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Abstract: This study analyzes productive efficiency in relation to CO2 emissions using a unique dataset 

of 562 Chinese manufacturing firms for the period from 2005 to 2009. We develop a directional distance 

function approach to identify technical innovators in the area of CO2 emissions. The results indicate 

that a large number of technical innovators are observed in the textile, paper, steel, and computer 

industries. Furthermore, there are clearly different trends in productivity change and corporate 

performance across industries and provinces. This result implies that policy makers need to consider 

industrial and regional characteristics to develop effective policies that conserve energy and reduce CO2 

emissions. 

 

Keywords: Technical innovator, total factor productivity, technology adoption, CO2 emissions, 

Chinese manufacturing firm 

  



2 
 

1. Introduction 

In light of the increasing concern about China’s severe air pollution and energy security, the Chinese 

government has initiated a series of binding policy targets to address these challenges [1]. One of the 

government’s most prominent successes was the eleventh Five Year Plan, which not only achieved an 

annual GDP growth of 11.2% but also improved energy efficiency by 19.1% from 2005 to 2010; the 

original targets had been 7.5% GDP growth and a 20% energy efficiency improvement. There was a 

rebound in energy use and carbon emissions during the later period of the eleventh Five Year Plan that 

was attributable to the stimulus package developed in response to the global economic crisis, but the 

overall effects, particularly the rapid energy intensity decline that occurred between 2006 and 2009, 

were significant. Given the new challenges related to China’s intended nationally determined 

contribution (INDC) carbon-reduction target, understanding how China dramatically reversed—i.e., 

effectively curbed—its stable or potentially increasing trend in energy usage during the eleventh Five 

Year Plan is crucial for designing and implementing successful energy and climate policies. Our paper 

focuses on environmentally sensitive productivity and technical innovators and provides an ex post 

firm-level analysis that should help in designing more effective climate policies to achieve the INDC 

target for the post-2020 era. 

The success of China’s 11th Five Year Plan in energy savings and pollution reduction is 

primarily attributable to the energy-saving activities of the non-electricity manufacturing sector in 

China, whose share of energy consumption was approximately 28% in 2009. Figure 1 shows the trends 

in energy consumption related to value added (VA) and carbon dioxide (CO2) emissions from 1995 to 

2009. Energy consumption related to VA decreased from 1995 to 2000 primarily because of the 

modernization of production equipment in the industrial sector [2]. Although both of these levels 

increased from 2000 to 2005, they decreased again after 2005. Additionally, CO2 emissions related to 

energy consumption in China did not significantly change, although they did decrease annually in the 

manufacturing sector. This trend indicates that in recent years, the Chinese manufacturing sector has 

utilized a lower amount of carbon energy. 
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<Figure 1 about here> 

 

As the world’s largest CO2 emitter [3], China is the key player in the field of climate change. 

The primary driver of its emissions is the industrial sector, including manufacturing [4]. The Chinese 

government is attempting to reduce CO2 emissions by promoting renewable energy investment [5]. 

However, the CO2 emissions-reduction effect is limited by the government’s focus on shifting to 

renewable energy sources because in 2010, the share of emissions produced by primary energy was 

only 8.3% [6]. Simultaneously, both energy efficiency and energy generation in the manufacturing 

sector are important for reducing CO2 emissions [7]. The manufacturing sector’s CO2 emissions are 

primarily generated by fossil-fuel combustion. Therefore, the CO2 emissions produced by 

manufacturing firms reflect both their energy efficiency and their total energy consumption. 

The political targets and energy-saving activities of China’s eleventh Five Year Plan are the 

primary reasons for the manufacturing sector’s improvements in energy intensity and carbon intensity 

[8]. The six policy orientations of China’s eleventh Five Year Plan included the following: (1) 

conserving resources and protecting the environment and (2) enhancing capability for independent 

innovation. Additionally, there were nine major objectives based on these policy orientations, including 

the following: (1) significantly increasing resource utilization efficiency and (2) enhancing sustainable 

development. Both of those objectives focus on efficient energy consumption and greenhouse gas 

(GHG) reduction [9]. These clear political targets provide incentives for local governments and decision 

makers in manufacturing firms to promote energy saving and GHG-reduction activities [10]. To achieve 

its nine major energy-saving objectives, China’s eleventh Five Year Plan outlined specific activities: 

(1) ten key projects, (2) energy conservation planning for the top 1,000 enterprises, and (3) closing 

inefficient small-unit power plants [11]. 

Many scholars are interested in the policies of the eleventh Five Year Plan because of their 

impressive results in terms of both economic development and energy savings. However, most previous 

studies on economic development and energy savings during China’s eleventh Five Year Plan have 

used provincial data or industrial data [4,12,13], whereas research relying on corporate firm-level data 
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remains scarce [11,14]. Our primary concern is that the firm-level industrial or regional characteristics 

that we intend to reveal might be both numerous and heterogeneous [15]. 

Firm-level ex post studies are lacking because energy consumption data for Chinese firms are 

not included in the well-known National Bureau of Statistics above-standard firm survey database; nor 

are they generally available. Although the 1,000 enterprises conservation project has provided the 

National Development and Reform Commission with detailed energy consumption information, these 

data are not available to researchers. In general, it is difficult to collect firm-level energy consumption 

and CO2 emissions data in China. That said, because energy procurement strongly affects production 

costs, each firm’s business managers both determine the amount of energy used and select the energy 

source. Thus, each firm’s energy-use data reflect its corporate strategy, which includes external factors 

such as environmental policies and energy prices. In this sense, we believe that it is important to focus 

on changes in corporate financial and environmental performance to understand the impact of China’s 

eleventh Five Year Plan. 

Additionally, industrial characteristics affect the relationship between CO2 emissions and 

corporate financial performance because the technical difficulty of reducing CO2 emissions varies 

across industries [16]. Furthermore, the capital equipment and labor requirements for reducing CO2 

emissions vary across industries because the types of fuel consumed as intermediate materials also vary 

[17]. Therefore, industrial characteristics provide important information for creating effective energy 

saving and CO2 reduction policies in each industry. 

Based on this background, we utilized a unique firm-level dataset on financial and 

environmental performance changes from 2005 to 2009 to conduct an ex post evaluation of the eleventh 

Five Year Plan. We focus on the characteristics of manufacturing firms that are identified as technical 

innovators. We examine the corporate financial and CO2 emissions data collected along with a unique 

questionnaire survey specifically focusing on energy use. The novelty of this study is the development 

of a framework for identifying corporate performance using the change in VA data, CO2 emissions data, 

and total factor productivity (TFP) estimated using the production function approach. We believe that 

this framework contributes to understanding both environmental and financial change in manufacturing 
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firms considering industrial characteristics. This information is useful for creating effective climate-

change mitigation policies that consider corporations’ financial positions. 

The remainder of this paper is organized as follows. Section 2 describes our methodology. 

Section 3 details the questionnaire and the dataset employed. The results on technical innovators and 

corporate performance identification are discussed in Section 4, and Section 5 concludes. 

