Initial Cardiopulmonary Response to Exercise in Chronic Obstructive Pulmonary Diseases (COPD)

ZHI Liu, Toshiyuki IMAMURA, Yoshiyuki MIYAHARA and Kohei HARA

The Second Department of Internal Medicine, Nagasaki University School of Medicine 1-7-1, Sakamoto, Nagasaki, Japan

The present study was undertaken to assess the cardiopulmonary response during the initial period of exercise at a low workload in 8 patients with COPD and 10 normal subjects. In the patients with COPD VO₂/VE and VCO₂/VE were significantly lower than in the normal controls, and more markedly so during the initial period of exercise. SaO₂ and Sv O₂ decreased dramatically in the initial period of exercise in the COPD compared with the normal subjects. In contrast to the normal subjects, pulmonary artery mean pressure (PAMP) increased substantially during the initial period of exercise in the patients with COPD. These findings imply that blood gas changes on exercise can be explained by the differences in the relative increase of VO_2 , VCO_2 , VE and cardiac output. Our study also suggests that the measurement of VO₂/VE, VCO₂/VE and SvO₂ and PAMP on exercise at a low workload, especially during the initial period, may be useful for evaluating the cardiopulmonary response to COPD patients.

Introduction

Cardiopulmonary exercise testing can help to determine where lies the factor limiting the exercise in the lungs, the heart, or in both organs. Although the basic physiologic response to exercise has been studied extensively, there are still several controversies regarding the cardiopulmonary response to exercise in patients with chronic pulmonary disease including COPD. The present study was undertaken to assess the cardiopulmonary response to exercise at a low work load in patients with COPD and normal individuals. We concentrated on the response in the initial period of exercise to investigate whether or not it could be used to distinguish COPD patients from normal subjects.

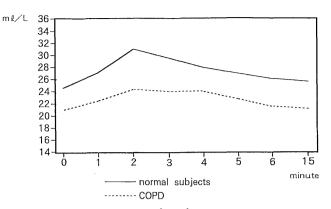
Method

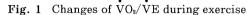
Eight patients with COPD and 10 normal individuals were studied. The clinical characteristics of both groups are presented in Table 1. All 8 patients with pulmonary disease had a clinical course consistent with COPD and none of them had clinical or radiographic evidence of cardiac disease.

An arterial catheter was inserted into the radial artery and balloon-tipped thermal dilution cardiac output catheter was inserted into a subclavicular vein and advanced to the pulmonary under fluoroscopic visualization and pressure recording. Cardiac output (CO) was measured at rest as well as after 3 min. and 15 min. of exercise. Arterial and mixed venous blood gases were measured at rest and during exercise using an ABL3 automated blood gas machine. The O₂ saturation in arterial and mixed venous blood was measured continuously by pulse oximetry (Edwards Critical Care Explorer Mode (EXP-N)). The values of AaDO2, VD/VT, O2 Extra, O2-transport (O2T) and overall VA/Q were calculated using standard formulas. Expired gas was analyzed with an expired gas analyzer (Medical Gas Analyzer MG-360). Using this gas analyzer, a printout was produced at 15-sec intervals of the following parameters ; ventilation /min.(VE), oxygen uptake (V O_2), carbon dioxide production (VCO₂), the respiratory gas exchange ratio(R)s and other calculated parameters such as VO_2/VE and VCO_2/VE . Exercise testing was performed on a electrically braked bicycle ergometer at a constant load of 35 W for 15 min.

Data are expressed as the mean and standard deviation. The unpaired t-test was used to compare variables between groups, and the paired t-test was used to compare variables within the same group. Differences were accepted as significant at p < 0.05.

