Supporting Information

Microstructural control of porous In₂O₃ powders prepared by ultrasonic-spray pyrolysis employing self-synthesized polymethylmethacrylate microspheres as a template and their NO₂-sensing properties

Takeo Hyodo*, Eriko Fujii, Keijiro Ishida, Taro Ueda, and Yasuhiro Shimizu

Graduate School of Engineering, Nagasaki University 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

*Corresponding author: hyodo@nagasaki-u.ac.jp

Fig. S1. Schematic drawing of feeding system of an aqueous precursor solution atomized by ultrasonication (2.4 MHz).

Fig. S2. XRD spectra of representative pr- $\ln_2O_3(Tp)$ powders asprepared and after heat treatments at 550°C for 5 h, together with their crystallite size (CS).

Fig. S3. Nitrogen adsorption-desorption isotherms of $pr-In_2O_3(600)$ and $pr-In_2O_3(1100)$ powders as-prepared and after heat treament at 550°C for 5 h, together with SSA.

*In₂O₃ film, **Alumina substrate, the length of scale bar: 10 μ m

Fig. S4. Cross-sectional SEM photographs of pr- $In_2O_3(600)$, pr- $In_2O_3(1100)$, and c- $In_2O_3(1100)$ sensors, which were fabricated with single or triple stacking of the In_2O_3 film by screen printing. FT: thickness of the In_2O_3 films.