 

 

2. Methodology 

This study measured TFP in terms of CO2 emissions. Using a directional distance function (DDF) and 

the Luenberger Productivity Indicator (hereafter, productivity indicator), we estimate TFP. A DDF 

evaluates productive efficiency using a nonparametric production function. The productivity indicator 

is considered a more general measure than the widely used Malmquist Index [18]. We can decompose 

a change in the productivity indicator into technical change (TECHCH) and efficiency change (EFFCH). 

These two indicators are useful for understanding the structure of TFP change [19]. 

 

2-1. Directional Distance Function (DDF) 

Let 𝑥𝑥 ∈ ℜ+
L ,  𝑏𝑏 ∈ ℜ+

R,  and 𝑦𝑦 ∈ ℜ+
M be the vectors for inputs, environmental outputs (or undesirable 

outputs), and market outputs (or desirable outputs), respectively. Define the production technology as 

P(𝑥𝑥) = {(𝑥𝑥, 𝑦𝑦, 𝑏𝑏): 𝑥𝑥 can produce (𝑦𝑦, 𝑏𝑏)}.                                                       (1) 

We assume that good and bad outputs are null-joint; a firm cannot produce desirable 

outputs without producing undesirable outputs. 

(𝑦𝑦, 𝑏𝑏) ∈ P(𝑥𝑥);  𝑏𝑏 = 0 ⇒ 𝑦𝑦 = 0.                                                                       (2) 

We also assume weak disposability, which implies that the pollutant should not be considered 

freely disposable.1 

                                                             
1 According to Fujii et al. [2], before defining the directional vectors in a productivity analysis that considers undesirable outputs, either strong 

disposability or weak disposability must be assumed. The difference between the strong and weak disposability of undesirable outputs is 
attributed to the opportunity cost of pollution abatement. Strong disposability assumes the undesirable output is not regulated and a firm can 
freely dispose of it. Otherwise, regulation on the undesirable output should potentially cause the firm to incur a disposal cost. As indicated 
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(𝑦𝑦, 𝑏𝑏) ∈ P(𝑥𝑥) and 0 ≤ β ≤ 1 ⇒ (β𝑦𝑦,β𝑏𝑏) ∈ P(𝑥𝑥).                                          (3) 

 

According to the null-joint hypothesis and weak disposability, the DDF for firm k can be 

computed by solving the following optimization problem: 

D��⃗ �𝑥𝑥𝑘𝑘𝑙𝑙 , 𝑦𝑦𝑘𝑘𝑚𝑚, 𝑏𝑏𝑘𝑘𝑟𝑟, g𝑥𝑥𝑙𝑙 , g𝑦𝑦𝑚𝑚, g𝑏𝑏𝑟𝑟� = Maximize β𝑘𝑘 (4) 

s.t.      ∑ λ𝑖𝑖𝑥𝑥𝑖𝑖𝑙𝑙N
𝑖𝑖=1 ≤ 𝑥𝑥𝑘𝑘𝑙𝑙 + β𝑘𝑘g𝑥𝑥𝑙𝑙               𝑙𝑙 = 1,⋯ , L (5) 

 ∑ λ𝑖𝑖𝑦𝑦𝑖𝑖𝑚𝑚N
𝑖𝑖=1 ≥ 𝑦𝑦𝑘𝑘𝑚𝑚 + β𝑘𝑘g𝑦𝑦𝑚𝑚    𝑚𝑚 = 1,⋯ , M (6) 

 ∑ λ𝑖𝑖𝑏𝑏𝑖𝑖𝑟𝑟N
𝑖𝑖=1 = 𝑏𝑏𝑘𝑘𝑟𝑟 + β𝑘𝑘g𝑏𝑏𝑟𝑟       𝑟𝑟 = 1,⋯ , R (7) 

 𝜆𝜆𝑖𝑖 ≥ 0                      (𝑖𝑖 = 1,⋯ ,𝑁𝑁), (8) 

 

where β𝑘𝑘 is the production inefficiency score of the kth firm and 𝜆𝜆𝑖𝑖 is the weight variable to identify the 

reference point on the production frontier line. Here, l, m, and r are the inputs, desirable outputs, and 

undesirable outputs, respectively; x is the production input factor in the L × N input factor matrix; y is 

the desirable output in the M × N desirable output factor matrix; and b is the undesirable output factor 

in the R × N undesirable output matrix. In addition, gx is the directional vector of the input factor, gy is 

the directional vector of the desirable output factors and gb is the directional vector of the undesirable 

output factors. To estimate the inefficiency scores of all of the firms, we must independently apply the 

model N times for each firm. 

 

2-2. Productivity Indicator  

TFP is computed from the results of the distance function model and is derived as follows [18]: 

 

TFPtt+1 = TECHCHt
t+1 + EFFCHt

t+1                      (9) 

                                                             
in the previous section, the Chinese government pressured manufacturing firms to reduce CO2 emissions. Thus, we consider weak 
disposability as the appropriate assumption to evaluate productive inefficiency incorporating CO2 emissions. 
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TECHCHt
t+1 = 1

2
�D��⃗ t+1(𝑥𝑥t, 𝑦𝑦t, 𝑏𝑏t) + D��⃗ t+1(𝑥𝑥t+1, 𝑦𝑦t+1, 𝑏𝑏t+1) − D��⃗ t(𝑥𝑥t, 𝑦𝑦t, 𝑏𝑏t) − D��⃗ t(𝑥𝑥t+1, 𝑦𝑦t+1, 𝑏𝑏t+1)�        (10) 

EFFCHt
t+1 = D��⃗ t(𝑥𝑥t, 𝑦𝑦t, 𝑏𝑏t) − D��⃗ t+1(𝑥𝑥t+1, 𝑦𝑦t+1, 𝑏𝑏t+1)                               (11) 

 

where 𝑥𝑥t represents the input for year t, 𝑥𝑥t+1 is the production input for year t+1, 𝑦𝑦t is the desirable 

output for year t, 𝑦𝑦t+1 is the desirable output for year t+1, 𝑏𝑏t is the undesirable output for year t, and 

𝑏𝑏t+1 is the undesirable output for year t+1. Here, D��⃗ t(𝑥𝑥t, 𝑦𝑦t, 𝑏𝑏t) is the production inefficiency score for 

year t based on the frontier line for year t. Similarly, D��⃗ t+1(𝑥𝑥t, 𝑦𝑦t, 𝑏𝑏t) is the production inefficiency for 

year t based on the frontier line for year t+1. 

The TFP score indicates the productivity change relative to the benchmark year. TFP includes all 

types of productivity change, which are divided into technical change (TECHCH) and efficiency change 

(EFFCH). TECHCH shows shifts in the production frontier, whereas EFFCH indicates changes in a 

production unit's position relative to the frontier (i.e., catching up). Using these two indicators, we can 

identify the structure of productivity change as three types: frontier shift, catch-up, and overall 

improvement [20]. 

