H^{p} Extensions of Holomorphic Functions from Submanifolds of a Strictly Pseudoconvex Domain with Non-Smooth Boundary

Kenzō Adachi
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852-8521, Japan
(Received October 31, 2006)

Abstract

We prove $H^{p}(1<p<\infty)$ extensions of holomorphic functions from submanifolds of a strictly pseudoconvex domain in \mathbb{C}^{n} with non-smooth boundary.

1 Introduction

Let $D \subset \subset \mathbb{C}^{n}$ be a strictly pseudoconvex domain (with not necessarily smooth boundary) and let X be a closed complex submanifold of some neighborhood of \bar{D}. Then HenkinLeiterer [HER] proved that for any bounded holomorphic function f in $X \cap D$, there exists a bounded holomorphic function g in D such that $f=g$ on $X \cap D$. Moreover, if f is holomorphic in $X \cap D$ that is continuous on $\overline{X \cap D}$, then there exists a holomorphic function g in D that is continuous on \bar{D} such that $f=g$ on $X \cap D$. On the other hand the author [AD2] proved that for any $L^{p}(1 \leq p<\infty)$ holomorphic function f in $X \cap D$, there exists an L^{p} holomorphic function g in D such that $f=g$ on $X \cap D$. In this paper, we show that any $L^{p}(1<p<\infty)$ holomorphic function in $X \cap D$ can be extended to an H^{p} function in D under the assumption that the defining function for D is of class C^{3}.

Theorem 1 Let D be a strictly pseudoconvex domain in \mathbb{C}^{n} with non-smooth boundary. Assume that the defining function for D is of class C^{3}. Let X be a closed complex submanifold in a neighborhood \widehat{D} of D. Let $1<p<\infty$ and let f be an L^{p} holomorphic function in $X \cap D$. Then there exists an H^{p} function F in D such that $F(z)=f(z)$ for $z \in X \cap D$.

Remark 1 Suppose that $D \subset \subset \mathbb{C}^{n}$ is a strictly pseudoconvex domain in \mathbb{C}^{n} with smooth boundary and that X intersects ∂D transversally. Then Theorem 1 was first proved by Cumenge [CUM] and then by Beatrous [BEA] for $1 \leq p<\infty$. The bounded and continuous extensions of holomorphic functions from $X \cap D$ to D were first proved by Henkin [HEN].

2 Preliminaries

Let $D \subset \subset \mathbb{C}^{n}$ be a strictly pseudoconvex open set and let ρ be a strictly plurisubharmonic C^{3} function in a neighborhood θ of ∂D such that

$$
D \cap \theta=\{z \in \theta \mid \rho(z)<0\} .
$$

Define $N(\rho)=\{z \in \theta \mid \rho(z)=0\}$. Assume that $N(\rho) \subset \subset \theta$. Define

$$
F(z, \zeta)=2 \sum_{j=1}^{n} \frac{\partial \rho}{\partial \zeta_{j}}(\zeta)\left(\zeta_{j}-z_{j}\right)-\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial \zeta_{j} \partial \zeta_{k}}(\zeta)\left(\zeta_{j}-z_{j}\right)\left(\zeta_{k}-z_{k}\right)
$$

Then Henkin-Leiterer [HER] proved the following:
Proposition 1 There exist a positive number ε, a neighborhood $U \subset \subset \theta$ of $N(\rho)$ and C^{1} functions $\Phi(z, \zeta), \widetilde{\Phi}(z, \zeta), M(z, \zeta)$ and $\widetilde{M}(z, \zeta)$ for $\zeta \in U$ and $z \in U \cup D$ such that the following conditions are fulfilled:
(i) There exists a constant $\beta>0$ such that

$$
\operatorname{Re} F(z, \zeta) \geq \rho(\zeta)-\rho(z)+\beta|\zeta-z|^{2}
$$

for $\zeta, z \in \bar{\theta},|\zeta-z| \leq 2 \varepsilon$.
(ii) $\Phi(z, \zeta)$ and $\widetilde{\Phi}(z, \zeta)$ depend holomorphically on $z \in U \cup D$.
(iii) $\Phi(z, \zeta) \neq 0$ and $\widetilde{\Phi}(z, \zeta) \neq 0 \quad$ for $\zeta \in U, z \in D \cup U$ with $|\zeta-z| \geq \varepsilon . M(z, \zeta) \neq 0$ and $\widetilde{M}(z, \zeta) \neq 0 \quad$ for $\zeta \in U, z \in D \cup U$;
$\Phi(z, \zeta)=F(z, \zeta) M(z, \zeta)$ and $\widetilde{\Phi}(z, \zeta)=(F(z, \zeta)-2 \rho(\zeta)) \widetilde{M}(z, \zeta) \quad$ for $\zeta \in U, z \in$ $D \cup U$ with $|\zeta-z| \leq \varepsilon$.
(iv) $\widetilde{\Phi}(z, \zeta)=\Phi(z, \zeta) \quad$ for $\zeta \in N(\rho), z \in U \cup D$.
(v) Let V_{1} be a neighborhood of $N(\rho)$ such that $V_{1} \cup D$ is strictly pseudoconvex and $V_{1} \subset \subset U$. Then there exist the C^{1} map $w=\left(w_{1}, \cdots, w_{n}\right):\left(V_{1} \cup D\right) \times V_{1} \rightarrow \mathbb{C}^{n}$, holomorphic in $z \in V_{1} \cup D$, and

$$
<w(z, \zeta), \zeta-z>=\Phi(z, \zeta)
$$

where we define

$$
<z, w>=\sum_{j=1}^{n} z_{j} w_{j}
$$

for $z=\left(z_{1}, \cdots, z_{n}\right), w=\left(w_{1}, \cdots, w_{n}\right) \in \mathbb{C}^{n}$.
We choose a neighborhood V_{2} of $N(\rho)$ such that $V_{2} \subset \subset V_{1}$ and a C^{∞} function χ on \mathbb{C}^{n} such that

$$
\chi(z)=\left\{\begin{array}{cc}
0 & \left(z \in \mathbb{C}^{n} \backslash V_{1}\right) \\
1 & \left(z \in V_{2}\right)
\end{array}\right.
$$

Definition 1 For any $L^{p}(p \geq 1)$ function f, define

$$
L_{D} f(z)=\frac{n!}{(2 \pi i)^{n}} \int_{D} f(\zeta) \wedge_{j=1}^{n} d_{\zeta}\left(\frac{\chi(\zeta) w_{j}(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right) \wedge \omega(\zeta)
$$

where $\omega(\zeta)=d \zeta_{1} \wedge \cdots \wedge d \zeta_{n}$.
Henkin-Leiterer [HER] proved the following:

Proposition 2 If f is $L^{p}(1 \leq p \leq \infty)$ holomorphic in D, then we have

$$
f(z)=L_{D} f(z)
$$

for $z \in D$.
We set $X=\left\{z \in \mathbb{C}^{n} \mid z_{n}=0\right\}$. For $\zeta=\left(\zeta_{1}, \cdots, \zeta_{n}\right) \in \mathbb{C}^{n}$ we write $\zeta^{\prime}=\left(\zeta_{1}, \cdots, \zeta_{n-1}\right)$. Define

$$
\begin{gathered}
\bar{\partial}_{\zeta^{\prime}}=\sum_{j=1}^{n-1} \frac{\partial}{\partial \bar{\zeta}_{j}} d \bar{\zeta}_{j}, \quad \partial_{\zeta^{\prime}}=\sum_{j=1}^{n-1} \frac{\partial}{\partial \zeta_{j}} d \zeta_{j}, \\
d_{\zeta^{\prime}}=\bar{\partial}_{\zeta^{\prime}}+\partial_{\zeta^{\prime}}, \quad \omega_{\zeta^{\prime}}(\zeta)=d \zeta_{1} \wedge \cdots \wedge d \zeta_{n-1} .
\end{gathered}
$$

Moreover, we define

$$
\begin{gathered}
w^{\prime}(z, \zeta)=\left(w_{1}(z, \zeta), \cdots, w_{n-1}(z, \zeta)\right), \\
\bar{\omega}_{\zeta^{\prime}}\left(\frac{\chi(\zeta) w^{\prime}(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right)={ }_{j=1}^{n-1} \partial_{\zeta^{\prime}}\left(\frac{\chi(\zeta) w_{j}(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right) .
\end{gathered}
$$

By the construction of $\widetilde{\Phi}(z, \zeta)$, there exists a neighborhood $U_{\partial D \backslash X}$ of $\partial D \backslash X$ such that $\widetilde{\Phi}(z, \zeta) \neq 0$ for $\zeta \in X \cap \bar{D}, z \in D \cup U_{\partial D \backslash X}$. For every L^{p} holomorphic function f in $X \cap D$ and $z \in D \cup U_{\partial D \backslash X}$, define

$$
E f(z)=\frac{(n-1)!}{(2 \pi i)^{n-1}} \int_{X \cap D} f(\zeta) \bar{\omega}_{\zeta^{\prime}}\left(\frac{\chi(\zeta) w^{\prime}(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right) \wedge \omega_{\zeta^{\prime}}(\zeta)
$$

The following proposition follows from Proposition 2.
Proposition $3 E f$ is holomorphic in $D \cup U_{\partial D \backslash X}$ and $f(z)=E f(z)$ for $z \in D \cap X$.
For $z \in V_{2} \cup D, \zeta \in V_{2} \cap D$, define

$$
\begin{gathered}
\Phi^{*}(z, \zeta)=\Phi(\zeta, z), \quad w^{*}(z, \zeta)=-w(\zeta, z) \\
\left(w^{*}(z, \zeta)\right)^{\prime}=\left(w_{1}^{*}(z, \zeta), \cdots, w_{n-1}^{*}(z, \zeta)\right)
\end{gathered}
$$

Then $\Phi^{*}(z, \zeta) \neq 0$ and $\widetilde{\Phi}(z, \zeta) \neq 0$ for $z \in \partial D \backslash X, \zeta \in X \cap \bar{D}$. Consequently, for every fixed $z \in \partial D \backslash X$,

$$
\operatorname{det}_{1, n-1}\left(\frac{w^{*}(z, \zeta)}{\Phi^{*}(z, \zeta)}, \bar{\partial}_{\zeta^{\prime}} \frac{\chi(\zeta) w(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right)
$$

is continuous on $\bar{D} \cap X$. By Henkin-Leiterer [HER] we have the following:
Proposition 4 For every $L^{p}(1 \leq p \leq \infty)$ holomorphic function f in $X \cap D$ and all $z \in \partial D \backslash X$, we have

$$
\begin{aligned}
& E f(z) \\
& =z_{n} \frac{(-1)^{n}}{(2 \pi i)^{n-1}} \int_{\zeta \in X \cap D} f(\zeta) \operatorname{det}_{1, n-1}\left(\frac{w^{*}(z, \zeta)}{\Phi^{*}(z, \zeta)}, \bar{\partial}_{\zeta^{\prime}} \frac{\chi(\zeta) w(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right) \wedge \omega_{\zeta}^{\prime}(\zeta)
\end{aligned}
$$

Define

$$
d V_{n-1}(\zeta)=d \zeta_{1} \wedge \cdots d \zeta_{n-1} \wedge d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{n-1}
$$

We write

$$
K(z, \zeta) d V_{n-1}(\zeta)=z_{n} \frac{(-1)^{n}}{(2 \pi i)^{n-1}} \operatorname{det}_{1, n-1}\left(\frac{w^{*}(z, \zeta)}{\Phi^{*}(z, \zeta)}, \bar{\partial}_{\zeta^{\prime}} \frac{\chi(\zeta) w(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right) \wedge \omega_{\zeta}^{\prime}(\zeta)
$$

It follows from Proposition 4 that for any $L^{p}(1 \leq p \leq \infty)$ holomorphic function f in $X \cap D$ and any $z \in \partial D \backslash X$, we have

$$
E f(z)=\int_{X \cap D} f(\zeta) K(z, \zeta) d V_{n-1}(\zeta)
$$

Definition 2 We denote by $S^{\text {reg }}$ the smooth part of ∂D.
We first define the Hardy space $H^{p}(D)(0<p \leq \infty)$ for a bounded domain in \mathbb{C}^{n} with smooth boundary.
Definition 3 Let D be a bounded domain in \mathbb{C}^{n} with smooth boundary and let ρ be a defining function for D. For $\delta>0$, define $D_{\delta}=\{z \mid \rho(z)<-\delta\}$. We say that f belongs to $H^{p}(D)(0<p<\infty)$ if f is holomorphic in D and

$$
\sup _{\delta>0} \int_{\partial D_{\delta}}|f(\zeta)|^{p} d \sigma_{\delta}<\infty
$$

where $d \sigma_{\delta}$ is the surface measure on ∂D_{δ}. We say that a holomorphic function f belongs to $H^{\infty}(D)$ if $\sup _{z \in D}|f(z)|<\infty$.

