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Abstract
We prove H? (1 < p < 00) extensions of holomorphic functions from submanifolds
of a strictly pseudoconvex domain in C™ with non-smooth boundary.

1 Introduction

Let D cC C™ be a strictly pseudoconvex domain (with not necessarily smooth boundary)
and let X be a closed complex submanifold of some neighborhood of D. Then Henkin-
Leiterer [HER] proved that for any bounded holomorphic function f in X N D, there exists
a bounded holomorphic function g in D such that f = g on X N D. Moreover, if f
is holomorphic in X N D that is continuous on X N D, then there exists a holomorphic
function ¢ in D that is continuous on D such that f = g on X N D. On the other hand
the author [AD2] proved that for any L? (1 < p < 0o0) holomorphic function f in X N D,
there exists an LP holomorphic function g in D such that f = g on X N D. In this paper,
we show that any L? (1 < p < c0) holomorphic function in X N D can be extended to an
HP function in D under the assumption that the defining function for D is of class C3.

Theorem 1 Let D be a strictly pseudoconver domain in C™ with non-smooth boundary.
Assume that the defining function for D is of class C3. Let X be a closed complex subman-
ifold in a neighborhood D of D. Let 1 < p < oo and let f be an LP holomorphic function
in X N D. Then there exists an HP function F in D such that F(z) = f(z) for z € XN D.

Remark 1 Suppose that D CC C” is a strictly pseudoconvex domain in C™ with smooth
boundary and that X intersects 0D transversally. Then Theorem 1 was first proved by
Cumenge [CUM] and then by Beatrous [BEA] for 1 < p < co. The bounded and continuous
extensions of holomorphic functions from X N D to D were first proved by Henkin [HEN].

2 Preliminaries

Let D CC C™ be a strictly pseudoconvex open set and let p be a strictly plurisubharmonic
C? function in a neighborhood @ of D such that

Dnéo={z€b|p(z) <0}
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Define N(p) = {z € 6 | p(z) =0}. Assume that N(p) CC 6. Define

F(z, 4)—22 (OG- Z 8 5e e G = 20)(Ge = =)

Then Henkin-Leiterer [HER] proved the following:

Proposition 1 There exist a positive number e, a neighborhood U CC 0 of N(p) and C*

functions ®(z,(), E(z, ¢), M(2,¢) and M(z, ¢) for ¢ € U and z € U U D such that the
following conditions are fulfilled:

(i) There ezists a constant 3 > 0 such that
ReF(2,¢) 2 p(¢) — p(2) + BI¢ — 2|
for(,z €0, |¢— 2| < 2.
(ii) ®(z,¢) and ®(z,¢) depend holomorphically on z € U U D.

(iii) ®(2,) #0 and ®(2,¢) £0 for (€U, z€ DUU with |( —z| > e. M(2,¢) #0 and
M(z,()#0 for(eU, ze DUU;

B(2,¢) = F(2,)M(2,¢) and 8(2,0) = (F(z,¢) — 2p(())M(2,() for¢ €U, z €
DUU with | — z| <e.

(iv) ®(2,¢) =®(2,¢) for (€ N(p), z€ UUD.

(v) Let Vi be a neighborhood of N(p) such that Vi U D is strictly pseudoconver and
Vi CC U. Then there exist the C* map w = (w1, -+ ,w,) : (Vi UD) x V; — C",
holomorphic in z € V1 U D, and

< ZU(Z, C)) C —Z>= Q(ZaC),

where we define

< zZ,w>= E Z;Wj
Jj=1

for z=(z1," - ,2n), w= (w1, ,wy) € C™.
We choose a neighborhood V; of N(p) such that Vo CC V4 and a C* function x on C”

such that 0 cWy)
z € C"M\V;
x(2) = { 1 (zeW)

Definition 1 For any L? (p > 1) function f, define

n x(Qw;(z6)
Lpf(z) = (27”)71/ f(¢ A (W) Aw(C),

where w(¢) =d{1 A -+ A d,.
Henkin-Leiterer [HER] proved the following:
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Proposition 2 If f is LP (1 < p < 00) holomorphic in D, then we have
f(z) = Lpf(2)
forz € D.
Weset X ={2€C" |z, =0} For { ={((1, -+ ,¢n) € C™ we write ¢’ = (¢, ,(n—1)-
Define '
8 = ==dlj, 0o =7 7=d,
=96 96
der =0 +0¢r, wer(¢) =dCu A+ ANdGn-1.