First, the catch-up type is defined by increasing EFFCH. In catch-up productivity change, an 

inefficient firm’s productivity improvement is faster than an efficient firm’s technological progress, and 

the efficiency gap shrinks. Second, the frontier shift type is defined by positive TECHCH and negative 

EFFCH. In the frontier shift type, productive and efficient firms on the frontier achieve technological 

progress. However, inefficient firms do not keep up with this technological development; therefore, the 

efficiency gap increases. Finally, the overall improvement type is defined by a TECHCH that is positive 

and an EFFCH that is close to zero. In the overall improvement of productivity change, the speed of the 

efficient firm’s technological progress is nearly equal to that of the inefficient firm’s productivity 

improvement. 

In general, a productivity change estimation that applies a DDF model assumes either constant 

returns to scale (CRS) or variable returns to scale (VRS). We assumed CRS to avoid infeasible linear 

programming calculations in the time series analysis that are needed to estimate the productivity 

indicator. For example, Färe and Grosskopf [21] note that it is not always possible to compute 
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productivity change in the VRS model. The linear programming calculation of time series analysis 

under VRS was infeasible in this study and therefore, we used only the CRS model. 

To estimate the productivity change indicators, we set the directional vector = �g𝑥𝑥𝑙𝑙, g𝑦𝑦𝑚𝑚, g𝑏𝑏𝑟𝑟� = 

�0, 𝑦𝑦𝑘𝑘
𝑚𝑚,−𝑏𝑏𝑘𝑘𝑟𝑟�. This type of directional vector assumes that an inefficient firm can decrease productive 

inefficiency while increasing desirable outputs and can decrease undesirable outputs in proportion to 

the initial combination of actual outputs. 

As set above, the proportional directional vector measures the distance from each Chinese 

manufacturing firm to a frontier line focusing the percentage by which each firm can simultaneously 

increase desirable output and decrease undesirable output. The advantage of the proportional directional 

vector is that the reader can easily understand the inefficiency score. The inefficiency score represents 

the percentage by which each firm can increase desirable output and decrease undesirable output 

compared to the frontier line. Therefore, the proportional directional vector enables an inefficiency 

score that is independent from the unit of data. Additionally, the proportional directional vector provides 

an advantage in understanding TFP change. The TFP change indicator estimated by the proportional 

directional vector directly represents the percentage of production inefficiency change. 

 

2-3. Technical Innovators 

Recently, Kerstens and Managi [22] and Fujii et al. [23] have developed an identification method for 

technical innovators using productivity indicators. 2  The notion of a technical innovator has been 

discussed since its introduction by Färe et al. [24]. We define a technical innovator (TI) from year t to 

year t+1 using three conditions: (1) there are efficient observations in year t+1 (i.e., 

𝐷𝐷𝑡𝑡+1(𝑥𝑥𝑡𝑡+1, 𝑦𝑦𝑡𝑡+1, 𝑏𝑏𝑡𝑡+1)); (2) the productive efficiency level in year t+1 is beyond the production frontier 

line in year t (𝐷𝐷𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡, 𝑏𝑏𝑡𝑡) < 0); and (3) the production frontier line is shifted in a more efficient 

direction (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡,𝑡𝑡+1 > 0). Thus, we define an innovator using equation (12). 

                                                             
2 Kerstens and Managi [22] and Fujii et al. [23] apply both convex and non-convex production technology assumption to identify the global 

and local technical innovator. Their study does not treat the undesirable output in production inefficiency evaluation by the DDF. According 
to Fujii et al. [2], strict assumptions about production technology such as variable return to scale and non-convex technology increase the 
cases of infeasible solutions in a production inefficiency estimation. We observed an infeasible solution if we assume non-convex production 
technology. Thus, this study assumes convex production technology and identifies the technical innovator. 
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TI�(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡, 𝑏𝑏𝑡𝑡)(𝑥𝑥𝑡𝑡+1, 𝑦𝑦𝑡𝑡+1, 𝑏𝑏𝑡𝑡+1)� = �
𝐷𝐷𝑡𝑡+1(𝑥𝑥𝑡𝑡+1, 𝑦𝑦𝑡𝑡+1, 𝑏𝑏𝑡𝑡+1) = 0
∩ 𝐷𝐷𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡, 𝑏𝑏𝑡𝑡) < 0
∩ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡,𝑡𝑡+1 > 0

�             (12) 

 

A firm satisfying the three conditions simultaneously described by equation (12) is identified 

as a technical innovator. We focus on the distribution of firms that are determined to be technical 

innovation firms by firm scale, location, and industrial characteristics. 

Figure 2 graphically represents the technical innovator using input (x) and output (y) to provide 

a simple explanation of a technical innovator. In Figure 2, there are five firms in year t and year t+1. In 

this case, firms C and E are technical innovators from year t to year t+1 because they satisfy the three 

conditions. 

 

<Figure 2 about here> 

 

 

3. Data 

We used survey data collected by the Chinese Academy of Social Science and the China in the World 

Economy Center at Tsinghua University. The survey was conducted by the investigators through face-

to-face interviews in 2010 with the support from local Development and Reform Commission, and the 

retrospective data from 2005 to 2009 provide a balanced panel of 800 firms3 covering six provinces, 

Jiangsu, Shandong, Shanxi, Hebei, Jilin, and Sichuan, representing China’s eastern, western, central, 

northeastern and southwestern areas. The firms cover a wide range of industries, including three 

extractive industries, electricity, food and beverages, textiles, equipment, pulp and paper, chemicals, 

and communications. Firm representatives answered various quantitative and qualitative questions 

regarding their firms' energy-use behaviors. 

                                                             
3 We surveyed total 1,000 firms by randomly drawing samples from the NBS industrial survey database which include firms above-standard 

(above five mil. Yuan output value), about 200 firms were excluded from our survey since some data in these firms are incomplete or not 
consistent with the NBS industrial survey data, so total 800 firms are effective samples. 
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For this analysis, we exclude several industries with small samples because of the limitations 

of the DDF approach.4 After excluding small-sample industries, data are available for 562 firms. Our 

dataset includes a balanced panel of 562 firms annually from 2005 to 2009, which includes the first four 

years of China’s eleventh Five Year Plan. The firms span twelve industries, including food processing, 

textiles, pulp and paper, chemicals, cement, iron and steel, metals, general machines, special machines, 

transportation equipment, electric products, and computers.5  

The variables used in this study include VA, labor cost, capital stock, and CO2 emissions. 

Monetary data are deflated to 2005 prices using sectoral deflators. To analyze productive inefficiency 

using the DDF approach, we use VA as the desirable output variable and labor cost and capital stock as 

market input variables. CO2 emissions data are used as undesirable outputs in the productive 

inefficiency estimation. 

We calculate firms’ CO2 emissions using energy consumption data from the survey and the 

carbon intensity of each energy good. CO2 emissions intensity is calculated based on the carbon 

embodied both in electricity and in the direct use of fossil fuels. Our carbon combustion coefficients 

are based on the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse 

Gas Inventories [25]. The National Development and Reform Commission uses this method to guide 

the calculation of regional carbon intensity associated with regional electricity generation. We adopted 

the same method and computed the average carbon emissions factor for 16 energy types (including raw 

coal, coke, coal gas, crude oil, kerosene, and gasoline) and seven electricity grids in China. Carbon 

content, carbon oxidation rate, fuel emissions factor, and average net calorific value all differentiate the 

regional carbon intensity of China’s electricity grid. Own-plant electricity generation was not 

considered explicitly in our calculation because it was not reported separately from grid-supplied 

electricity in the survey.  