Suppose D is a strictly pseudoconvex domain in \mathbb{C}^{n} with smooth boundary. We set for sufficiently small $\delta_{0}>0$,

$$
F_{\delta_{0}}=\left\{z+\alpha \nu_{z} \mid z \in \partial D \cap X, \delta_{0}>\alpha>0\right\}
$$

where ν_{z} is the unit inward normal vector at z for ∂D. If

$$
\int_{\partial D \backslash X}|E f(z)|^{p}<\infty
$$

then there exists a constant $C>0$ such that for sufficiently small δ and $\delta_{1}\left(0<\delta<\delta_{1}\right)$,

$$
\begin{aligned}
\int_{\partial D_{\delta_{1}}}|E f(z)|^{p} d \sigma_{\delta_{1}} & \leq C \int_{\partial D_{\delta}}|E f(z)|^{p} d \sigma_{\delta} \\
& =C \int_{\partial D_{\delta} \backslash F_{\delta_{0}}}|E f(z)|^{p} d \sigma_{\delta} \rightarrow C \int_{\partial D \backslash X}|E f(z)|^{p} d \sigma
\end{aligned}
$$

as $\delta \rightarrow 0$, which implies that $E f \in H^{p}(D)$.
Next suppose that D is a strictly pseudoconvex domain in \mathbb{C}^{n} with non-smooth boundary. Then the set $\partial D \backslash S^{r e g}$ is locally contained in a real C^{1} submanifold of real dimension
$\leq n$ (see Theorem 1.4.21, Henkin-Leiterer [HER]). Thus $X \cap S^{\text {reg }}$ has measure 0 for the surface measure $d \sigma$. Hence we have

$$
\int_{S^{r e g}}|E f(z)|^{p} d \sigma=\int_{S^{r e g} \backslash X}|E f(z)|^{p} d \sigma .
$$

Therefore, in case D is a strictly pseudoconvex domain with non-smooth boundary, we define as follows:
Definition 4 We say that $E f$ belongs to $H^{p}(D)(0<p<\infty)$ if

$$
\int_{S^{r e g} \backslash X}|E f(z)|^{p} d \sigma<\infty
$$

By Henkin-Leiterer [HER], there exists a constant $C>0$ such that

$$
\begin{aligned}
& \left\|\operatorname{det}_{1, n-1}\left(\frac{w^{*}}{\Phi^{*}}, \bar{\partial}_{\zeta^{\prime}} \frac{\chi w}{\widetilde{\Phi}}\right)\right\| \\
& \leq C\left\{\frac{1}{|\zeta-z|^{2 n-1}}+\frac{\|d \rho(z)\|}{|\widetilde{\Phi}|\left|\Phi^{*}\right||\zeta-z|^{2 n-4}}\right. \\
& \left.+\frac{\left\|d_{\zeta^{\prime}} \rho(z)\right\|^{2}}{|\widetilde{\Phi}|^{2}\left|\Phi^{*}\right||\zeta-z|^{2 n-5}}+\frac{\| d_{\zeta^{\prime}} \rho(z)| |\left|\frac{\partial \rho}{\partial z_{n}}(z)\right|}{|\widetilde{\Phi}|^{2}\left|\Phi^{*}\right||\zeta-z|^{2 n-5}}\right\}
\end{aligned}
$$

We set

$$
\begin{aligned}
K_{1}(z, \zeta) & =\frac{\left|z_{n}\right|}{|\zeta-z|^{2 n-1}}, \\
K_{2}(z, \zeta) & =\frac{\left|z_{n}\right|\|d \rho(z)\|}{|\widetilde{\Phi}(z, \zeta)|\left|\Phi^{*}(z, \zeta)\right||\zeta-z|^{2 n-4}} \\
K_{3}(z, \zeta) & =\frac{\left|z_{n}\right|\left\|d_{z^{\prime}} \rho(z)\right\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{2}\left|\Phi^{*}(z, \zeta)\right||\zeta-z|^{2 n-5}} \\
K_{4}(z, \zeta) & =\frac{\left|z_{n}\right|\left\|d_{z^{\prime}} \rho(z)\right\|\left|\frac{\partial \rho}{\partial z_{n}}(z)\right|}{|\widetilde{\Phi}(z, \zeta)|^{2}\left|\Phi^{*}(z, \zeta)\right||\zeta-z|^{2 n-5}}
\end{aligned}
$$

For $\delta>0$ sufficiently small, define

$$
E_{i} f(z):=\int_{X \cap D}|f(\zeta)| K_{i}(z, \zeta) d V_{n-1}(\zeta) \quad(i=1,2,3,4)
$$

Henkin-Leiterer (Lemma 3.6.6 [HER]) proved the following:
Lemma 1 There is a constant $C>0$ such that for all $z \in \partial D \backslash X$, the following estimates hold:

$$
\int_{\zeta \in X \cap D \cap V_{2}} K_{i}(z, \zeta) d V_{n-1} \leq C
$$

for $1 \leq i \leq 4$.

In order to prove Theorem 1, it is sufficient to show that

$$
\int_{S^{r e g}}\left(E_{i} f(z)\right)^{p} \leq C \int_{X \cap D}|f(\zeta)|^{p} d V_{n-1}
$$

Schmalz $[\mathrm{SCH}]$ obtained the following:
Lemma 2 Let $t(z, \zeta)=\operatorname{Im}<w(z, \zeta), \zeta-z>$. We set $\zeta_{j}=\xi_{j}+i \xi_{j+n}, z_{j}=\eta_{j}+i \eta_{j+n}$ and $E_{\gamma}(z)=\{\zeta \in D| | \zeta-z \mid<\gamma\|d \rho(z)\|\}$ for all $\gamma>0$. Then there are constants $c>0, \gamma>0$, and numbers $\mu, \nu \in\{1, \cdots, 2 n\}$ such that, $\left\{\rho, t(z, \zeta), \xi_{1}, \cdots, \hat{\mu}, \hat{\nu}, \cdots, \xi_{2 n}\right\}$ (ξ_{μ} and ξ_{ν} have to be omitted) forms a coordinate system in $E_{\gamma}(z)\left(\left\{\rho, t(z, \zeta), \eta_{1}, \cdots, \hat{\mu}, \hat{\nu}, \cdots, \eta_{2 n}\right\}\right.$ forms a local coordinate system in $E_{\gamma}(\zeta)$, respectively) and we have the estimates

$$
\begin{aligned}
& d \sigma(\zeta) \leq \frac{c}{\|d \rho(z)\|}\left|d_{\zeta} t(z, \zeta) \wedge \cdots, \cdots, \hat{\mu}, \hat{\nu}, \cdots \wedge d \xi_{2 n}\right| \quad \text { on } \quad S^{r e g} \cap E_{\gamma}(z) \\
& d \sigma(z) \leq \frac{c}{\|d \rho(\zeta)\|}\left|d_{z} t(z, \zeta) \wedge \cdots, \cdots, \hat{\mu}, \hat{\nu}, \cdots \wedge d \eta_{2 n}\right| \quad \text { on } \quad S^{r e g} \cap E_{\gamma}(\zeta) .
\end{aligned}
$$