Moreover, we define

w’(z,() = (wl(zaoa T »wn—l(Z,C)),

o (M) e (&@“_(_Q) .
®(z,() j=1 ®(2,¢)

By the construction of tf'(z, ¢), there exists a neighborhood Usp\x of 0D\ X such that

:f)(z, ()#0for( € XND,z€ DU Usp\x- For every LP holomorphic function f in X N D
and z € DU Usp\ x, define

BC) = s [ 10 (%) )

The following proposition follows from Proposition 2.

Proposition 3 Ef is holomorphic in DU Usp\x and f(z) = Ef(z) for z€ DN X.
For z € Vo U D, ( € VoN D, define

®%(2,¢) = (¢, 2), w(2,() =-w((,2),

(w*(2,¢)) = (wi(z,0), -+ ,wr_1(2,0)).
Then ®*(z,{) # 0 and CT)(Z,C) # 0 for z € 0D\X, ¢ € X N D. Consequently, for every
fixed z € 0D\ X,
dety s (w*(_z, O 5, X(Qu o)
®*(2,¢) 3(z,¢)

is continuous on D N X. By Henkin-Leiterer [HER] we have the following:

Proposition 4 For every LP? (1 < p < o0) holomorphic function f in X N D and all
z € 0D\ X, we have
Ef(2)

_, ey L (vE0 5 XQuEY
i SRLCL “’”"1(@*@,0’34 32,0 )A <)
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Define _ o
an—l(C) =dCi A dC_t NG A - ANdCr_1.

‘We write

K(z,0)dVp_1(¢) = Zn__(___'l_)n_detl n—1 (gig:g’éﬂ X(é)(";’(;@) A we(€)-

It follows from Proposition 4 that for any L? (1 < p < 00) holomorphic function f in XND
and any z € 0D\ X, we have

Ef(z) = /X HOKE O ©).

Definition 2 We denote by S"¢9 the smooth part of D.

We first define the Hardy space HP(D) (0 < p < o) for a bounded domain in C™ with
smooth boundary.

Definition 3 Let D be a bounded domain in C® with smooth boundary and let p be a
defining function for D. For § > 0, define D5 = {z | p(z) < —d}. We say that f belongs to
H?(D) (0 < p < o0) if f is holomorphic in D and

sup / F(Q)Pdos < oo,
6>0 8D5

where dos is the surface measure on 0Ds. We say that a holomorphic function f belongs
to H* (D) if sup,cp | f(2)] < o0.

Suppose D is a strictly pseudoconvex domain in C™ with smooth boundary. We set for
sufficiently small dg > 0,

Fs, ={2z4+av, | z€0DNX, 6 > a >0},

where v, is the unit inward normal vector at z for 0D. If
[ IEfeP <,
8D\ X

then there exists a constant C > 0 such that for sufficiently small § and é; (0 < § < §1),

/ |Ef(2)|Pdos, < C |Ef(2)|Pdos
8D51 8Ds

= C ]Ef(z)]pd05—>0/ |Ef(2)|Pdo
, 0D\ Fs, D\ X

as 0 — 0, which implies that Ef € HP(D).