Table 1 provides the firm-level average scores from 2005 to 2009 by type of industry. Table 1 

shows that CO2 emissions are high for the chemical, cement, and iron and steel industries. These three 

                                                             
4 Cook et al. [32] discuss the limitations of the non-parametric production frontier approach as follows: “it is likely that a significant portion 

of decision-making units (DMUs) will be deemed as efficient if there are too many inputs and outputs given the number of DMUs.” Non-
parametric frontier analysis, including the DDF approach, experiences difficulty in evaluating productive inefficiency in small-sample 
datasets. 

5 Industry type is determined by the two-digit industry codes provided by the National Bureau of Statistics of China. 



11 
 

industries are also characterized by low VA to CO2 emissions, whereas electronic products and 

computers are high-VA industries. This difference is caused by industry variation in the main energy 

sources used for production. For example, the iron and steel industry uses coal as a fuel and for 

oxidation-reduction reactions in shaft furnaces. In this case, without technological innovation in the 

intermediate material technology, it is difficult to reduce coal consumption while maintaining a constant 

level of steel production.  

 

<Table 1 about here> 

 

To understand the firm scale and regional effects, we separate the firms by scale and location. 

First, we divided the sample into four groups by production size: large, medium, small, and tiny. Firms 

that on average employed more than 1,000 people from 2005 to 2009 are considered large. Firms with 

300 to 999 employees are considered medium. Firms with 100 to 299 employees are considered small, 

and firms with less than 99 employees are considered tiny. 

Table 2 shows firm samples by type of industry, province, and firm scale groups. In this study, 

large, medium, small, and tiny companies represent 9%, 23%, 47%, and 21% of firms, respectively. 

Regarding the regional distribution of sample firms, Jiangsu, Shandong, Shanxi, Hebei, Jilin, and 

Sichuan provinces represent 14%, 5%, 27%, 26%, 17%, and 11% of the total number of sample firms, 

respectively. 

 

<Table 2 about here> 

 

 

4. Results 

The results are shown in Figures 3 and 4 and Tables 3 through 8. To investigate productivity changes 

in these manufacturing firms, we set the base year to 2005. TFP, EFFCH, and TECHCH equal zero in 

the base year both in Table 3 and in Figures 3 and 4. 
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4-1. TFP Change 

Figures 3 and 4 and Table 3 show TFP changes from 2005 to 2009 by industry. TFP changes in daily 

commodities and basic material industries are described in Figure 3, whereas TFP changes for the 

processing and assembly industries are described in Figure 4. Table 3 shows total TFP changes from 

2005 to 2009 by industry. In Table 3, we also describe the structure of TFP change, applying the 

identification method explained in Section 2-2. Figure 3 indicates that from 2007 to 2008 the TFP of 

the textiles and metals industries increased, whereas the TFP of the food, paper, and steel industries 

rapidly decreased .  

We now discuss the results for the processing and assembly industries (see Figure 4). TFP 

increased rapidly in the computer industry; however, other industries’ TFP did not improve from 2005 

to 2009. Furthermore, TFP increased more rapidly from 2007 to 2008 in the processing and assembly 

industries than in the basic materials industries. One explanation for this rapid TFP growth is the 

technological innovations in the information technology field, which would also have affected the 

precision machinery and electronic components industries. 

 

<Figure 3 about here> 

 

<Figure 4 about here> 

 

Next, we consider the structure of TFP change. Table 3 provides the results of the TFP, EFFCH, 

and TECHCH estimations. As indicated above, the DDF model with a proportional directional vector 

enables us to understand the percentage change of each firm’s productivity change. Table 3 provides 

the productivity change scores by type of industry. Table 3 indicates that on average, the food industry 

decreases its TFP score by 0.068. These results show that on average, food manufacturing firms 

decrease 6.8% of their VA and increase 6.8% of their CO2 emissions without changing input amount 

from 2005 to 2009.  

Table 3 indicates that the improvement in TFP is primarily caused by growth in EFFCH from 

2005 to 2009 in the eight manufacturing industries. In particular, the cement, transportation equipment, 
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and computer industries achieved positive TFP change from 2005 to 2009 because of EFFCH growth 

caused by the catching up of inefficient firms. Meanwhile, the main factor involved in increased TFP 

was improved TECHCH in the steel, metal, and general machine industries. Finally, only the textiles 

industry exhibited overall improvement attributable to both EFFCH and TECHCH from 2005 to 2009: 

the production frontier line shifted in a more efficient direction and the gap between the frontier line 

and inefficient firms decreased in the textiles industry. 

Two main factors affected TFP change in the Chinese manufacturing sector. The first was the 

financial crisis triggered by the collapse of Lehman Brothers (on September 15, 2008). Fujii et al. [26] 

note that this serious financial crisis forced many manufacturing firms around the world to reduce their 

production scale in response to decreased market demand. This decrease in economic scale critically 

affected manufacturing firms, particularly production frontier companies that had a sufficient 

technological advantage to export their products. Thus, we observe a negative TECHCH indicator in 

the Chinese manufacturing sector from 2005 to 2009. 

The second factor was China’s strong environmental policy. Three industries—steel, metals, 

and general machines—achieved positive TECHCH and are identified as frontier shift industries. These 

three industries are energy intensive. We assume that environmental policy related to energy 

conservation laws affected TFP growth because of the TECHCH increase in these energy-intensive 

industries. According to Xu et al. [12], 69 energy-utilization policies, 30 industry-restructuring policies, 

and 26 fuel-mix shift policies were enforced in China from 2004 to 2012. More specifically, energy-

inefficient firms were targeted by the industrial restructuring policies, which phased out obsolete 

capacity in energy-intensive industries, such as iron and steel, coke, and cement. The Chinese 

government established the closure criteria according to industry type [27]. In addition, export rebates 

were substantially reduced for these sectors. Local government officials’ performance evaluations were 

also linked to local energy conservation targets, whereas the 1,000 firms program linked manager 

promotions to firms’ energy-saving performance. Overall, these strong environmental measures played 

an important role in promoting energy conservation and CO2 emissions reduction among manufacturing 

companies, particularly in energy-intensive industries.  
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<Table 3 about here> 

 

4-2. Technical Innovators 

We now discuss the innovator firms identified by the DDF approach. Tables 4 and 5 describe the results 

of the innovator identification analysis. 

Table 4 shows the number of innovator firms by year and firm scale. The numbers in 

parentheses indicate the proportion of the total number of firms.6 The bottom line of Table 4 represents 

the total number of innovators and the related proportion in 12 industries. These results indicate that 

technical innovators are primarily observed after 2006. Next, we focus on individual industry results. 