Using Lemma 1 and Lemma 2 we have the following:
Lemma 3 Let $1<p<\infty$ and $f \in L^{p}(X \cap D) \cap \mathcal{O}(X \cap D)$. Then there exists a constant $C>0$ such that for $\delta>0$ sufficiently small,

$$
\int_{S^{r e s}}\left(E_{i} f(z)\right)^{p} d \sigma(z) \leq C \int_{X \cap D}|f(\zeta)|^{p} d V_{n-1}(\zeta)
$$

for $i=1,2$.
Proof In what follows we denote by C any positive constant which does not depend on the relevant parameters. By Hölder's inequality, we have

$$
E_{i} f(z) \leq\left(\int_{X \cap D}|f(\zeta)|^{p} K_{i}(z, \zeta) d V_{n-1}(\zeta)\right)^{\frac{1}{p}}\left(\int_{X \cap D} K_{i}(z, \zeta) d V_{n-1}(\zeta)\right)^{\frac{1}{q}}
$$

By Lemma 1 we have

$$
E_{i} f(z) \leq C\left(\int_{X \cap D}|f(\zeta)|^{p} K_{i}(z, \zeta) d V_{n-1}(\zeta)\right)^{\frac{1}{p}}
$$

Using Fubini's theorem, we have

$$
\int_{S^{\text {reg }}}\left(E_{i} f(z)\right)^{p} d \sigma(z) \leq C \int_{X \cap D}|f(\zeta)|^{p}\left\{\int_{S^{r e e g}} K_{i}(z, \zeta) d \sigma(z)\right\} d V_{n-1}(\zeta)
$$

Since $\zeta \in X$, we have

$$
\begin{aligned}
\int_{S^{\text {reg }}} K_{1}(z, \zeta) d \sigma(z) & \leq C \int_{S^{\text {reg }}} \frac{\left|z_{n}\right|}{|\zeta-z|^{2 n-1}} d \sigma(z) \\
& \leq C \int_{S^{\text {reg }}} \frac{1}{|\zeta-z|^{2 n-2}} d \sigma(z) \leq C
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& \int_{S^{\text {reg }}} K_{2}(z, \zeta) d \sigma(z) \\
& \leq C \int_{S^{\text {reg }}} \frac{\left|z_{n}\right|\|d \rho(z)\|}{|\widetilde{\Phi}|\left|\Phi^{*}\right||\zeta-z|^{2 n-4}} d \sigma(z) \\
& \leq C \int_{z \in E_{\gamma}(\zeta)} \frac{\left|z_{n}\right|| | d \rho(z) \|}{|\widetilde{\Phi}|\left|\Phi^{*}\right||\zeta-z|^{2 n-4}} d \sigma(z)+C \int_{z \notin E_{\gamma}(\zeta)} \frac{\left|z_{n}\right|\|d \rho(z)\|}{|\widetilde{\Phi}|\left|\Phi^{*}\right||\zeta-z|^{2 n-4}} d \sigma(z) \\
& =I_{1}(\zeta)+I_{2}(\zeta)
\end{aligned}
$$

By Lemma 2, we obtain

$$
\begin{aligned}
I_{1}(\zeta) & \leq C \int_{|t|<R} \frac{d t_{1} \wedge \cdots \wedge d t_{2 n-1}}{\left(\left|t_{1}\right|+\left|t^{\prime}\right|^{2}\right)^{2}\left|t^{\prime}\right|^{2 n-5}} \\
& \leq C \int_{\left|t^{\prime}\right|<R} \frac{d t_{2} \wedge \cdots \wedge d t_{2 n-1}}{\left|t^{\prime}\right|^{2 n-3}} \leq C \\
I_{2}(\zeta) & \leq \int_{z \notin E_{\gamma}(\zeta)} \frac{1}{|\zeta-z|^{2 n-2}} d \sigma(z) \leq C
\end{aligned}
$$

Lemma 3 is proved.
In order to estimate integrals $E_{3} f$ and $E_{4} f$ we use the following lemma obtained by Henkin-Leiterer (see Lemma 3.2.4 [HER]). But we give a proof for the reader's convenience.

Lemma 4 There exist real valued quadratic polynomials $P(z, \zeta)$ in the real coordinates of ζ, whose coefficients are C^{1} functions in $z \in \bar{U}_{2}$ such that the following estimates hold:
(i) $P(z, \zeta)=\operatorname{Im} F(z, \zeta) \mid+o\left(|\zeta-z|^{2}\right) \quad$ for $\zeta, z \in V_{2}$.
(ii) $Q(z, \zeta)=\rho(\zeta)-\rho(z)+O\left(|\zeta-z|^{3}\right) \quad$ for $z, \zeta \in V_{2}$.
(iii) $\left\|d_{\zeta} P(z, \zeta) \wedge d_{\zeta} Q(z, \zeta)\right\| \geq \frac{1}{\sqrt{n}}\|d \rho(\zeta)\|^{2}-C\left(\|d \rho(\zeta)\||\zeta-z|+|\zeta-z|^{2}\right)$ for $z, \zeta \in V_{2}$.
(iv) $|\Phi(z, \zeta)| \geq C\left(|P(z, \zeta)|+|Q(z, \zeta)|+|\zeta-z|^{2}\right) \quad$ for $z \in V_{2} \cap \bar{D}, \zeta \in \partial D$.
(v) $|\widetilde{\Phi}(z, \zeta)| \geq C\left(|P(z, \zeta)|+|Q(z, \zeta)|+|\zeta-z|^{2}\right) \quad$ for $z, \zeta \in V_{2} \cap \bar{D}$.
(vi) $|P(z, \zeta)|+|\zeta-z|^{2} \approx|P(\zeta, z)|+|\zeta-z|^{2} \quad$ for $\zeta, z \in \bar{D} \cap V_{2}$
(vii) $|Q(z, \zeta)|+|\zeta-z|^{2} \approx|Q(\zeta, z)|+|\zeta-z|^{2} \quad$ for $\zeta \in \bar{D} \cap V_{2}, z \in \partial D$.

Proof Let $z_{j}=x_{j}+i x_{n+j}, \zeta_{j}=\xi_{j}+i \xi_{n+j}$. Since

$$
F(z, \zeta)=2 \sum_{j=1}^{n} \frac{\partial \rho}{\partial \zeta_{j}}(\zeta)\left(\zeta_{j}-z_{j}\right)-\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial \zeta_{j} \partial \zeta_{k}}(\zeta)\left(\zeta_{j}-z_{j}\right)\left(\zeta_{k}-z_{k}\right),
$$

we obtain

$$
\begin{aligned}
\operatorname{Im} F(z, \zeta)= & \sum_{j=1}^{n}\left\{\frac{\partial \rho}{\partial x_{j}}(\zeta)\left(\xi_{j+n}-x_{j+n}-\frac{\partial \rho}{\partial \xi_{j+n}}(\zeta)\left(\xi_{j}-x_{j}\right)\right\}\right. \\
& +\sum_{j, k=1}^{2 n} u_{j, k}(\zeta)\left(\xi_{j}-x_{j}\right)\left(\xi_{k}-x_{k}\right)
\end{aligned}
$$