Next suppose that D is a strictly pseudoconvex domain in C™ with non-smooth bound-
ary. Then the set 8D\ S"*I is locally contained in a real C'* submanifold of real dimension
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< n (see Theorem 1.4.21, Henkin-Leiterer [HER]). Thus X N S7¢9 has measure 0 for the
surface measure do. Hence we have

/ Ef(2)Pdo = / Ef(2)Pdo.
Sreg Sreg\ X

Therefore, in case D is a strictly pseudoconvex domain with non-smooth boundary, we
define as follows:

Definition 4 We say that Ef belongs to HP(D) (0 < p < o0) if

/ |Ef(2)|Pdo < 0.
STBQ\X

By Henkin-Leiterer [HER]|, there exists a constant C > 0 such that
w* = xw
dety 1 [ 2 5, X%
e (3505 )|
1 d
cof 1 ldeta
¢ =2 |2]|®*|[¢ — 2[4

ldop()2 llde p(2)I11 2 (2)] }
|@2[@*| [ — 2[?n=5  |@[2|®*[|¢ — 2[5

We set
Ki(2,¢) = K——iﬂm’
|2a] lldp(2)]|
K ,4 = = )
2(2:¢) |D(2, O)||®* (2, Q)| | — 2[2"4
_ R “dz’p(z)”2
KB = Faope ol
, Op
K4(Z, C) |2n| ”dz p(z)“ lazn (z)l

(2, Q) 121@*(2, Q)| [¢ — 2[*r—5
For ¢ > 0 sufficiently small, define

Ef(z) = /X HOIEEOMA0 (=1,2,3,4)

Henkin-Leiterer (Lemma 3.6.6 [HER]) proved the following:

Lemma 1 There is a constant C > 0 such that for all z € 0D\ X, the following estimates
hold:

/ Ki(z,{)dV,_1 < C
eXNDNVy

for1 <1 <4.
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In order to prove Theorem 1, it is sufficient to show that
[ _mser <o isorav ..
Sreg XND

Schmalz [SCH] obtained the following:

Lemma 2 Lett(z,() = Im < w(z,{),{—2z >. We set {; =& +1jtn, 2j = 1 +i0j+n and
E,(z) ={C € D||¢—z| <vlldp(2)||} for ally > 0. Then there are constants ¢ > 0, v > 0,
and numbers p, v € {1,--- ,2n} such that, {p,t(2,{), &1, , pos-* s&2n} (€u and & have
to be omitted) forms a coordinate system in E.(z) ({p,t(2,{)sm, - ,4,5, - sNen} forms
a local coordinate system in E~(C), respectively) and we have the estimates

dU(C) = Hdpc(z)”' ¢ ( C) aﬂﬂ%"'/\d§2n| on SregﬂE’y(z)a

do(z) < ||al (2 O) Ay ey Adman|  on ST N EL(C).

c
~ llde(Q)]
Using Lemma 1 and Lemma 2 we have the following:

Lemma 3 Let 1 <p < oo and f € LP(X N D)NO(X N D). Then there exists a constant
C > 0 such that for § > 0 sufficiently small,

| Er@re@sc [ jrorav-a©
fori=1,2.

Proof In what follows we denote by C' any positive constant which does not depend on
the relevant parameters. By Holder’s inequality , we have

B0 < ([ 170PKG ) (

Ki(z, <;>dvn~1(o) ’

XND

By Lemma 1 we have

B <0 ([ IHOPKen 1)
Using Fubini’s theorem, we have
| @s@raec | 15or { / Ki<z,c>do(z>} Vo1 ().
Sreg XND (Jgres
Since ¢ € X, we have

|2n|
Ki(z,{)do(z) < C
Sreg 1( C) ( ) Sreg |C - Z|2n_1

1
S C/Sreg WdU(Z) S C

do(z)
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Moreover, we have
KQ(Z,C)(ZO'(Z)
Sreg

cof _LalleOl
sres |®]|®*] | — 2[4

cof IOL g0 f O],
2€E,(¢) |®]|®*[ | — 2[*—4 2¢E(¢) |®|@*[|¢ — 2[*n—4

= 1(¢) + L2(¢)

By Lemma 2, we obtain

‘dtl VANRIRAWAN dtzn_l
L) < G/
1(¢) wen (G T PR

< C/ dtg/\"-/\dtgn_1<0
- | <R |t/[2n=3 -

1

Lemma 3 is proved.

In order to estimate integrals Fsf and E4f we use the following lemma obtained by
Henkin-Leiterer (see Lemma 3.2.4 [HER]). But we give a proof for the reader’s convenience.