Four industries—textiles, paper, steel and computers—included several innovators. Therefore, the 

production frontiers of these four industries shifted because of the technical improvement of many 

innovator firms. Meanwhile, the composition of firm scale varied among these four industries. Large-

scale firms in the textiles industry tend to be identified as innovators more often than in other industries. 

However, innovators in the steel and computer industries are members of the small and tiny groups.  

 

<Table 4 about here> 

 

Next, we discuss the results for innovators by firm location. Table 5 displays the number of 

innovator firms by province. The figures in parentheses indicate the proportion of innovators.7 Of the 

12 industries listed in Table 5, manufacturing firms located in Jiangsu, Shanxi, Hebei, and Jilin tend to 

be innovators. Meanwhile, fewer innovator firms are located in Shandong and Sichuan than in the other 

provinces. Additionally, the tendencies of innovators in each province vary by industry. A significant 

number of firms in the textile and steel industries located in Jiangsu are considered innovators; in 

                                                             
6 The figures in parentheses in the breakdown by firm scale are calculated as the number of innovators in each scale group’s total number of 

firms multiplied by four. This method is chosen because the numerators are defined as the total number of innovators over the four periods. 
Thus, the denominators of the figures in parentheses differ from the numbers of innovators by year and the number of innovators by firm 
scale in Table 4. 

7 We estimate the share as the number of innovators divided by each provincial firm multiplied by four because the numerator is defined as 
the total number of innovators over the four periods. 
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particular, nearly half of steel firms are considered innovators in Jiangsu. In Shanxi and Hebei, there is 

an even distribution of innovator firms across the 12 industries. 

The trend for innovator identification varies because of the timing of the adoption of energy-

saving policies. Zheng et al. [28] note that local energy-saving policies were adopted in 1997 for 

Shandong, in 2000 for Jiangsu, and in 2000 for Sichuan. Jilin adopted these policies in 2003, and Hebei 

and Shanxi adopted them in 2006. Thus, Jilin, Hebei, and Shanxi had enough time to potentially 

improve energy efficiency in 2005 because energy-saving policies were introduced later there than in 

the other three provinces. Additionally, Shanxi Province introduced its own energy conservation 

program, the Top 200 Energy-Consuming Enterprises Program (Top 200 Program).8 This program also 

helped high energy-consuming manufacturing companies improve their energy efficiency. 

According to Yu et al. [27], the main player in the enforcement of energy efficiency policies 

has shifted since 2006 from the national government to local governments. Therefore, energy efficiency 

policies strongly depend on the provincial strategy, particularly with respect to industrial structure and 

cost effectiveness. Thus, productivity and energy efficiency improvement speeds differ across 

provinces because environmental policy enforcement by local governments is diverse. 

 

<Table 5 about here> 

 

4-3. Corporate Performance Identification Matrix 

Here, we discuss corporate performance focusing on the CO2 emissions reduction identified by TFP 

changes and the data from 2005 to 2009. We consider the case in which the manufacturing firm can 

reduce CO2 emissions in the following three ways. First, there is efficiency improvement in the 

production process and weight savings in the product design that are caused by technological progress. 

In this case, firms can reduce CO2 emissions without sacrificing economic performance. Second, the 

introduction of energy-efficient production equipment contributes to reduced energy consumption and 

                                                             
8 Zhang et al. [33] explain that the Top 200 Program was designed to improve energy efficiency in the industrial sector. It targets Shanxi’s 

200 highest energy-consuming enterprises (86 were also included in the National Top 1,000 Program), which accounts for nearly 80% of 
the total industrial sector’s energy consumption and 65% of total energy consumption in Shanxi. The industries included in the Top 200 
Program are large-scale enterprises in 6 major energy-consuming industries, each of which consumed a minimum of 100,000 tce in 2005. 
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CO2 emissions. However, this investment might decrease financial performance because of worsening 

capital productivity. Third, scaling down production contributes to reduced CO2 emissions because of 

the energy consumption saved in the production process. 

That notwithstanding, CO2 emissions will increase because of production scale expansion or 

product design shifting into high-energy-intensity goods. Under these assumptions, we can categorize 

corporate performance using TFP and data changes (Table 6). Table 6 shows the identification matrix 

for grouping corporate performance. We use two types of TFP changes: TFP change considering CO2 

emissions (TFPjoint) and TFP change without considering CO2 emissions (TFPmarket). 9  TFPmarket 

represents the conventional TFP measure, which reflects pure corporate financial performance. In 

addition to using two types of TFP changes, we examine sales data and CO2 emissions change data 

from 2005 to 2009 to determine corporate performance. 

 

<Table 6 about here> 

 

Here, we explain the matrix using types 2 and 6 in Table 6. Firms identified as both types 

increase TFPjoint in addition to increasing sales and decreasing CO2 emissions. Firms identified as type 

2 improved their labor productivity or capital productivity, as reflected by their increased TFPmarket. 

Therefore, firms identified as type 2 achieve reductions in CO2 emissions without sacrificing economic 

performance. 

Next, we discuss the type 6 case. Firms identified as type 6 experience increases in TFPjoint and 

decreases in TFPmarket. These results imply that sales to CO2 emissions increased and that either labor 

productivity or capital productivity decreased. In this case, we can hypothesize that firms introduced 

energy-efficient equipment or increased labor input to conserve energy. Thus, we understand that firms 

identified as type 6 reduce their CO2 emissions at the expense of financial performance. 

The figures in parentheses in Table 6 show the number of identified firms and their proportion 

of the total 562 firms. As shown in Table 6, most of the firms are identified as types 1, 2, 5, 13, 15, or 

                                                             
9 TFPmarket is estimated using the DDF and the productivity indicator. To estimate TFPmarket, we use equations (4) through (8) (with the exception 

of equation (7) in Section 2-1) to evaluate production inefficiency without considering CO2 emissions. 
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16. Overall, 483 firms can be identified as one of these six types, and they represent 86% of the total 

sample. Therefore, we discuss the number of firms identified as these six types focusing on firm scale 

and location. Before we discuss these results, we must consider each type. Type 2 is the most desirable 

pattern for both economic development and environmental protection. Although type 1 is good for 

economic development, it is undesirable in terms of environmental protection. Here, we categorize 

types 1 and 2 as the “improvement group.” Moreover, type 5 contributes to expanding the Chinese 

economy but is undesirable from an economic standpoint because its financial performance worsens. 

Type 15 is undesirable because its product design changes for the purposes of environmental protection. 

Another possibility is that scale efficiency decreases because of the decreased capital equipment 

utilization caused by declining demand. Finally, the corporate performance of types 13 and 16 renders 

them non-competitive in the market. Because these three types have negative TFPjoint and TFPmarket 

values, we call them the “worst group.” 

Tables 7 and 8 identify corporate performance by industry type, firm scale, and location. As 

shown in Table 7, firms in the processing and assembly industries tend to be either type 1 or type 13. 

Thus, the processing and assembly industries increased their production scale from 2005 to 2009. 