where $u_{j k}$ are C^{1} functions in \bar{V}_{2}. We set

$$
\begin{aligned}
P(z, \zeta)= & \sum_{j=1}^{n}\left[\left\{\frac{\partial \rho}{\partial x_{j}}(z)+\sum_{s=1}^{2 n} \frac{\partial^{2} \rho}{\partial x_{j} \partial x_{s}}(z)\left(\xi_{s}-x_{s}\right)\right\}\left(\xi_{j+n}-x_{j+n}\right)\right. \\
& \left.-\left\{\frac{\partial \rho}{\partial x_{j+n}}(z)+\sum_{s=1}^{2 n} \frac{\partial^{2} \rho}{\partial x_{j+n} \partial x_{s}}(z)\left(\xi_{s}-x_{s}\right)\right\}\left(\xi_{j}-x_{j}\right)\right] \\
& +\sum_{j, k=1}^{2 n} u_{j k}(z)\left(\xi_{j}-x_{j}\right)\left(\xi_{k}-x_{k}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \operatorname{Im} F(z, \zeta)-P(z, \zeta) \\
& =\sum_{j=1}^{n}\left\{\frac{\partial \rho}{\partial x_{j}}(\zeta)-\frac{\partial \rho}{\partial x_{j}}(z)-\sum_{s=1}^{2 n} \frac{\partial^{2} \rho}{\partial x_{j} \partial x_{s}}(z)\left(\xi_{s}-x_{s}\right)\right\}\left(\xi_{j+n}-x_{j+n}\right) \\
& -\sum_{j=1}^{n}\left\{\frac{\partial \rho}{\partial x_{j+n}}(\zeta)-\frac{\partial \rho}{\partial x_{j+n}}(z)-\sum_{s=1}^{2 n} \frac{\partial^{2} \rho}{\partial x_{j+n} \partial x_{s}}(z)\left(\xi_{s}-x_{s}\right)\right\}\left(\xi_{j}-x_{j}\right) \\
& +o\left(|\zeta-z|^{2}\right)
\end{aligned}
$$

This proves (i). We set

$$
Q(z, \zeta)=\sum_{j=1}^{2 n} \frac{\partial \rho}{\partial x_{j}}(z)\left(\xi_{j}-x_{j}\right)+\frac{1}{2} \sum_{j, k=1}^{2 n} \frac{\partial^{2} \rho}{\partial x_{j} \partial x_{k}}(z)\left(\xi_{j}-x_{j}\right)\left(\xi_{k}-x_{k}\right)
$$

It follows from Taylor's formula that

$$
\rho(\zeta)-\rho(z)=Q(z, \zeta)+O\left(|\zeta-z|^{3}\right)
$$

This proves (ii). Since

$$
\begin{aligned}
& d_{\zeta} P(z, \zeta) \wedge d_{\zeta} Q(z, \zeta) \\
& =\sum_{j, k=1}^{n}\left(-\frac{\partial \rho}{\partial x_{j+n}}(\zeta) d \xi_{j}+\frac{\partial \rho}{\partial x_{j}}(\zeta) d \xi_{j+n}+O(|\zeta-z|)\right) \\
& \times\left(\frac{\partial \rho}{\partial x_{k}}(\zeta) d \xi_{k}+\frac{\partial \rho}{\partial x_{k+n}}(\zeta) d \xi_{k+n}+O(|\zeta-z|)\right) \\
& =\sum_{j=1}^{n}\left\{\left(\frac{\partial \rho}{\partial x_{j}}(\zeta)\right)^{2}+\left(\frac{\partial \rho}{\partial x_{j+n}}\right)^{2}\right\} d \xi_{j+n} \wedge d \xi_{j}+\cdots
\end{aligned}
$$

we obtain

$$
\left\|d_{\zeta} P(z, \zeta) \wedge d_{\zeta} Q(z, \zeta)\right\| \geq \frac{1}{\sqrt{n}}\|d \rho(\zeta)\|^{2}-C\left(\|d \rho(\zeta)\||\zeta-z|+|\zeta-z|^{2}\right)
$$

This proves (iii). In view of Proposition 1 (i) and (iii), we have for $z \in V_{2} \cap \bar{D}$ and $\zeta \in \partial D$,

$$
\begin{aligned}
|\Phi(z, \zeta)| & \geq C|F(z, \zeta)| \geq C(|\operatorname{Im} F(z, \zeta)|+|\operatorname{Re} F(z, \zeta)|) \\
& \geq C\left(|P(z, \zeta)|+|Q(z, \zeta)|+|\zeta-z|^{2}\right)
\end{aligned}
$$

This proves (iv). Similarly, we can prove (v), (vi) and (vii). Lemma 4 is proved.
Definition 5 For $\xi \in \partial D$ and $\delta>0$, define

$$
\begin{aligned}
T_{\xi} & :=\left\{\zeta \in \mathbf{C}^{n} \left\lvert\, \sum_{j=1}^{n} \frac{\partial \rho(\xi)}{\partial \xi_{j}}\left(\zeta_{j}-\xi_{j}\right)=0\right.\right\}, \\
B(\xi, \delta) & :=\left\{\zeta \in \mathbf{C}^{n}| | \zeta-\xi \mid<\delta\right\}, \\
\widetilde{H}_{\xi}(\delta) & :=B(\xi, \delta) \cap\left\{\zeta \in \mathbf{C}^{n}| | \operatorname{d\rho }(\xi) \mid \operatorname{dist}\left(\zeta, T_{\xi}\right)<\delta^{2}\right\}, \\
H_{\xi}(\delta) & :=\widetilde{H}_{\xi}(\delta) \cap \bar{D} .
\end{aligned}
$$

$H_{\xi}(\delta)$ is called the Hörmander ball of radius δ with center ξ.
Then Henkin-Leiterer (see Lemma 3.6.5 [HER]) proved the following:
Lemma 5 There exists a number $\delta>0$ with the following properties:

$$
\begin{gathered}
\left\|d_{z^{\prime}} \rho(z)\right\|\left|\zeta^{\prime}-z^{\prime}\right| \geq\left|\frac{\partial \rho}{\partial z_{n}}(z) z_{n}\right|, \\
\left\|d_{\zeta^{\prime}} P(z, \zeta) \wedge d_{\zeta^{\prime}} Q(z, \zeta)\right\| \geq \frac{1}{\sqrt{2 n}}\left\|d_{z^{\prime}} \rho(z)\right\|^{2}
\end{gathered}
$$

for all $z \in \partial D \backslash X$ and $\zeta \in H_{z}\left(\delta\left|\frac{\partial \rho}{\partial z_{n}}(z) z_{n}\right|^{1 / 2}\right) \cap V_{2} \cap X$.
Now we shall prove the following:
Lemma 6 For $z \in \partial \Omega \backslash X$ and any positive number ε with $0<\varepsilon<1 / 2$, we have

$$
\int_{X \cap D}\left|K_{i}(z, \zeta)\right||Q(z, \zeta)|^{-\varepsilon} d V_{n-1}(\zeta) \leq C_{\varepsilon}\left|z_{n}\right|^{-2 \varepsilon}
$$