Lemma 4 There exist real valued quadratic polynomials P(z,¢) in the real coordinates of
¢, whose coefficients are C functions in z € Uy such that the following estimates hold:

(i) P(2,0) = InF (2, Q)| + o(I¢ = 2%)  for ¢,z € Va.
(1) Q(,€) = p(¢) = p(2) + O(C — 2I°)  for 2,¢ € Va.
(i) 14 P(2,€) A deQ(z Ol = Fzldp(OII? = Olldp(Q)| I = 21 +1¢ = 2I?) for 2,¢ € Va.
(iv) 122,01 2 CUP( Ol +1Q(z Ol +I¢ = 2*)  for 2 € V2D, ¢ € OD.
(v) 18(2,0)| 2 CUP(z QI +1Q( Ol + [ = 2°) for 2,( €12 D.
(03) |P(%, 0l +1¢ = 2 = |P((,2)| +[C = 2 for(,z€ DV,
(vid) Q2,01 +IC ~ 22~ 1Q(C, )| +[C = 22 for € DN V5, 2 € OD.

Proof Let z; = 2; +i%n1j, (G = & + 1€n4;. Since

F(z,C)=2Z§£O(CJ 2 agj(% (G = 2)(G — =),
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we obtain

im (e 0) = S { GO —mem ~ 5 (O - )

+ Z us k()& — 25) (& — k),

©og,k=1

where u;j, are C' functions in V. We set

P(z,() = Z [{ 3 (Z)(gs - )} (&tn — Tjan)

j=1
0 52
B {amj[jrn @ ; awj+:8ws (2)(&s — ws)} (& — “’j)}
2n
+ > ()& — ) (& — z).
7,k=1
Then
Im F(z,¢) — P(z, C)
- n {2& zn: (2)(€ —x)}(f' — Tjtn)
=A Ba: S5 (D6 —7) § Ern — T1n
j=1 J J jOLs
- dp dp 82p :
) ; {axj‘l'n €= 833]—{—71 Z 81'3 nail?s (2)(& - :L‘s)} ( T wj)
+o(|¢ — z[*)
This proves (i). We set
2n o2 »
Q(z,¢) = ap 7, 6 - Z 8% 896 — ;) (& — ).
- j .

It follows from Taylor’s formula that

p(¢) = p(2) = Q(,¢) + O(I¢ — 2I%).

This proves (ii). Since

d¢P(2,¢) /\de(z ¢)
= 3 (50 + OO - )

J,k=1

(& +0(¢ 2D

Z{("‘@) (892;)2} Ajym NdE; + -+,
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we obtain
llde P(2,{) A deQ(z, Q)| = \/—Hdp( O = Cllde(O]1¢ = 2| + I¢ = 2I*).

This proves (iii). In view of Proposition 1 (i) and (iii), we have for z € VoN' D and ¢ € 4D,
[2(z,0)] = C|F(z,()| =z C(llm F(z, ()| + [Re F(z,()])
> CO(IP(2, 0| +1Q(z, Ol + ¢ — 2%).
This proves (iv). Similarly, we can prove (v), (vi) and (vii). Lemma 4 is proved.
Definition 5 For £ € 0D and 6 > 0, define

T = {cecnlzagg)
B(§d) = {(eCm||(—¢ <3},

He(d) = B(&0)N{¢eC™|ldp(€)ldist(¢, Te) < 6°},
He(8) = He()ND.

(Cj fj = 0}

H¢(6) is called the Hormander ball of radius § with center &.
Then Henkin-Leiterer (see Lemma 3.6.5 [HER]) proved the following:

Lemma 5 There exists a number 8 > 0 with the following properties:

)

ldupllic -] > ‘5—"()

1
lder P(2,C) AderQ(2, Ol 2 —\/22—7;||dz'10(2)||2

1/2
for all z € OD\X and ( € H, ((5 aazn (z)znl > NV,NX.