Meanwhile, the computer industry is composed of one-half type 1 and type 2 firms, i.e., firms that have 

achieved improvements in both TFPjoint and TFPmarket. Therefore, corporate performance in the computer 

industry improved. 

One interpretation of these results is that the speed of technological development in the 

processing and assembly industries was much faster than in the basic material industries. For example, 

the price of personal computers decreased dramatically even though product performance remained the 

same. This is because new products with better performance are supplied in the market in rapid product 

cycles. Meanwhile, the prices of steel and petroleum products did not change because of performance, 

as technological development is slow. Therefore, industrial characteristics are one reason that we 

observe a large sample of firms in the improvement group in the processing and assembly industries. 

As shown in Table 8, many manufacturing firms in Jiangsu and Sichuan Provinces improved 

their financial and environmental performance. However, approximately one-half of the firms in 

Shandong and Shanxi Provinces were identified as belonging to the worst group. In particular, 19.4% 
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of the firms located in Shandong Province were identified as type 16, which implies that performance 

worsened because of the scaling down of production. One interpretation of the results in Shandong is 

that the 2008 financial crisis strongly affected manufacturing companies that exported to foreign 

countries. The global decrease in market demand attributable to the financial crisis caused TFP to 

decrease because of the low facility-operation rate from production adjustment [20]. 

Tables 7 and 8 show that there are clear differences in corporate performance trends by industry, 

location, and firm scale. These results imply that policy makers must consider the differences in the 

manufacturing firms’ characteristics. By applying the corporate performance identification matrix, we 

can easily identify trends in both corporate environmental management and the economic situations of 

Chinese manufacturing firms. Additionally, this identification approach needs the datasets used for 

productivity analysis. We believe that this new approach is helpful for local government officers 

involved in environmental policy making to understand corporate performance with less cost and effort. 

 

<Table 7 about here> 

 

<Table 8 about here> 

 

We believe that the performance identification matrix is a helpful tool to evaluate technology 

adoption in manufacturing companies. The Intergovernmental Panel on Climate Change [29] noted that 

“Effective adaptation and mitigation responses will depend on policies and measures across multiple 

scales: international, regional, national and sub-national. Policies across all scales supporting 

technology development, diffusion and transfer, as well as finance for responses to climate change, can 

complement and enhance the effectiveness of policies that directly promote adaptation and mitigation.” 

Moreover, it is difficult to measure the adoption of technology. 

Haščič and Migotto [30] summarize the key advantages and limitations of the various measures 

of innovation (see Table 2 in Haščič and Migotto [30]). They note that patent data are useful for 

evaluating technology-development activities. Moreover, patent data have limitations related to 

evaluating technology adoption. Haščič and Migotto [30] suggest that the “proxy for improvements in 
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environmental endpoints” has an advantage when evaluating technology adoption. Based on these 

discussions, we believe that our proposed corporate performance identification matrix provides 

information that is useful for evaluating the improvement in environmental endpoints considering both 

the economic situation and the technology adoption effect. 

 

 

5. Conclusions 

This study analyzes corporate financial and environmental performance in China considering firm-level 

heterogeneity. We determine TFP change using the DDF approach and identify changes in corporate 

financial and environmental performance. Our conclusions can be summarized as follows. 

First, significant numbers of technical innovators are observed in the textile, paper, steel, and 

computer industries from 2005 to 2009. Technical innovators in the textile industry are large-scale 

firms; however, innovators in the steel and computer industries are small and tiny firms. Second, Jiangsu 

Province has many technical innovators, particularly in the textile and steel industries. Shanxi and Hebei 

Provinces have similar technical innovator trends. These two provinces have technical innovators in the 

paper, steel, and computer industries. 

Third, firms in the processing and assembly industries not only are larger in scale but also 

experienced improved financial performance. Thus, the processing and assembly industries increased 

their production scale and gained market competitiveness from 2005 to 2009. Many manufacturing 

firms in Jiangsu and Sichuan Provinces improved their financial and environmental performance. 

However, approximately half of the firms in Shandong and Shanxi Provinces are part of the worst group. 

This new evidence regarding innovators and corporate performance identification is useful in 

establishing environmental standards and creating subsidy policies to achieve sustainable development. 

Additionally, productivity trends by industry, firm scale, and location characteristics could be helpful 

in evaluating the potential magnitude of not only major energy and environmental policies but also 

financial crises. We believe that this study’s results and new identification approaches provide useful 
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information for designing effective policies that balance economic development and environmental 

protection. 

One real application of the identification framework results is to clearly distinguish among 

manufacturing firms. For example, firms identified as members of the innovator or improvement group 

may have the characteristics of successfully reducing CO2 emissions without sacrificing financial 

performance. Therefore, government or industrial associations could interview individuals from those 

firms and share the factors underlying their success in governmental seminars and business association 

workshops. This information-sharing activity is cost effective because it does not require a large budget. 

Stern and Aronsson [31] note that an effective policy would include individual audits of 

companies to obtain specific information that will become more important to and necessary for 

manufacturing firms. Specifically, this information sharing system is helpful for small- and medium-

scale firms that do not have enough human resources or equipment to improve energy efficiency and 

reduce CO2 emissions. In this sense, the identification research framework can play an important role 

in promoting information sharing activities more efficiently and effectively. 

Further research is needed to analyze corporate performance and identify technical innovators 

in the gas and electricity sector, which has a strong impact on energy consumption in China. Such an 

analysis could suggest additional constructive policy implications to promote energy savings and reduce 

CO2 emissions without sacrificing economic development. 
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Table 1. Data description of each variable (average score per firm from 2005 to 2009) 

Industry name 
# of  

firms 
Value 

added (VA) 
Labor Capital 

CO2 
emissions 

VA/ 
Labor 

VA/ 
Capital 

VA/ 
CO2 

Food 37 208,662 8,011 158,939 355 11.07 3.19 290.04 
Textiles 35 64,141 9,783 74,803 251 5.21 2.87 276.67 
Paper 20 23,351 3,865 17,049 242 7.12 3.88 285.41 
Chemical 78 57,603 7,953 51,654 17,958 11.82 3.45 79.71 
Cement 68 24,301 6,545 39,664 20,549 5.86 2.56 97.30 
Iron and steel 30 236,449 17,819 373,468 108,803 8.38 2.14 10.21 
Metals 33 21,000 5,621 21,155 684 3.91 3.06 226.32 
General machine 95 35,510 6,597 28,061 1,340 6.05 4.32 217.16 
Special machine 39 88,257 21,566 124,609 1,162 5.07 2.09 294.10 
Transportation equ. 56 377,266 78,518 427,144 1,282 5.79 2.39 224.78 
Electric products 49 81,745 7,220 45,365 211 8.05 2.93 342.88 
Computer 22 15,443 16,754 147,867 312 9.67 2.78 523.31 

Note 1: Units of value added, labor, and capital are 1,000 yuan. 

Note 2: Unit of CO2 emissions is ton-CO2. 

Note 3: All monetary data are deflated to 2005 prices. 