for $i=3,4$.
Proof Using the method of Henkin-Leiterer (Lemma 3.6.6 [HER]), we have

$$
\begin{aligned}
& \int_{\zeta \in M} K_{3}(z, \zeta)|Q(z, \zeta)|^{-\varepsilon} d V_{n-1}(\zeta) \\
& \leq C \int_{\zeta \in M} \frac{\left|z_{n}\right||Q(z, \zeta)|^{-\varepsilon}\left\|d_{\zeta^{\prime}} P(z, \zeta) \wedge d_{\zeta^{\prime}} Q(z, \zeta)\right\|}{\left(|P(z, \zeta)|+|Q(z, \zeta)|+|\zeta-z|^{2}\right)^{3}|\zeta-z|^{2 n-5}} d V_{n-1}(\zeta) \\
& \leq C \int_{|t|<R} \frac{\left|z_{n}\right|\left|t_{1}\right|^{-\varepsilon}}{\left(\left|z_{n}\right|^{2}+\left|t_{1}\right|+\left|t_{2}\right|+|t|^{2}\right)^{3}|t|^{2 n-5}} d t_{1} \cdots d t_{2 n-2},
\end{aligned}
$$

where $t=\left(t_{1}, \cdots, t_{2 n-2}\right)$. We set $t^{\prime}=\left(t_{3}, \cdots, t_{2 n-2}\right)$. Then we obtain for some $R>0$,

$$
\begin{aligned}
& \int_{\zeta \in X \cap D} K_{3}(z, \zeta)|Q(z, \zeta)|^{-\varepsilon} d V_{n-1}(\zeta) \\
& \leq C \int_{|t|<R} \frac{\left|z_{n}\right|\left|t_{1}\right|^{-\varepsilon}}{\left(\left|z_{n}\right|^{2}+\left|t_{1}\right|+\left|t_{2}\right|+\left|t^{\prime}\right|^{2}\right)^{3}\left|t^{\prime}\right|^{2 n-5}} d t_{1} \cdots d t_{2 n-2} \\
& \leq C \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \frac{\left|z_{n}\right| t_{1}^{-\varepsilon}}{\left(\left|z_{n}\right|^{2}+t_{1}+t_{2}+r^{2}\right)^{3}} d t_{1} d t_{2} d r \\
& \leq C \int_{0}^{R} \int_{0}^{R} \frac{\left|z_{n}\right| t_{1}^{-\varepsilon}}{\left(\left|z_{n}\right|^{2}+t_{1}+r^{2}\right)^{2}} d t_{1} d r \\
& \leq C\left|z_{n}\right|^{-2 \varepsilon} \int_{0}^{\infty} \int_{0}^{\infty} \frac{u^{1-2 \varepsilon}}{\left(1+u^{2}+v^{2}\right)^{2}} d u d v \\
& \leq C_{\varepsilon}\left|z_{n}\right|^{-2 \varepsilon} .
\end{aligned}
$$

We write

$$
H_{z}:=H_{z}\left(\delta\left|\frac{\partial \rho(z)}{\partial z_{n}}(z) z_{n}\right|^{\frac{1}{2}}\right)
$$

and

$$
\alpha=\left|\frac{\partial \rho}{\partial z_{n}}(z)\right|\left|z_{n}\right| .
$$

Then we have

$$
\begin{aligned}
& \int_{\zeta \in(X \cap D) \backslash H_{z}}|Q(z, \zeta)|^{-\varepsilon} K_{4}(z, \zeta) d V_{n-1}(\zeta) \\
& \leq \int_{\zeta \in(X \cap D) \backslash H_{z}} \frac{\alpha|Q(z, \zeta)|^{-\varepsilon}| | d_{\zeta^{\prime}} Q(z, \zeta) \|}{\left(\alpha+|Q(z, \zeta)|+|\zeta-z|^{2}\right)^{3}|\zeta-z|^{2 n-5}} d V_{n-1}(\zeta) \\
& \leq C \int_{|t|<R} \frac{\alpha\left|t_{1}\right|^{-\varepsilon}}{\left(\alpha+\left|z_{n}\right|^{2}+\left|t_{1}\right|+\left|t^{\prime}\right|^{2}\right)^{3}\left|t^{\prime}\right|^{2 n-5}} d t_{1} \cdots d t_{2 n-2} \\
& \leq C \int_{0}^{R} \frac{\alpha t_{1}^{-\varepsilon}}{\left(\alpha+\left|z_{n}\right|^{2}+t_{1}\right)^{2}} d t_{1} \\
& \leq C\left|z_{n}\right|^{-2 \varepsilon} \int_{0}^{\infty} \frac{x^{-\varepsilon}}{(1+x)^{2}} d x \leq C_{\varepsilon}\left|z_{n}\right|^{-2 \varepsilon}
\end{aligned}
$$

On the other hand we set

$$
J(z)=\int_{\zeta \in H_{z} \cap(X \cap D)}|Q(z, \zeta)|^{-\varepsilon} K_{4}(z, \zeta) d V_{n-1}(\zeta)
$$

and

$$
\beta=\frac{\alpha}{\left\|d_{z^{\prime}} \rho(z)\right\|}
$$

Then we obtain

$$
\begin{aligned}
& \left\|d_{z^{\prime}} \rho(z)\right\| J(z) \\
& \leq C \int_{\zeta \in H_{z} \cap(X \cap D)} \frac{\left\|d_{\zeta^{\prime}} P(z, \zeta) \wedge d_{\zeta^{\prime}} Q(z, \zeta)\right\| \alpha|Q(z, \zeta)|^{-\varepsilon}}{\left(\beta^{2}+\left|z_{n}\right|^{2}+|P|+|Q|+|\zeta-z|^{2}\right)^{3}|\zeta-z|^{2 n-5}} d V_{n-1}(\zeta)
\end{aligned}
$$

We set $b=\sqrt{\beta^{2}+\left|z_{n}\right|^{2}}$. Then we have

$$
\begin{aligned}
\left\|d_{z^{\prime}} \rho(z)\right\| J(z) & \leq C \int_{|t|<R} \frac{\alpha\left|t_{1}\right|^{-\varepsilon}}{\left(b^{2}+\left|t_{1}\right|+\left|t_{2}\right|+\left|t^{\prime}\right|^{2}\right)^{3}\left|t^{\prime}\right|^{2 n-5}} d t_{1} \cdots d t_{2 n-2} \\
& \leq C \int_{0}^{R} d t_{1} \int_{0}^{R} \frac{\alpha t_{1}^{-\varepsilon}}{\left(b^{2}+t_{1}+r^{2}\right)^{2}} d r \\
& \leq C \int_{0}^{R^{2}} d y \int_{0}^{R} \frac{\alpha y^{1-2 \varepsilon}}{\left(b^{2}+y^{2}+r^{2}\right)^{2}} d r \\
& \leq C_{\varepsilon} \int_{0}^{\infty} \frac{\alpha b^{-1-2 \varepsilon} x^{2-2 \varepsilon}}{\left(1+x^{2}\right)^{2}} d x \\
& \leq C_{\varepsilon}\left|z_{n}\right|^{-2 \varepsilon}\left\|d_{z^{\prime}} \rho(z)\right\|
\end{aligned}
$$