Now we shall prove the following:

Lemma 6 For z € 0Q\X and any positive number € with 0 < ¢ < 1/2, we have

/ K2 OllQ( Ol 2 dVi-r(C) < Clon| %
XND
fori=3,4.

Proof Using the method of Henkin-Leiterer (Lemma 3.6.6 [HER]), we have

K3(2, Q1RQ(z, Q) dVa-1(¢)

ceM

cof JlQEIFIPEONCQEI
B cem ( T

1Pz, Ol +1Q(z, Ol + ¢ — 22)?[¢ — 2279
[znlt2]
ltI<R (|znl? + [t1] + [t2] + |t]2)3]t]27—5

S C d dt2n 2y
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where t = (t1,- -+ ,ton—2). Weset t' = (ts,- - ,tan—2). Then we obtain for some R > 0,

/ K3(2,0)1Q(z, O)l~*dVa_1(¢)
(eXnD

|2n[t1]
tl<r (12n]? + [ta] + [t2] + [¢/]?)3|2"2> =0

<C/R/RfR [znlt” dtydtodr

=7 o Jo Jo (P Htitte+r2)3 07
R R |Z It—-a

<C nll dt,dr

= /0/0 (lznl? + 1 +72)27 "

5 [e ) [e ) u1—2s
< Clz,| 7% dud
< Clzn| /(; /0 (14 u2 + 12)2 uav

<C dty - - - dtan—2

< Celzn|7%.
We write 1
" Op(z) 2
’HZ A Hz <6| azn (Z)Z'n, ) .
and )
_| 9P
Then we have
/ 1Q(2, )17 Ka(2,{)dVa-1(¢)
(e(XND)\H,
a|Q(z, Q)¢ llde Q(z, Ol
= dVy_1(¢
v/CE(XﬂD)\Hz (a+1Q(z, )| + |¢ — 2|?)3|¢ — 2|25 1(¢)
alt|™¢
=C dty - dbg
=7 Ji<r (@+ |22 + |ta| + [P2)3[p2n-s AR
R —e
=C e dty

o (a+|zm|?+11)?

9 [ x°F
< Clz,l7
< Clznl /0 (14 z)?

dz < Celzn|™%.
On the other hand we set
1= [ Q2 Q) Ka(2 O)dVi1(C)
(€H . N(XND)

and
o

b= Tarl
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Then we obtain

12 p(2)]1(2)

<cC ld¢r P(z,¢) A derQ(z, Olla]@(2, ) ™°

cer.nxnp) (B2 + |2n]? + |P| + Q| + ¢ — 2]?)3]¢ — 2[*"~°
We set b = /(32 + |2,|2. Then we have

ldep(2)lJ(2) < C

an~1 (C)

alty| ¢
ltl<r (0% + [t1| + [to] + [¢/|2)3|t/|?n—5

oty ®
<
= C/ dtl/ (62+t1+r2)

R2 1 2e
d
C/ y/ b2+y +r2)2

dty---dtap—_o

<

ab——l —2e 2 2e
< —_——d
- C/ 1+x2)2 v
< Celzn|™*|darp(2)])-

Lemma 6 is proved.

Lemma 7 For { € XN D, 0<¢e<1/2 and i = 3,4, there exists a positive constant C.
which depends only on € such that

/s K2, Q)llzal *do(2) < Celp($)

Proof We set 5
ldp(2)|2n|

1B(2, Q) [2|@* (2, O)I¢ — 2[2»—5

azn (z)‘ < ||dp(2)]l, it is sufficient to show that

KS(Za C) =

Since ||z p(2)|| < [|dp(z)|| and

[ (e Qllzal d0(2) < Culpl©)]

We set
L= [ Ks(z Ollzal d(2)
2€STINE ()

and
La(¢) = / |Ks(z, O)l|2a] 2 do(2).
2€STe9\ E(C)

Then we obtain by Lemma 2,
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Li(¢)

IA

C’/ d dton—1
ltl<R (|2n|2 + (O] + [ta] + [t|2) 3+t [2n—5

C/ dr
(10(¢) |+T2

< Cl /0 Wdy
< Celp(Q))7F

Similarly, we have Ly(¢) < C¢|p(¢)|~¢, which completes the proof of Lemma 7.