 Table 1
 Clinical profile of the normal subjects and the COPD patients


		Normal subjects	COPD
		(n = 10)	(n = 8)
Age	(yrs)	63.7 ± 7.7	65.0 ± 4.6
%VC	(%)	$99.5 {\pm} 26.5$	95.1 ± 22.6
FEV 1.0%	(%)	73.2 ± 14.2	$45.1 {\pm} 11.6$
% DLco	(%)	$81.8 {\pm} 24.6$	46.6 ± 17.4
PaO 2	(Torr)	89.7 ± 10.9	$71.6 {\pm} 14.9$
PaCO 2	(Torr)	$32.6 {\pm} 3.6$	$36.2 {\pm} 5.4$
pHa		7.384 ± 0.034	7.377 ± 0.016
PAMP (mmHg)	$13.1 {\pm} 2.1$	$19.9{\pm}6.6$
CO (L/min)	5.27 ± 1.79	$4.42 {\pm} 0.88$


Results

2

Table 2 summarizes the mean values at the gas exchange variables at rest and on exercise. There were no significant differences in VO_2 and VCO_2 between the 2 groups at rest or during exercise. VE was higher at rest and the difference became more marked during early exercise in the patients with COPD compared with the normal subjects. However, $\mathrm{VO}_2/\mathrm{VE}$ and $\mathrm{VCO}_2/\mathrm{VE}$ were higher in the normal subjects than in the COPD patients, and the difference was prominent after 1 min and 2 min of exercise (p = 0.0146 and p = 0.0175, respectively) (Figs.1 and 2). R values were higher in the COPD patients both at rest and during exercise.

Table 3 summarizes the mean values of the arterial and mixed venous blood gas data. The patients with COPD showed mild hypoxemia (PaO₂ = 71.6 ± 14.9 mmHg) at rest and a further decrease in PaO₂ (65.9 ± 15.5 mmHg) during exercise. In normal individuals, PaO₂ increased slightly from 89.7 ± 10.9 mmHg at rest to 95.4 ± 12.6 mmHg after exercise. In the patients with COPD, PaCO₂ showed a tendency to increase from 36.2 ± 5.4 mmHg at rest to 39.0 ± 9.7 mmHg after exercise. In contrast, the normal subjects showed no changes in PaCO₂ between rest and exercise. Normal subjects had a significantly higher Pv O₂ than the COPD patients both at rest and after exercise (p = 0.0249 and p = 0.0040, respectively), while PvCO₂ tended to be higher in the COPD patients both at rest and after exercise. In addition, AaDO₂ was higher in the

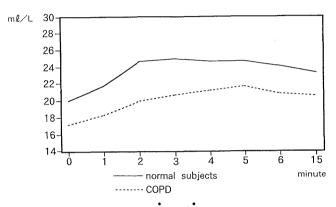


Fig. 2 Changes of $\dot{V}CO_2/\dot{V}E$ during exercise

	<i>a</i>			
Table 2	Changes of gas	exchange	parameters	during exercise

	Table 2 Changes of gas exchange parameters during exercise							
	rest	1min	2min	3min	4min	5min	6min	15min
VO2 NR	211.3 ± 40.3	301.9 ± 73.4	442.5 ± 80.4	476.2 ± 68.6	468.2 ± 89.7	497.5 ± 84.5	476.4 ± 76.9	500.8 ± 90.4
ml/min COPD	213.0 ± 27.7	327.9 ± 62.7	401.4 ± 76.8	455.1 ± 107.1	$469.1 \!\pm\! 102.4$	472.6 ± 106.1	459.4 ± 127.5	522.2 ± 134.1
VCO ₂ NR	170.7 ± 36.1	242.4 ± 48.8	354.0 ± 78.6	404.4 ± 68.2	415.7 ± 64.2	455.8 ± 97.4	441.6 ± 83.5	459.0±100.1
ml/min COPD	173.0 ± 20.4	277.9 ± 99.9	$331.9 {\pm} 48.8$	392.1 ± 86.6	418.9 ± 85.3	444.6 ± 84.0	436.3 ± 115.8	496.8 ± 136.7
R NR	0.81 ± 0.08	0.81 ± 0.10	0.80 ± 0.08	$0.85 {\pm} 0.10$	0.90 ± 0.10	0.91 ± 0.12	$0.93 {\pm} 0.09$	0.91 ± 0.10
COPD	0.82 ± 0.07	$0.83 {\pm} 0.13$	0.84 ± 0.12	$0.87 {\pm} 0.09$	0.90 ± 0.07	$0.95 {\pm} 0.09$	0.96 ± 0.05	$0.95 {\pm} 0.05$
VE NR	8.65 ± 1.67	11.12 ± 2.60	14.59 ± 3.87	$16.14 {\pm} 2.64$	16.84 ± 3.44	18.27 ± 3.85	$17.99 {\pm} 2.98$	19.12 ± 3.58
L/min COPD	10.11 ± 1.56	15.22 ± 4.91	16.76 ± 4.00	19.19 ± 5.79	19.94 ± 5.97	21.00 ± 6.41	21.07 ± 7.26	23.99 ± 7.09
VO₂/VE NR	24.8 ± 2.9	27.5 ± 3.6	$31.4 {\pm} 5.4$	30.0 ± 5.3	28.3 ± 4.9	27.7 ± 3.7	$26.8 {\pm} 4.4$	26.4 ± 3.2
ml/L COPD	21.2 ± 3.9	22.7 ± 3.6	24.5 ± 5.1	$24.4 {\pm} 5.8$	$24.4 {\pm} 5.1$	$23.4 {\pm} 6.7$	$22.4 {\pm} 5.4$	$22.1{\pm}5.2$
VO ₂ /VE NR	20.0 ± 2.5	22.0 ± 2.9	24.7 ± 2.8	25.3 ± 3.3	25.0 ± 2.9	25.0 ± 3.1	24.7 ± 3.9	24.1 ± 3.2
ml/L COPD	17.1 ± 2.0	18.4 ± 1.7	20.2 ± 3.1	21.0 ± 3.5	21.7 ± 3.4	22.2 ± 5.6	21.4 ± 4.3	21.3 ± 5.2