Lemma 6 is proved.
Lemma 7 For $\zeta \in X \cap D, 0<\varepsilon<1 / 2$ and $i=3,4$, there exists a positive constant C_{ε} which depends only on ε such that

$$
\int_{S^{r e g}}\left|K_{i}(z, \zeta)\right|\left|z_{n}\right|^{-2 \varepsilon} d \sigma(z) \leq C_{\varepsilon}|\rho(\zeta)|^{-\varepsilon}
$$

Proof We set

$$
K_{5}(z, \zeta)=\frac{\|d \rho(z)\|^{2}\left|z_{n}\right|}{|\widetilde{\Phi}(z, \zeta)|^{2}\left|\Phi^{*}(z, \zeta)\right||\zeta-z|^{2 n-5}}
$$

Since $\left\|d_{z^{\prime}} \rho(z)\right\| \leq\|d \rho(z)\|$ and $\left|\frac{\partial \rho}{\partial z_{n}}(z)\right| \leq\|d \rho(z)\|$, it is sufficient to show that

$$
\int_{S^{r e g}}\left|K_{5}(z, \zeta)\right|\left|z_{n}\right|^{-2 \varepsilon} d \sigma(z) \leq C_{\varepsilon}|\rho(\zeta)|^{-\varepsilon}
$$

We set

$$
L_{1}(\zeta)=\int_{z \in S^{r e s} \cap E_{\gamma}(\zeta)}\left|K_{5}(z, \zeta)\right|\left|z_{n}\right|^{-2 \varepsilon} d \sigma(z)
$$

and

$$
L_{2}(\zeta)=\int_{z \in S^{r e g} \backslash E_{\gamma}(\zeta)}\left|K_{5}(z, \zeta)\right|\left|z_{n}\right|^{-2 \varepsilon} d \sigma(z)
$$

Then we obtain by Lemma 2,

$$
\begin{aligned}
L_{1}(\zeta) & \leq C \int_{|t|<R} \frac{d t_{1} \cdots d t_{2 n-1}}{\left(\left|z_{n}\right|^{2}+|\rho(\zeta)|+\left|t_{1}\right|+\left|t^{\prime}\right|^{2}\right)^{\frac{5}{2}+\varepsilon}\left|t^{\prime}\right|^{2 n-5}} \\
& \leq C \int_{0}^{R} \frac{r^{2}}{\left(|\rho(\zeta)|+r^{2}\right)^{\frac{3}{2}+\varepsilon}} d r \\
& \leq C|\rho(\zeta)|^{-\varepsilon} \int_{0}^{\infty} \frac{y^{2}}{\left(1+y^{2}\right)^{\frac{3}{2}+\varepsilon}} d y \\
& \leq C_{\varepsilon}|\rho(\zeta)|^{-\varepsilon} .
\end{aligned}
$$

Similarly, we have $L_{2}(\zeta) \leq C_{\varepsilon}|\rho(\zeta)|^{-\varepsilon}$, which completes the proof of Lemma 7.
Using the same technique as in the proof in Adachi [AD2], we obtain the following lemma. We omit the proof.

Lemma 8 Let D be a strictly pseudoconvex domain in \mathbb{C}^{n} (with not necessarily smooth boundary). Let f be an $L^{p}(1 \leq p<\infty)$ holomorphic function in D and let φ be a C^{∞} function in \mathbb{C}^{n}. Then

$$
L_{D}(\varphi f)(z)=\frac{n!}{(2 \pi i)^{n}} \int_{D} f(\zeta) \varphi(\zeta) \stackrel{n}{j=1}_{n}^{n} d_{\zeta}\left(\frac{\chi(\zeta) w_{j}(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right) \wedge \omega(\zeta)
$$

is an L^{p} holomorphic function in D.

3 Proof of Theorem 1

By Lemma 8 and the proof of Theorem 4.11.1 in Henkin-Leiterer [HER], we may assume that $X=\left\{z \in \mathbb{C}^{n} \mid z_{n}=0\right\}$. Let q be a positive number such that $1 / p+1 / q=1$. We choose $\varepsilon>0$ such that $\max \{\varepsilon p, \varepsilon q\}<1 / 2$. From now on we denote by C_{ε} any positive constans which depends only on ε. It is sufficient to show that

$$
\int_{S^{r e g}}\left|E_{i} f(z)\right|^{p} d \sigma(z) \leq C_{\varepsilon} \int_{X \cap D}|f(\zeta)|^{p} d V_{n-1}(\zeta)
$$

for $i=3,4$. By Lemma 6 and Hölder's inequality, we obtain for $i=3,4$,

$$
\begin{aligned}
\left|E_{i} f(z)\right| \leq & \int_{X \cap D}|f(\zeta)|\left|K_{i}(z, \zeta)\right||Q(z, \zeta)|^{\varepsilon}|Q(z, \zeta)|^{-\varepsilon} d V_{n-1}(\zeta) \\
\leq & \left(\int_{X \cap D}|f(\zeta)|^{p}\left|K_{i}(z, \zeta)\right||Q(z, \zeta)|^{\varepsilon p} d V_{n-1}(\zeta)\right)^{\frac{1}{p}} \times \\
& \left(\int_{X \cap D}\left|K_{i}(z, \zeta)\right||Q(z, \zeta)|^{-\varepsilon q} d V_{n-1}(\zeta)\right)^{\frac{1}{q}} \\
\leq & C_{\varepsilon}\left|z_{n}\right|^{-2 \varepsilon}\left(\int_{X \cap D}|f(\zeta)|^{p}\left|K_{i}(z, \zeta) \| Q(z, \zeta)\right|^{\varepsilon p} d V_{n-1}(\zeta)\right)^{\frac{1}{p}}
\end{aligned}
$$

Consequently,

$$
\left|E_{i} f(z)\right|^{p} \leq C_{\varepsilon}\left|z_{n}\right|^{-2 \varepsilon p}\left(\int_{X \cap D}|f(\zeta)|^{p}|K(z, \zeta)||Q(z, \zeta)|^{\varepsilon p} d V_{n-1}(\zeta)\right)
$$