IA

Using the same technique as in the proof in Adachi [AD2], we obtain the following
lemma. We omit the proof.

Lemma 8 Let D be a strictly pseudoconver domain in C™ (with not necessarily smooth
boundary). Let f be an LP (1 < p < o) holomorphic function in D and let ¢ be a C™®
function in C™. Then

Lo = o [ 1090 A de (%) e

18 an LP holomorphic function in D.

3 Proof of Theorem 1
By Lemma 8 and the proof of Theorem 4.11.1 in Henkin-Leiterer [HER], we may assume
that X = {z € C" | z, = 0}. Let ¢ be a positive number such that 1/p +1/q¢ = 1. We

choose € > 0 such that max{ep, g} < 1/2. From now on we denote by C. any positive
constans which depends only on e. It is sufficient to show that

/;reg |E; f(2)[Pdo(z) < C. IF(O)|PAV,_1(0).

XND

for ¢ = 3,4. By Lemma 6 and Holder’s inequality, we obtain for i = 3,4,

Ef(2)] < /X L IOIIE OIQU OFIQ( O Va0
< ( [P ol <>|fpdvn_1<c>)  x

</an |Ki(z, O)]|Q(z, O’—aqun—i(C)) 3

Q3=

IA

Gl ( | ropKeolee, c)ﬁpdvn_l(c))
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Consequently,

Bf ()P < Culznl 2P ( | rf<g>|pr<<z,<)|<Q_<z,c>rwdvn_1<o) .

Using Fubini’s theorem, Lemma 4(ii) and Lemma 7, we have

/ Ef(2)Pdo(z
Sreg

<c. [ 2l 2P| K (2, O Qe c>|€pda<z>} dViu1(0)

XﬂD S’Tcg

)

e

<c [ 1P { [ Il K Ol de ) | avia 0
e [ If(C)Ip{

<[ A0V

o227 K2, O)l 2 — C|3€pdo<z>} Vs 1 (0)

o [ 1P { [l K, 0l - 413€pda(z)} Vi1 0).
XND Sreg . ‘

We set
| 7.0 = [ el 7Kz, Ol = fPdo ).

In order to prove the inequality |T;(¢)| < Ck, it is sufficient to show that

— 2| 2Pl dp(2) 1P| — 2177
T(¢) = /S TP do(z) < C-..

Then we have
L) = / [zal 2P lldp(2)|12IC — 27
cemyonsres [BPIRHIC — 2
|20 |1 728P||dp(2)]?|¢ — 2|3%P

do(z)

—|—/ = do(z)
2gBy(Onsres | B[2|D¥|[¢ — 2[*n5
= I11(¢) + 112(0).
In view of Lemma 2, we have by setting t’ = (t2,--- ,tan—1)
dty - dton—
Ill(C) S C 1 2n—1

i<k (1P(Q)] =+ [t1] + [t'[?)ep+(B/2)|¢7|2n—5-3ep”
Using the polar coordinate change, we obtain
2—|—36p

I11(¢) < C/ (|p(O)] + r2)er+(3/2) dr
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We set \/|p(¢)|ly = r. Then we obtain

R 2+3Ep
o [Vie@©] y
1n(Q) < Ol [P e < .

Similarly, we obtain
Izn|1—2ep|c _ z|2+35p

112 z < / =
) 2@E,(OnSres |@[2|D*[|¢ — 2|25

do(z)

S < Ce-

/ZQEv(C)nSres |{ — z|?n—2-ep —

Therefore, Theorem 1 is proved.

Remark 2 If D is a strictly pseudoconvex domain with C°° boundary and if X intersects
0D transversally, Adachi [AD1] and Elgueta [ELG] proved that for any holomorphic func-
tion f in X N D that is of class C*° on X N D there exists a holomorphic function ¢ in D
that is of class C*° on D such that f = g on X N D. In case D is a strictly pseudoconvex
domain with non-smooth boundary, the C'°° extension problem is still open.
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