Table 3 Mean arterial and mixed venous blood gases in normal subjects and COPD patients

	Normal subject $(n = 10)$		COPD (n = 9)	
	Rest	Exercise	Rest	Exercise
pHv	7.384 ± 0.034	7.329 ± 0.019	7.377 ± 0.016	7.306 ± 0.037
PvCO ₂ (Torr)	37.3 ± 5.3	42.4 ± 4.6	41.1 ± 6.2	$47.5 {\pm} 8.7$
PvO ₂ (Torr)	$40.7 {\pm} 5.0$	$33.6 {\pm} 2.9$	$35.9 {\pm} 2.6$	28.7 ± 3.1
pHa	7.402 ± 0.024	7.372 ± 0.015	7.399 ± 0.024	7.364 ± 0.047
PaCO ₂ (Torr)	32.6 ± 3.6	$33.2 {\pm} 1.9$	36.2 ± 5.4	$39.0 {\pm} 9.7$
	89.7 ± 10.9	95.4 ± 12.6	71.6 ± 14.9	65.9 ± 15.5
PaO₂ (Torr)	18.2 ± 12.0	16.8 ± 10.8	33.8 ± 14.1	$40.2 {\pm} 13.1$
AaDO ₂ (Torr)	0.42 ± 0.09	$0.35 {\pm} 0.09$	0.54 ± 0.03	$0.48 {\pm} 0.07$
V_D/V_T	$0.72 {\pm} 0.48$	$1.30 {\pm} 0.27$	0.70 ± 0.21	$1.36 {\pm} 0.51$
VA/Q	0.2239 ± 0.0992	0.3840 ± 0.0609	0.2566 ± 0.0359	0.4694 ± 0.0525
O ₂ Extra	48.7 ± 17.2	63.0 ± 20.6	40.4 ± 5.1	$59.7 {\pm} 8.9$

patients with COPD than the normal subjects both at rest (p = 0.0256) and after exercise (p = 0.0011). In the COPD patients, AaDO₂ tended to increase on exercise to 4 0.22 ± 13.09 mmHg from 33.83 ± 14.11 mmHg. However, the normal subjects showed a decrease of AaDO₂ after exercise compared with at rest (16.81 ± 10.79 mmHg vs. 18.16 ± 11.97 mmHg). VD/VT was significantly higher in the COPD patients than the normal subjects both at rest (p = 0.0036) and after exercise (p = 0.0046), but VD/VT tended to decrease after exercise in both groups. Overall VA/Q increased significantly in both the COPD patients and the normal subjects from rest to exercise, and there was no difference between the 2 groups. In the COPD patients, O₂ Extra was higher at rest and significantly so after exercise (p = 0.0078) when compared with the normal subjects.

