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ABSTRACT 41 

It is essential to continue the search for novel antimalarial drugs due to current spread of 42 

resistance against artemisinin by Plasmodium falciparum parasites. In this study, we developed 43 

in silico models to predict hemozoin inhibitors as a potential first-step screening for novel 44 

antimalarials. The in vitro colorimetric high throughput screening assay of hemozoin formation 45 

was used to identify hemozoin inhibitors from 9600 structurally diverse compounds. 46 

Physicochemical properties of positive hits and randomly selected compounds were extracted 47 

from ChemSpider database; they were used for developing prediction models to predict 48 

hemozoin inhibitors using two different approaches, i.e. traditional multivariate logistic 49 

regression, and Bayesian Modeling Average. Our results showed that a total of 224 positive hits 50 

exhibited the ability to inhibit the hemozoin formation with IC50 ranging from 3.1 µM to 199.5 51 

µM. The “best” model according to traditional multivariate logistic regression included three 52 

variables: octanol-water partition coefficient, number of hydrogen bond donors, and number of 53 

atoms of hydrogen. Whereas, the “best” model according to Bayesian Modeling Average was 54 

octanol-water partition coefficient, number of hydrogen bond donors, and index of refraction. 55 

Both models had a good discriminatory power with the area under curve values were 0.736, and 56 

0.781 for the traditional multivariate model, and the Bayesian Modeling Average model 57 

respectively. In conclusion, the prediction models can be a new, useful and cost-effective 58 

approach for the first screen of hemozoin inhibition based antimalarial drug discovery.  59 

 60 
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Hemozoin is a crystalline pigment product, which is synthesized by hemoparasites 62 

including Plasmodium species from the hemoglobin degradation process (1). Hemozoin 63 

formation is an adaptation of the parasite to be protected against toxic heme (2), which is 64 

released as a byproduct of hemoglobin degradation in the Plasmodium food vacuole. Within the 65 

infected red blood cells, the parasites digest hemoglobin as a main source of amino-acids for 66 

their growth and development (3). Due to the toxic effect of the released heme (4), it is 67 

imperative for Plasmodium to evolve an effective heme homeostasis mechanism, one of which is 68 

hemozoin formation (5). 69 

      The rapid spread of resistance to artemisinin-based combination therapies by P. 70 

falciparum parasites has been identified as a major global challenge in the fight against malaria 71 

(6, 7). Although the development of an effective malaria vaccine is the most effective control 72 

measure, there is still no available vaccine for preventing this disease (8). To date, only one 73 

malaria vaccine candidate has reached phase III clinical trials (9). It is essential to continue the 74 

search for novel antimalarial drugs, especially for malaria endemic countries. An ideal target is 75 

the blocking of the heme detoxification pathway of the parasite (10-13). Indeed, this mechanism 76 

is also one of the main targets of current antimalarial drugs like quinine, and has been the major 77 

target of several antimalarial screening projects. Unlike chloroquine resistance, resulting from 78 

mutation of membrane transport protein that effluxes chloroquine out of the food vacuole (1), 79 

quinine, although the reduced efficacy has been noticed recently, it still has strong antimalarial 80 

activity against chloroquine-resistant strains (14). This makes hemozoin inhibition a good target 81 

for novel antimalarial drug development. 82 

Hemozoin formation is a physiochemical process that occurs in the presence of parasite 83 

proteins (15-18) and/or lipids (19, 20). Recently, the commercial lipophilic detergents including 84 
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Tween 20 and Nonidet P-40 (NP-40) have been identified as a surrogate substance to promote 85 

crystallization of heme under relevant conditions (21, 22). This artificial system is amenable for 86 

high-throughput hemozoin inhibition assays for screening novel antimalarials (23). However, it 87 

is still time consuming and requires expensive and specialized instruments and a laborious 88 

preparation. Therefore, the execution of in silico models or other machine learning models as 89 

Bayesian modelling are ideal for screening millions of chemical compounds to prioritize 90 

compounds for high-throughput screening (HTS) leading to valuable hit rates with fewer test 91 

compounds. Recently, Wicht et al showed that Bayesian models can be effective tools to predict 92 

hemozoin  inhibitor compounds with high enrichment rates in comparison to conventional 93 

random screening (24). Making in silico models is not only valuable for future HTS, but it is also 94 

a good way to drive benefit from all available data, even inactives, from preceding screens. In 95 

this study, we developed a model to predict hemozoin inhibitors using physicochemical 96 

properties of chemical compounds. 97 

 98 

MATERIALS AND METHODS 99 

Materials. Hemin chloride (heme) and quinine were purchased from Sigma. “Core 100 

