н3	127.4	H29B—C29—H29C	109.5
С2—С3—Н3	127.4	N15—C30—C31	110.7 (5)
N2—C4—C3	108.6 (6)	N15—C30—C29	120.1 (5)
N2—C4—H4	125.7	C31—C30—C29	129.2 (5)
C3—C4—H4	125.7	C_{32} — C_{31} — C_{30}	105.3 (5)
С6—С5—Н5А	109.5	C32—C31—H31	127.3
C6—C5—H5B	109.5	C30—C31—H31	127.3
H5A—C5—H5B	109.5	N16-C32-C31	109.0(5)
C6-C5-H5C	109.5	N16-C32-H32	125 5
H5A-C5-H5C	109.5	C_{31} C_{32} H_{32}	125.5
H5B-C5-H5C	109.5	N8—B1—N6	109.4(4)
N3-C6-C7	109.5 (5)	N8—B1—N4	109.1(1) 1124(4)
N3-C6-C5	100.0(5)	N6N4	112.4(4) 110.7(4)
C_{7}	120.0(5) 130.4(5)	N8N2	107.7(4)
C^{8} C^{7} C^{6}	106.3(5)	N6 B1 N2	107.7(4)
$C_{8} = C_{7} = U_{7}$	106.5 (5)	$N_{1} = N_{2}$	110.0(4)
C6 C7 H7	126.8	$N_1 = D_1 = N_2$ N16 B2 N14	103.8(4)
$C_0 = C_1 = H_1$	120.8 108.4(5)	N16 P2 N10	111.7(4) 106.8(4)
N4 C8 H8	106.4 (5)	N10 - B2 - N10	100.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125.0	$\frac{114}{12} \frac{12}{12} \frac{110}{12}$	110.3(4)
$C_{10} = C_{0} = H_{00}$	123.8	$\frac{110}{2} \frac{12}{12}$	107.8(4)
$C_{10} = C_{9} = H_{9}A$	109.5	N14 D2 N12	109.4(4)
С10—С9—п9В	109.3	IN10—D2—IN12	110.7 (4)
C2—N1—N2—C4	0.1 (6)	N12—N11—C22—C21	177.5 (5)
Sm1—N1—N2—C4	101.7 (5)	Sm1—N11—C22—C21	-33.0(7)
C2—N1—N2—B1	172.8 (5)	N11—C22—C23—C24	-0.2 (6)
Sm1—N1—N2—B1	-85.5 (4)	C21—C22—C23—C24	-178.3(6)
C2—N1—N2—Sm1	-101.7 (4)	N11—N12—C24—C23	-1.5 (6)
C6—N3—N4—C8	-0.7 (6)	B2—N12—C24—C23	-179.5(5)
Sm1—N3—N4—C8	165.9 (3)	C22—C23—C24—N12	1.1 (6)
C6—N3—N4—B1	-176.5 (4)	N14—N13—C26—C27	0.9 (6)
Sm1—N3—N4—B1	-10.0(5)	Sm1—N13—C26—C27	-172.1 (4)
C10—N5—N6—C12	0.1 (6)	N14—N13—C26—C25	-179.2(5)
Sm1—N5—N6—C12	167.6 (3)	Sm1—N13—C26—C25	7.8 (8)
C10—N5—N6—B1	176.2 (4)	N13—C26—C27—C28	-0.2(7)
Sm1—N5—N6—B1	-16.3 (5)	C25—C26—C27—C28	179.9 (6)
C14—N7—N8—C16	-0.2(7)	N13—N14—C28—C27	1.1 (6)
C14—N7—N8—B1	-168.2(5)	B2—N14—C28—C27	-179.3 (5)
C18 - N9 - N10 - C20	-0.4(6)	C_{26} C_{27} C_{28} N_{14}	-0.6(7)
Sm1—N9—N10—C20	-178.1 (3)	N16—N15—C30—C31	-1.1 (7)
C18—N9—N10—B2	-177.3 (5)	N16—N15—C30—C29	179.5 (5)
Sm1—N9—N10—B2	5.0 (6)	N15—C30—C31—C32	0.3 (7)
C22—N11—N12—C24	1.4 (5)	C29—C30—C31—C32	179.7 (6)
	× /	-	× · /

Sm1—N11—N12—C24	-150.6 (3)	N15—N16—C32—C31	-1.4 (7)
C22—N11—N12—B2	179.6 (4)	B2—N16—C32—C31	-165.2 (5)
Sm1—N11—N12—B2	27.6 (5)	C30-C31-C32-N16	0.7 (7)
C26—N13—N14—C28	-1.2 (6)	C16—N8—B1—N6	-97.1 (6)
Sm1—N13—N14—C28	172.2 (3)	N7—N8—B1—N6	68.9 (6)
C26—N13—N14—B2	179.1 (4)	C16—N8—B1—N4	139.4 (6)