The SaO₂ and SvO₂ values measured by pulse oximetry are shown in Fig.3. In normal subjects, SaO₂ showed almost no changes, but it decreased in the COPD patients during exercise and showed the most rapid decline during the first 2 min. SaO₂ decreased from $95.6\pm3.3\%$ at rest to $91.8\pm8.8\%$ after 2 min of exercise. SvO₂ was much higher in the normal subjects than the COPD patients both at rest $(77.10\pm4.25\%$ vs $70.50\pm3.63\%$, p = 0.0031) and after exercise ($59.38\pm7.85\%$ vs $50.50\pm6.80\%$, p = 0.00336). Sv O₂ decreased significantly in both the COPD patients and the normal subjects from rest to exercise and the largest decline occurred in the initial period of exercise. However, in normal subjects there was no further decrease of SvO₂ after 1 min of exercise while it continued to fall until 3 min in the COPD patients.

Figures 4 and 5 show the changes of hemodynamic variables during exercise. CO tended to be lower in the patients with COPD $(4.4\pm0.9 \text{ L/min.})$ than in the normal subjects $(5.3\pm1.8 \text{ L/min.})$ at rest. It increased significantly in both groups during exercise. However, the normal subjects had a higher CO after 3 min at the end of exercise, while the patients with COPD had a higher CO at the end of exercise (Fig.4). Thus, CO increased more slowly in

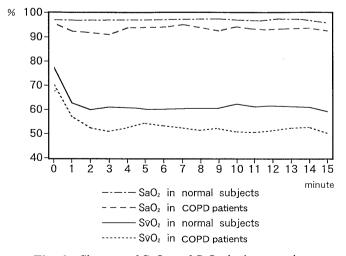


Fig. 3 Changes of SaO₂ and SvO₂ during exercise

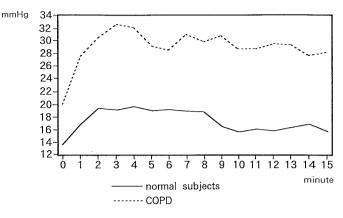


Fig. 4 Changes of CO during exercise

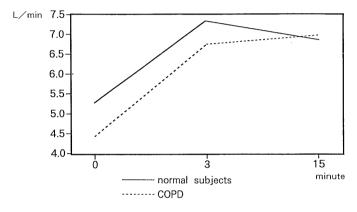


Fig. 5 Changes of PAMP during exercise

COPD. PAMP in patients with COPD showed a higher value both at rest and during exercise than that of normal subjects. In the COPD patients, PAMP increased rapidly during the first 3 min of exercise from 19.9 ± 6.6 mmHg to 32.6 ± 14.0 mmHg (p = 0.0116). In contrast, the normal subjects showed no significant change of PAMP with exercise (Fig.5).

Discussion

This study showed that there were no significant differences in \dot{VO}_2 and \dot{VCO}_2 between the COPD patients and the normal control subjects both at rest and during exercise. However \dot{VO}_2/\dot{VE} and \dot{VCO}_2/\dot{VE} were significantly higher in the normal subjects than in the COPD and the difference was greatest at the initial period of exercise. Thus, COPD patients had a higher \dot{VE} than the normal subjects. It has been shown that COPD patients exhibit a high ventilatory response at any level of oxygen uptake during exercise (1), which implies that alveolar ventilation does not show as great a relative increase as \dot{VO}_2 and \dot{VCO}_2 when compared with normal subjects. Although \dot{VE} is higher (hyperventilation) in COPD patients than normal subjects because of poor gas exchange, \dot{VE} cannot counterbalance the increment of $\dot{V}O_2$ and $\dot{V}CO_2$ on exercise, and this seems to be more of a problem in the initial period of exercise. Accordingly, the values of VO₂/VE and VCO₂/VE were lower in COPD patients than in normal subjects. Inefficient gas exchange is reflected by the pulmonary function data at rest, as well as by AaDO₂ and VD/VT at rest and on exercise. Since alveolar ventilation cannot increase relatively as much as VO2 and VcO2 during exercise in COPD, both PaO2 and SaO2 must fall and PaCO2 tends to rise. However, the overall VA/Q relationship seems to be improved after exercise in patients with COPD and showed no significant difference from that in the normal subjects. Similar findings have been previously reported by others (2)(3). Gledhill and coworkers (3) pointed out the importance of an increase in mean VA/Q (caused by a greater increase of ventilation than cardiac output during exercise) for preserving a normal PaO_2 despite the increased VA/Qinbalance and decreased PvO₂. Because the PvO₂ influences the end-capillary PO₂ of every lung unit (4), one might expect that exercise would lead to a fall in PaO₂. However, as VA/Q increases above 1.0, the impact of a falling Pv O_2 on end-capillary PO_2 diminishes (5) and significant arterial desaturation is prevented. In the patients with COPD, AaDO₂ and VD/VT were significantly higher than in the normal subjects both at rest and after exercise suggesting that pulmonary O₂ transfer may be partially limited by diffusion in COPD. In addition, R tended to increase and PvO₂ to decrease during exercise, which could be another causes of an increase in $AaDO_2$ in COPD.(6). Further studies are needed to confirm these observations.