Library”, which contains 9600 structurally diverse compounds, was from the Open Innovation 101 

Center for Drug Discovery, University of Tokyo (Tokyo, Japan). Detergent NP-40 served as a 102 

mediator for β-hematin formation due to its stability, low cost and low IC50 value, beside its 103 

similarity to the natural lipid particles of the parasite’s vacuole (21, 25). Dimethyl sulfoxide 104 

(DMSO), from Wako Pure Chemicals, Osaka, Japan, was chosen as negative control because of 105 

its proven inability to inhibit the heme crystallization reaction (26).  106 
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High-throughput screening using anti-hemozoin assay. The assay was performed in a 107 

384-well plate using quinine and DMSO as positive and negative controls, respectively (21, 27). 108 

Quinine and candidate compounds were dissolved in DMSO to achieve a final concentration of 109 

220 µM. Using an automated dispenser (Multi-Dispensor EDR 384, BioTec, Japan), 5 µl of each 110 

compound was transferred to each well of the assay plates (see Fig. S1 in the supplemental 111 

material at https://www.researchgate.net/publication/309208397_Supplemental_material_Hig). 112 

Following the transfer of compounds, a Multidrop Combi dispenser (Thermo Fisher Scientific) 113 

was used to distribute 20 µl of hemin solution (10 mM heme in DMSO and 100 mM acetate 114 

buffer, pH = 4.8), as well as 10 µl of detergent NP-40 into each well of the plates. The assay 115 

mixture was incubated at 37°C for 250 minutes (25). Afterwards, pyridine solution was added to 116 

the mixture and shaken for 10 min. To dissolve the bubble, 10 µl acetone was added to each 117 

wells and the plate was finally transferred into a multi-plate reader to detect non-crystallized 118 

heme using the colorimetric method at 405/705 nm (27, 28). 119 

Anti-hemozoin dose-response assay. Active compounds identified by the previously 120 

described high-throughput screening using anti-hemozoin assay were tested in dose-response 121 

assays. Quinine was also used as a positive control in each assay plate. Each compound’s 122 

concentrations ranging from 0 µM to 208 µM were retested with the hemozoin inhibition assay 123 

in 384-well plates. The absorbance values of each compound measured at 405/750 nm were 124 

dependent on the difference in concentration of the compound. Data was analyzed to determine 125 

the half maximal inhibitory concentration (IC50) for each compound, relying on a sigmoid dose-126 

response curve fitted by GraphPad Prism software, version 5.00 (28). 127 

Physicochemical properties of positive hits and representative sample of negative 128 

compounds. The average mass, octanol-water partition coefficient (Log P), distribution 129 
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coefficient (Log D), bio-concentration factor (BCF), adsorption coefficient (KOC), number of 130 

rule of five violations, number of hydrogen bond acceptors, number of hydrogen bond donors, 131 

freely rotating bonds, polar surface area, index of refraction, molar refractivity, molar volume, 132 

polarizability, flash point, boiling point, enthalpy of vaporization and number of atoms of 133 

chemical elements (such as bromine, carbon, chlorine, fluorine, hydrogen, nitrogen, oxygen and 134 

sulfur) of each of the positive hits and a sample of negative compounds were retrieved from 135 

ChemSpider (www.chemspider.com), as predicted by Advanced Chemistry Development 136 

(ACD/Laboratories) software (29). 137 

Statistical Analysis. (i) Missing data analysis. We used complete case analysis, which 138 

delete compounds/ cases with missing data (i.e. physicochemical properties of a compound) so 139 

only complete compounds/ cases are left. The missing rates were variable from property to 140 

another. Therefore, they ranged from 0.2% to 3.5% of the compounds due to lack one of these 141 

physicochemical properties. 142 

(ii) Univariate and Multivariate logistic regression. The outcome variable was the 143 

ability to inhibit the hemozoin formation of a compound, including two values: 1 if the 144 

compound can inhibit the hemozoin formation (exhibiting a typical sigmoid dose-response curve 145 

with IC50 < 200 µM), whereas 0 if the compound cannot. The predictor variables were 146 

physicochemical properties of a compound. 147 

First of all, we performed univariate logistic regression to examine the association 148 

between physicochemical properties and the ability to inhibit hemozoin formation. Secondly, 149 

variables with p-values < 0.1 were submitted to multivariate analysis to find the independent 150 