Using Fubini's theorem, Lemma 4(ii) and Lemma 7, we have

$$
\begin{aligned}
& \int_{S^{r e g}}|E f(z)|^{p} d \sigma(z) \\
& \leq C_{\varepsilon} \int_{X \cap D}|f(\zeta)|^{p}\left\{\int_{\text {S }^{\text {reg }}}\left|z_{n}\right|^{-2 \varepsilon p}\left|K_{i}(z, \zeta)\right||Q(z, \zeta)|^{\varepsilon p} d \sigma(z)\right\} d V_{n-1}(\zeta) \\
& \leq C_{\varepsilon} \int_{X \cap D}|f(\zeta)|^{p}\left\{\int_{S^{r e g}}\left|z_{n}\right|^{-2 \varepsilon p}\left|K_{i}(z, \zeta)\right||\rho(\zeta)|^{\varepsilon p} d \sigma(z)\right\} d V_{n-1}(\zeta) \\
& +C_{\varepsilon} \int_{X \cap D}|f(\zeta)|^{p}\left\{\int_{S^{\text {reg }}}\left|z_{n}\right|^{-2 \varepsilon p}\left|K_{i}(z, \zeta)\right||z-\zeta|^{3 \varepsilon p} d \sigma(z)\right\} d V_{n-1}(\zeta) \\
& \leq C_{\varepsilon} \int_{X \cap D}|f(\zeta)|^{p} d V_{n-1}(\zeta) \\
& +C_{\varepsilon} \int_{X \cap D}|f(\zeta)|^{p}\left\{\int_{S^{\text {reg }}}\left|z_{n}\right|^{-2 \varepsilon p}\left|K_{i}(z, \zeta)\right||z-\zeta|^{3 \varepsilon p} d \sigma(z)\right\} d V_{n-1}(\zeta)
\end{aligned}
$$

We set

$$
T_{i}(\zeta)=\int_{S^{r e g}}\left|z_{n}\right|^{-2 \varepsilon p}\left|K_{i}(z, \zeta) \| z-\zeta\right|^{3 \varepsilon p} d \sigma(z)
$$

In order to prove the inequality $\left|T_{i}(\zeta)\right| \leq C_{\varepsilon}$, it is sufficient to show that

$$
T(\zeta):=\int_{S^{r e g}} \frac{\left|z_{n}\right|^{1-2 \varepsilon p}\|d \rho(z)\|^{2}|\zeta-z|^{3 \varepsilon p}}{|\widetilde{\Phi}|^{2}\left|\Phi^{*}\right||\zeta-z|^{2 n-5}} d \sigma(z) \leq C_{\varepsilon}
$$

Then we have

$$
\begin{aligned}
I_{1}(\zeta)= & \int_{z \in E_{\gamma}(\zeta) \cap S^{r e g}} \frac{\left|z_{n}\right|^{1-2 \varepsilon p}\|d \rho(z)\|^{2}|\zeta-z|^{3 \varepsilon p}}{|\widetilde{\Phi}|^{2}\left|\Phi^{*}\right||\zeta-z|^{2 n-5}} d \sigma(z) \\
& +\int_{z \notin E_{\gamma}(\zeta) \cap S^{r e g}} \frac{\left|z_{n}\right|^{1-2 \varepsilon p}\|d \rho(z)\|^{2}|\zeta-z|^{3 \varepsilon p}}{|\widetilde{\Phi}|^{2}\left|\Phi^{*}\right||\zeta-z|^{2 n-5}} d \sigma(z) \\
= & I_{11}(\zeta)+I_{12}(\zeta) .
\end{aligned}
$$

In view of Lemma 2, we have by setting $t^{\prime}=\left(t_{2}, \cdots, t_{2 n-1}\right)$

$$
I_{11}(\zeta) \leq C \int_{|t|<R} \frac{d t_{1} \cdots d t_{2 n-1}}{\left(|\rho(\zeta)|+\left|t_{1}\right|+\left|t^{\prime}\right|^{2}\right)^{\varepsilon p+(5 / 2)}\left|t^{\prime}\right|^{2 n-5-3 \varepsilon p}}
$$

Using the polar coordinate change, we obtain

$$
I_{11}(\zeta) \leq C \int_{0}^{R} \frac{r^{2+3 \varepsilon p}}{\left(|\rho(\zeta)|+r^{2}\right)^{\varepsilon p+(3 / 2)}} d r
$$

We set $\sqrt{|\rho(\zeta)|} y=r$. Then we obtain

$$
I_{11}(\zeta) \leq C|\rho(\zeta)|^{\varepsilon p / 2} \int_{0}^{\frac{R}{\sqrt{|\rho(\zeta)|}}} \frac{y^{2+3 \varepsilon p}}{\left(1+y^{2}\right)^{\varepsilon p+(3 / 2)}} d y \leq C_{\varepsilon}
$$

Similarly, we obtain

$$
\begin{aligned}
I_{12}(z) & \leq \int_{z \notin E_{\gamma}(\zeta) \cap S^{r e g}} \frac{\left|z_{n}\right|^{1-2 \varepsilon p}|\zeta-z|^{2+3 \varepsilon p}}{|\widetilde{\Phi}|^{2}\left|\Phi^{*}\right| \zeta-\left.z\right|^{2 n-5}} d \sigma(z) \\
& \leq \int_{z \notin E_{\gamma}(\zeta) \cap S^{r e g}} \frac{d \sigma(z)}{|\zeta-z|^{2 n-2-\varepsilon p}} \leq C_{\varepsilon}
\end{aligned}
$$

Therefore, Theorem 1 is proved.
Remark 2 If D is a strictly pseudoconvex domain with C^{∞} boundary and if X intersects ∂D transversally, Adachi [AD1] and Elgueta [ELG] proved that for any holomorphic function f in $X \cap D$ that is of class C^{∞} on $\overline{X \cap D}$ there exists a holomorphic function g in D that is of class C^{∞} on \bar{D} such that $f=g$ on $X \cap D$. In case D is a strictly pseudoconvex domain with non-smooth boundary, the C^{∞} extension problem is still open.

References

[AD1] K. Adachi, Continuation of A^{∞}-functions from submanifolds to strictly pseudoconvex domains, J. Math. Soc. Japan, 32(1980)., pp. 331-341.
[AD2] K. Adachi, sL ${ }^{p}$ extension of holomorphic functions from submanifolds to strictly pseudoconvex domains with nonsmooth boundary, Nagoya Math. J., 172(2003), pp. 103110.
[BEA] F. Beatrous, L^{p} estimates for extensions of holomorphic functions, Michigan Math. J., 32(1985), pp. 361-380.
[CUM] A. Cumenge, Extension dans des classes de Hardy de fonctions holomorphes et estimation de type "measures de Carleson" pour l'equation ∂, Ann. Inst. Fourier, 33(1983), pp. 59-97.
[ELG] M. Elgueta, Extensions to strictly pseudoconvex domains of functions holomorphic
 (1980), pp. 1-17.
[HEN] G.M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position in a strictly pseudoconvex domain, Math. USSR Izv., 6(1972), pp. 536563.
[HER] G.M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Birkhäuser, 1984.
[SCH] G. Schmalz, Solution of the $\bar{\partial}$-equation with uniform estimates on strictly q-convex domains with non-smooth boundary, Math. Z., 202(1989), pp. 409-430.