 

Table 2. Sample distribution by firm scale and province 

  Firm scale  Firm location  
Industry name Large Medium Small Tiny  Jiangsu Shandong Shanxi Hebei Jilin Sichuan 
Food 3 9 19 6  6 1 22 3 2 3 
Textiles 3 12 13 7  3 2 10 9 9 2 
Paper 0 3 13 4  2 0 2 5 8 3 
Chemical 3 18 41 16  13 6 18 19 15 7 
Cement 4 14 37 13  11 8 17 12 12 8 
Iron and steel 6 8 11 5  4 5 4 12 4 1 
Metals 2 5 18 8  7 0 5 5 12 4 
General machine 3 23 42 27  17 5 33 20 16 4 
Special machine 4 10 15 10  9 2 6 18 3 1 
Transportation equ. 12 17 19 8  2 2 11 12 7 22 
Electric products 4 7 24 14  1 0 14 20 10 4 
Computer 4 4 11 3  2 0 8 11 0 1 
12 industries’ total 48 130 263 121  77 31 150 146 98 60 
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Table 3. Accumulated productivity change and structure by industry from 2005 to 2009 

Industry name TFP EFFCH TECHCH Structure of TFP change 
Food -0.068 0.155 -0.223 catch up 
Textiles 0.089 0.043 0.046 overall improvement 
Paper -0.083 0.221 -0.304 catch up 
Chemical -0.035 0.037 -0.072 catch up 
Cement 0.010 0.078 -0.068 catch up 
Iron and steel -0.029 -0.113 0.084 frontier shift 
Metals 0.082 -0.156 0.238 frontier shift 
General machine 0.010 -0.021 0.031 frontier shift 
Special machine -0.025 0.088 -0.113 catch up 
Transportation equ. 0.024 0.126 -0.102 catch up 
Electric products -0.024 0.048 -0.072 catch up 
Computer 0.101 0.208 -0.107 catch up 

 

 

Table 4. Number of technical innovators by year and firm scale 

  Number of firms identified as innovators   Breakdown by firm scale (four time periods) 

Industry name 2005-2006 2006-2007 2007-2008 2008-2009  Large Medium Small Tiny 

Food 0 (0.0%) 1 (2.7%) 3 (8.1%) 6 (16.2%)  1 (8.3%) 3 (8.3%) 3 (3.9%) 3 (12.5%) 

Textiles 0 (0.0%) 7 (20.0%) 8 (22.9%) 5 (14.3%)  4 (33.3%) 2 (4.2%) 7 (13.5%) 7 (25.0%) 

Paper 1 (5.0%) 5 (25.0%) 0 (0.0%) 7 (35.0%)  0 (N.A.) 3 (25.0%) 9 (17.3%) 1 (6.3%) 

Chemical 2 (2.6%) 3 (3.8%) 1 (1.3%) 4 (5.1%)  0 (0.0%) 0 (0.0%) 7 (4.3%) 3 (4.7%) 

Cement 0 (0.0%) 0 (0.0%) 3 (4.4%) 0 (0.0%)  0 (0.0%) 0 (0.0%) 2 (1.4%) 1 (1.9%) 

Iron and steel 2 (6.7%) 6 (20.0%) 5 (16.7%) 6 (20.0%)  1 (4.2%) 7 (21.9%) 7 (15.9%) 4 (20.0%) 

Metals 1 (3.0%) 4 (12.1%) 2 (6.1%) 3 (9.1%)  0 (0.0%) 1 (5.0%) 5 (6.9%) 4 (12.5%) 

General machine 2 (2.1%) 3 (3.2%) 7 (7.4%) 4 (4.2%)  0 (0.0%) 6 (6.5%) 7 (4.2%) 3 (2.8%) 

Special machine 2 (5.1%) 2 (5.1%) 4 (10.3%) 2 (5.1%)  1 (6.3%) 1 (2.5%) 2 (3.3%) 6 (15.0%) 

Transportation 
equ. 0 (0.0%) 2 (3.6%) 4 (7.1%) 3 (5.4%)  3 (6.3%) 2 (2.9%) 4 (5.3%) 0 (0.0%) 

Electric products 1 (2.0%) 1 (2.0%) 1 (2.0%) 0 (0.0%)  0 (0.0%) 1 (3.6%) 1 (1.0%) 1 (1.8%) 

Computer 2 (9.1%) 0 (0.0%) 5 (22.7%) 4 (18.2%)  1 (6.3%) 1 (6.3%) 9 (20.5%) 0 (0.0%) 

12 industries total 13 (2.3%) 34 (6.0%) 43 (7.7%) 44 (7.8%)   11 (5.7%) 27 (5.2%) 63 (6.0%) 33 (6.8%) 

Note 1: There were no observations of large-scale firms in the paper industry in this study. 

Note 2: Percentage values in parentheses show the share of firms identified as innovators in the total firm 

sample of each period and scale group by industry type. 
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Table 5 Number of technical innovators by location (four periods) 

  Number of firms identified as innovators (breakdown by province) 
Industry name Jiangsu Shandong Shanxi Hebei Jilin Sichuan 
Food 2 (8.3%) 0 (0.0%) 6 (6.8%) 0 (0.0%) 0 (0.0%) 2 (16.7%) 

Textiles 3 (25.0%) 0 (0.0%) 10 (25.0%) 3 (8.3%) 3 (8.3%) 1 (12.5%) 

Paper 0 (0.0%) 0 (N.A.) 2 (25.0%) 5 (25.0%) 6 (18.8%) 0 (0.0%) 

Chemical 0 (0.0%) 0 (0.0%) 3 (4.2%) 3 (3.9%) 2 (3.3%) 2 (7.1%) 

Cement 0 (0.0%) 0 (0.0%) 2 (2.9%) 0 (0.0%) 1 (2.1%) 0 (0.0%) 

Iron and steel 7 (43.8%) 2 (10.0%) 3 (18.8%) 6 (12.5%) 1 (6.3%) 0 (0.0%) 

Metals 3 (10.7%) 0 (N.A.) 2 (10.0%) 1 (5.0%) 4 (8.3%) 0 (0.0%) 

General machine 1 (1.5%) 0 (0.0%) 8 (6.1%) 5 (6.3%) 2 (3.1%) 0 (0.0%) 

Special machine 0 (0.0%) 0 (0.0%) 4 (16.7%) 3 (4.2%) 3 (25.0%) 0 (0.0%) 

Transportation equ. 0 (0.0%) 0 (0.0%) 5 (11.4%) 4 (8.3%) 0 (0.0%) 0 (0.0%) 

Electric products 0 (0.0%) 0 (N.A.) 1 (1.8%) 1 (1.3%) 0 (0.0%) 1 (6.3%) 

Computer 0 (0.0%) 0 (N.A.) 5 (15.6%) 6 (13.6%) 0 (N.A.) 0 (0.0%) 

12 industries’ total 16 (5.2%) 2 (1.6%) 51 (8.5%) 37 (6.3%) 22 (5.6%) 6 (2.5%) 

Note 1: There were no observations for the paper, metal, electric products, and computer industries in 

Shandong Province or for the computer industry in Jilin Province. 