predictors of inhibition of hemozoin formation. A significant level was set at P value < 0.05 in 151 

the multivariate regression. 152 
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(iii) Development and validation of the prediction models. The development and 153 

validation of the prediction models consist of following steps: (1) The original data was 154 

randomly divided into training and testing sets with the ratio 70:30 respectively. (2) The training 155 

data set was constructed to develop prediction models, using two approaches:  one used the 156 

traditional approach, in which the univariate logistic regression was followed by the multivariate 157 

regression as described above; and another one used the Bayesian Modeling Averaging (BMA) 158 

approach to select the best prediction models. (3) The discriminatory powers of the best 159 

prediction models obtained from different approaches were compared on the basis of the area 160 

under the curve (AUC) from the receiver operating characteristic (ROC), and accuracy (30). 161 

Basically, the purpose of BMA method is to search for the most parsimonious model (i.e., 162 

a model with the minimum number of explanatory variables and the maximum discriminatory 163 

power) (31). In brief, there are 2k possible models (not including interaction models) can be 164 

constructed if there are k explanatory variables. Among 2k models, the best models are suggested 165 

based on the Bayesian information criterion (BIC), in which a smaller BIC value indicates a 166 

better model. Therefore, unlike the tradition approach mentioned above, the BMA considers the 167 

“uncertainty” in the model selection process. Recently, BMA has been receiving more attention 168 

in prognosis model studies (32-34). All analyses were performed using R software version 3.2.2 169 

(The R Foundation for Statistical Computing). 170 

 171 

 172 

RESULTS 173 

High-throughput screening (HTS) using the heme crystallization assay. Pyridine 174 

molecules formed coordinate bonds to free irons of non-crystallized heme molecules, and 175 
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produced a pyridine-heme complex with strong absorption at 405 nm (27). Robustness and 176 

reproducibility of the assay were improved by optimizing the concentration and volume of 177 

compounds, hemin, and detergent solutions. As a result, Z factors of all plates were higher than 178 

0.5, which is an essential minimum value for validation of HTS assays. In other words, high 179 

degree of reproducibility and a large dynamic range were achieved for the assay (27). 180 

A total of 9600 diversely selected compounds (the “core library”), were assigned 181 

randomly from more than 200,000 compounds in the chemical library of The Drug Discovery 182 

Initiative, Tokyo University (http://www.ddi.u-tokyo.ac.jp/en/#5), was used in HTS assay. 183 

Active compounds were identified as compounds with absorbance above three standard 184 

deviations of DMSO negative control. The absorbance values were described on 384-wells plate 185 

heat maps (see Fig. S1 in the supplemental material at 186 

https://www.researchgate.net/publication/309208397_Supplemental_material_Hig).  Evident red 187 

color on plate heat maps represented correlative compounds, which were likely to strongly 188 

inhibit the crystallization of free heme. In total, 394 active compounds (4.1 % of 9,600 screened 189 

compounds) were identified by high throughput screening assay. 190 

Dose-response assay for positive compounds. The 394 active compounds, resulting 191 

from HTS assay, were subsequently tested in dose-response assays to exclude false positives and 192 

to determine the half maximal inhibitory concentrations (IC50). A positive hit was identified as 193 

an active compound exhibiting a typical sigmoid dose-response curve (see Fig. S2 in the 194 

supplemental material at 195 

https://www.researchgate.net/publication/309208397_Supplemental_material_Hig). False 196 

positives in which absorbance values could not generate typical sigmoid dose-response curves 197 

are likely due to compounds’ colors or compounds aggregation. 198 
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Finally, 224 compounds out of 394 active compounds were shown to have positive hits 199 

(Fig. 1). Therefore, among 9,600 tested chemical compounds, both high throughput screening 200 

and dose-response assays identified 224 positive hits (resulting in a hit rate of 2.34%). Positive 201 

hits exhibited IC50s from 3.1 µM to 199.5 µM, while 9 out of 224 positive hits exhibited IC50s 202 

less than 5 µM. 203 

Development of prediction models. The physical and chemical properties of all 224 204 

positive hits as well as 199 negative compounds that were randomly selected from the original 205 

9,600 compounds of the “core library” without anti-hemozoin activity, were extracted (Fig. 2). 206 