Sm1—N13—N14—B2	-7.4 (6)	N7—N8—B1—N4	-54.6 (6)
C30—N15—N16—C32	1.5 (6)	C16—N8—B1—N2	23.2 (7)
C30—N15—N16—B2	166.5 (5)	N7—N8—B1—N2	-170.8(4)
N2—N1—C2—C3	-0.7 (7)	C12—N6—B1—N8	-8.9 (7)
Sm1-N1-C2-C3	-84.4 (5)	N5—N6—B1—N8	176.0 (4)
N2—N1—C2—C1	-178.0(6)	C12—N6—B1—N4	115.6 (6)
Sm1-N1-C2-C1	98.3 (6)	N5—N6—B1—N4	-59.5(6)
N1-C2-C3-C4	10(8)	C12—N6—B1—N2	-1274(5)
C1-C2-C3-C4	178.0(7)	N5-N6-B1-N2	57.5 (6)
N1 - N2 - C4 - C3	0.6 (8)	C8—N4—B1—N8	24 3 (8)
B1-N2-C4-C3	-172.2.(6)	N3—N4—B1—N8	-1610(4)
Sm1-N2-C4-C3	77.6(7)	C8—N4—B1—N6	-984(6)
$C_2 - C_3 - C_4 - N_2$	-0.9(9)	N3—N4—B1—N6	76 3 (5)
N4—N3—C6—C7	0.4(6)	C8—N4—B1—N2	141.7(5)
Sm1-N3-C6-C7	-1627(4)	N3—N4—B1—N2	-43.6(6)
N4—N3—C6—C5	-1764(5)	C4— $N2$ — $B1$ — $N8$	69 5 (7)
Sm1-N3-C6-C5	20.5 (8)	N1—N2—B1—N8	-1022(5)
N3-C6-C7-C8	0.1.(6)	Sm1—N2—B1—N8	-1754(3)
$C_{5}-C_{6}-C_{7}-C_{8}$	176 4 (6)	C4-N2-B1-N6	-1710(5)
N_{3} N_{4} C_{8} C_{7}	0.7 (6)	N1-N2-B1-N6	174(7)
B1—N4—C8—C7	175 8 (5)	Sm1-N2-B1-N6	-55.8(4)
C6-C7-C8-N4	-0.5(6)	C4-N2-B1-N4	-510(7)
N6-N5-C10-C11	-0.8(6)	N1-N2-B1-N4	1374(5)
Sm1-N5-C10-C11	-1639(4)	Sm1—N2—B1—N4	642(3)
N6-N5-C10-C9	-1798(5)	C_{32} N16 B2 N14	-161.8(5)
Sm1—N5—C10—C9	17.2 (9)	N15-N16-B2-N14	36.2 (6)
N5-C10-C11-C12	1,3(7)	C_{32} N16 B2 N10	77.4 (6)
C9-C10-C11-C12	-179.8(6)	N15-N16-B2-N10	-84.6(5)
$N_{5}-N_{6}-C_{12}-C_{11}$	0.7 (6)	C_{32} N16 B2 N12	-41.6(7)
B1—N6—C12—C11	-174.9(5)	N15-N16-B2-N12	156.4 (4)
C10-C11-C12-N6	-12(7)	C_{28} N14 B2 N16	5 8 (8)
N8 - N7 - C14 - C15	-0.4(7)	N13 - N14 - B2 - N16	-174.7(4)
N8—N7—C14—C13	179.8 (6)	C_{28} N14 B2 N10	124.5 (5)
N7-C14-C15-C16	0.8 (8)	N13 - N14 - B2 - N10	-56.0(6)
C13—C14—C15—C16	-179.4 (7)	C_{28} N14 B2 N12	-113.4 (6)
N7—N8—C16—C15	0.6 (8)	N13—N14—B2—N12	66.1 (5)
B1—N8—C16—C15	168.0 (6)	C20-N10-B2-N16	4.1 (7)
C14—C15—C16—N8	-0.8(8)	N9—N10—B2—N16	-179.6(4)
N10—N9—C18—C19	-0.1 (7)	C20—N10—B2—N14	-117.6 (5)
Sm1—N9—C18—C19	177.2 (4)	N9—N10—B2—N14	58.8 (6)
N10—N9—C18—C17	-179.5 (6)	C20—N10—B2—N12	121.1 (5)
Sm1—N9—C18—C17	-2.2 (9)	N9—N10—B2—N12	-62.5 (6)
			· · ·

No. 610 610 620			24.2 (7)
N9—C18—C19—C20	0.5 (7)	C24—N12—B2—N16	-24.3 (7)
C17—C18—C19—C20	179.8 (7)	N11—N12—B2—N16	158.0 (4)
N9—N10—C20—C19	0.7 (6)	C24—N12—B2—N14	97.4 (6)
B2-N10-C20-C19	177.6 (5)	N11—N12—B2—N14	-80.4 (5)
C18-C19-C20-N10	-0.8 (7)	C24—N12—B2—N10	-140.7 (5)
N12—N11—C22—C23	-0.7 (6)	N11—N12—B2—N10	41.5 (6)
Sm1—N11—C22—C23	148.8 (4)		