Note 2: Percentage values in parentheses show the share of firms identified as innovators in the total firm 

sample of each provincial group by industry type. 

 

 

Table 6 Corporate performance identification matrix 

  
⊿TFPjoint>0 
⊿TFPmarket>0 

⊿TFPjoint>0 
⊿TFPmarket<0 

⊿TFPjoint<0 
⊿TFPmarket>0 

⊿TFPjoint<0 
⊿TFPmarket<0 

⊿Sale>0 
⊿CO2>0 

Type 1 [176 firms (31.3%)] 
- Production scale 
expansion 
- Economic performance 
improvement 

Type 5 [48 firms (8.5%)] 
- Production scale expansion 
- Production input increasing 

Type 9 [21 firms (3.7%)] 
- Production scale 
expansion 
- CO2 emissions 
increasing 

Type 13 [112 firms (19.9%)] 
- Production scale expansion 
- Economic performance 
worse 

⊿Sale>0 
⊿CO2<0 

Type 2 [46 firms (8.2%)] 
- CO2 emissions reduction 
without sacrificing 
economic performance 

Type 6 [22 firms (3.9%)] 
- CO2 emissions reduction 
with sacrificing economic 
performance by production 
input increased. 

Type 10 [1 firms (0.2%)] 
Not available for 
identification 

Type 14 [12 firms (2.1%)] 
- Production input increasing 

⊿Sale<0 
⊿CO2>0 

Type 3 [3 firms (0.5%)] 
- Production input saving 

Type 7 [0 firms (0.0%)] 
Not available for 
identification 

Type 11 [1 firms (0.2%)] 
Product design was shifted 
to high energy intensity 
goods. 

Type 15 [48 firms (8.5%)] 
Product design was shifted to 
high energy intensity goods. 

⊿Sale<0 
⊿CO2<0 

Type 4 [6 firms (1.1%)] 
- CO2 emissions reduction 
without sacrificing 
economic performance  
(Achieved by production 
input savings) 

Type 8 [11 firms (2.0%)] 
- CO2 emissions reduction 
sacrificing economic 
performance by scaling down 
production  

Type 12 [2 firms (0.4%)] 
- Production scale down 
- Production input savings 

Type 16 [53 firms (9.4%)] 
- Production scale down 
- Economic performance 
worse 

Note: Percentage values in parentheses show the share of firms identified as each type in the overall number 

of samples (562 firms). 
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Table 7 Corporate performance by industry type 

Industry name 
Improved group Deteriorated group 

Type 1 Type 2 Type 5 Type 13 Type 15 Type 16 
Food 11 (29.7%) 5 (13.5%) 0 (0.0%) 10 (27.0%) 3 (8.1%) 6 (16.2%) 

Textiles 13 (37.1%) 2 (5.7%) 2 (5.7%) 5 (14.3%) 2 (5.7%) 5 (14.3%) 

Paper 3 (15.0%) 1 (5.0%) 6 (30.0%) 4 (20.0%) 1 (5.0%) 4 (20.0%) 

Chemical 21 (26.9%) 10 (12.8%) 2 (2.6%) 9 (11.5%) 11 (14.1%) 8 (10.3%) 

Cement 16 (23.5%) 9 (13.2%) 5 (7.4%) 12 (17.6%) 1 (1.5%) 7 (10.3%) 

Iron and steel 4 (13.3%) 5 (16.7%) 2 (6.7%) 9 (30.0%) 2 (6.7%) 4 (13.3%) 

Metals 13 (39.4%) 3 (9.1%) 2 (6.1%) 9 (27.3%) 4 (12.1%) 1 (3.0%) 

General machine 35 (36.8%) 5 (5.3%) 14 (14.7%) 25 (26.3%) 4 (4.2%) 6 (6.3%) 

Special machine 14 (35.9%) 1 (2.6%) 3 (7.7%) 7 (17.9%) 9 (23.1%) 2 (5.1%) 

Transportation equ. 24 (42.9%) 2 (3.6%) 4 (7.1%) 12 (21.4%) 5 (8.9%) 3 (5.4%) 

Electric products 13 (26.5%) 1 (2.0%) 5 (10.2%) 8 (16.3%) 5 (10.2%) 5 (10.2%) 

Computer 9 (40.9%) 2 (9.1%) 3 (13.6%) 2 (9.1%) 1 (4.5%) 2 (9.1%) 

Note: Percentage values in parentheses show the share of firms identified as each type in each group. 

 

Table 8 Corporate performance by scale and location 

  
  

Improved group Deteriorated group 
Type 1 Type 2 Type 5 Type 13 Type 15 Type 16 

Firm 
scale 

Large 12 (25.0%) 2 (4.2%) 7 (14.6%) 7 (14.6%) 8 (16.7%) 5 (10.4%) 

Medium 46 (35.4%) 8 (6.2%) 16 (12.3%) 21 (16.2%) 10 (7.7%) 13 (10.0%) 

Small 75 (28.5%) 27 (10.3%) 17 (6.5%) 60 (22.8%) 17 (6.5%) 27 (10.3%) 

Tiny 43 (35.5%) 9 (7.4%) 8 (6.6%) 24 (19.8%) 13 (10.7%) 8 (6.6%) 

Location 
(province) 

Jiangsu 39 (50.6%) 6 (7.8%) 6 (7.8%) 10 (13.0%) 5 (6.5%) 4 (5.2%) 

Shandong 5 (16.1%) 2 (6.5%) 3 (9.7%) 6 (19.4%) 2 (6.5%) 6 (19.4%) 

Shanxi 35 (23.3%) 9 (6.0%) 10 (6.7%) 48 (32.0%) 12 (8.0%) 15 (10.0%) 

Hebei 39 (26.7%) 16 (11.0%) 19 (13.0%) 23 (15.8%) 13 (8.9%) 16 (11.0%) 

Jilin 30 (30.6%) 6 (6.1%) 8 (8.2%) 16 (16.3%) 11 (11.2%) 10 (10.2%) 

Sichuan 28 (46.7%) 7 (11.7%) 2 (3.3%) 9 (15.0%) 5 (8.3%) 2 (3.3%) 

Note: Percentage values in parentheses show the share of firms identified as each type in each group. 

  



29 
 

 

 
Figure 1. Carbon and energy-intensity trends in China 

Note 1: Unit of value added per energy is millions of yuan per TJ. 

Note 2: Unit of CO2 emissions per energy is 100 ton-CO2 per TJ. 

Note 3: Value added is deflated to 2005 prices. 
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Figure 2. Graphical image of a technical innovator 
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Three conditions to be innovator from t year to t+1 year.
1) Efficient observations in t+1 year (i.e. located on the frontier).
2) Production efficiency level in t+1 year is beyond in 

production frontier line in t year.
3) Production frontier line is shifted more efficient direction 

from t year to t+1 year.



31 
 

 

 

 
Figure 3. TFP change from 2005 to 2009 in the daily commodity and basic material industries 

 

 

 
Figure 4. TFP change from 2005 to 2009 in the processing and assembly industries 
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