Our results showed that both PvO₂ and SvO₂ fell dramatically in the COPD patients and more obviously in the initial3 min of exercise. As is well known, two mechanisms furnish oxygen to working muscles during exercise, with one being an increase in muscle blood flow and the other being an increase in tissue oxygen extraction. Even in normal subjects, PvO_2 and SvO_2 fall with exercise, because the ralative increase in \dot{VO}_2 exceeds that of the cardiac output (6). Our results showed that PvO₂ and SvO₂ fell while O₂ Extra increased during exercise in both the COPD patients and the normal subjects. However, the patients with COPD showed more substantial decreases of SvO₂, Pv O_2 and a greater increase of O_2 Extra than that of normal subjects, even with modest exercise. This suggests that the patients with COPD have pulmonary hypertension due to hypoxic vasoconstriction compounded by structural abnormalities. Thus, the cardiac output response to exercise may be subnormal or abnormal, so that SvO_2 along with PvO_2 is lower than in normal subjects. As our results showed, patient with COPD tended to have a lower CO than the normal subjects and this difference was more obvious in the initial period of exercise (up to 3 min). The COPD patients also showed a significant increase of PAMP that was marked during early exercise and appeared to be consistent with the changes of CO. Pulmonary hypertension limits the degree to which CO can be increased as a method of increasing tissue oxygen delivery (7).

In conclusion, our data indicate that \dot{VO}_2/\dot{VE} and \dot{VCO}_2/\dot{VE} are significantly lower in COPD than in normal controls and are more significantly so at the initial period of exercise. In the patients with COPD, SaO₂ and SvO₂ were significantly lower than in the normal subjects, and more substantially so in the initial period of exercise. In COPD patients, PAMP was also significantly increased during early exercise when compared with normal subjects. These findings imply that the blood gas changes on exercise can be explained by differences in the relative increase of \dot{VO}_2 , \dot{VE} , and cardiac output. Our results suggest that the measurement of \dot{VO}_2/\dot{VE} . \dot{VCO}_2/\dot{VE} , SvO_2 , and PAMP on exercise, especially in the initial period at a relatively low workload, may be useful for evaluating the cardiopulmonary response to exercise in patients with COPD.

References

- 1) Joan A. Barbera, et al: Gas exchange during exercise in mild chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 144: 520, 1991.
- Agusti AGN, Barbera JA, et al:Hypoxic pulmonary vasoconstriction and gas exchange during exercise in chronic obstructive pulmonary disease. Chest 97: 268, 1990.
- Dantzker DR, Dalonzo GE: The effect of exercise on pulmonary gas exchange in patients with severe chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 134: 1135, 1986.
- Mithoefer JC, Ramirez C, Cook W:The effect of mixed venous oxygenation on arterial blood in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 117: 259, 1978.
- West JB:Ventilation-perfusion relationships. Am. Rev. Respir. Dis. 116:919, 1977.
- Wagner PD:Ventilation-perfusion matching during exercise. Chest 101: 192 s, 1992.
- Dantzker DR, et al:Pulmonary gas exchange during exercise in patients with chronic obstructive pulmonary hypertension. Am. Rev. Respir. Dis. 130: 412, 1984.