Then, 70% of the data (n=285, complete case analysis) was used to develop the “best” models 207 

using different approaches: traditional method (i.e. the univariate logistic regression was 208 

followed by the multivariate regression) and BMA method.   209 

In traditional approach: Log P, KOC (pH 5.5 and pH 7.4), Log D (pH 5.5 and pH 7.4), 210 

index of refraction, molar refractivity, number of hydrogen bond donors, number of freely 211 

rotating bond donors, number of rule of five violations, density, surface tension, and number of 212 

atoms of hydrogen, oxygen, and nitrogen yielded p-values < 0.1 by univariate logistic regression 213 

analysis. The multivariate logistic regression of these properties showed that ability of positive 214 

hits to inhibit hemozoin formation was significantly correlated with Log P, number of hydrogen 215 

bond donors, and number of atoms of hydrogen with p -values < 0.05 (Table 1). The equation of 216 

the best multivariate model is represented as: 217 

ሻݕݐ݈ܾܾ݅݅ܽ݋ݎሺܲ ݐ݅݃݋ܮ = −0.739 + 0.671 ∗ ܲ ݃݋ܮ + 0.484 ∗ ଵܰ −  0.099 ∗ ଶܰ 
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Where Probability represents the probability of anti-hemozoin activity of particular 218 

compound, while N1 and N2 stand for the number of hydrogen bond donors, and the number of 219 

atoms of hydrogen respectively. 220 

In BMA approach: firstly, all variables yielded P-values < 0.1 by univariate logistic 221 

regression were submitted to BMA. Later, the BMA process suggested the five most 222 

parsimonious models on the basis of BIC values (Table 2). Among them, the “best” model 223 

included variables: Log P, number of hydrogen bond donors, and index of refraction which 224 

resulted the smallest BIC value. The equation of the best BMA model is represented as: 225 

ሻݕݐ݈ܾܾ݅݅ܽ݋ݎሺܲ ݐ݅݃݋ܮ = −23.62 +  0.592 ∗ ܲ ݃݋ܮ + 0.351 ∗ ଵܰ +  1.322 ∗ ଷܰ 

Where N1 and N3 stand for the number of hydrogen bond donors, and the index of 226 

refraction respectively. 227 

Validation of prediction models. After we successfully developed the two “best” 228 

models (i.e. multivariate model and BMA model), they were validated using the 30% remains of 229 

the data (n=121). Figure 3 shows the AUC (left panel) and the accuracy (right panel) of these 230 

“best” models, which indicated that, the discriminatory power of the BMA model is better than 231 

that of the multivariate model. The AUC, however, were 0.736, and 0.781 for the multivariate 232 

model, and the BMA model respectively, it implies that both models have a good discriminatory 233 

power. 234 

 The multivariate model with a cut-off of 0.536 resulted an optimal sensitivity, specificity, 235 

and maximum accuracy at 65.6%, 77.2%, and 71.1% respectively. Whereas, the BMA model 236 

with a cut-off of 0.465 resulted an optimal sensitivity, specificity, and maximum accuracy at 237 

79.7%, 66.7%, and 73.5% respectively. 238 
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DISCUSSION 239 

The inhibition of hemozoin formation, proposed as the major mechanism of current 240 

antimalarials such as quinine and chloroquine (35), was the foundation of the research on novel 241 

antimalarials via high throughput screening assay. A total of 224 positive hits out of 9,600 242 

library compounds exhibited the ability to inhibit the hemozoin formation with IC50s ranging 243 

from 3.1 µM to 199.5 µM. Analysis of the physical and chemical properties of these positive hits 244 

showed positive correlation between Log P, index of refraction, number of hydrogen bond 245 

donors and capability to inhibit the hemozoin formation (Table 2). 246 

 The 2.34% hit rate fulfilled in our study is considerably higher than 0.42% in previous 247 

research by Sandlin et al (21). Compound concentration used in our assays was 220 µM, which 248 

is higher than concentrations in assays of Sandlin et al. Besides, 9600 compounds, used in this 249 

study that were assigned as a core chemical library with varieties of structural from more than 250 

200,000 compounds, could be completely different from 38,400 compounds used in Sandlin et al 251 

or 5,000 compounds used in Wicht et al  (24). Consequently, the difference in hit rates is likely 252 

due to the difference in the tested compound concentrations.   The main advantage of our study 253 

over that was done by Wicht et al is that our study used two models, multivariate logistic 254 

regression and BMA, rather than BMA alone.  255 

Octanol–water partition coefficient (Log P) of a compound expresses the tendency of a 256 

compound to partition between lipophilic phase and aqueous phase known as lipophilicity (36). 257 

Capability of compounds for hemozoin forming inhibition is probably related to compounds’ 258 

lipophilicity as there is a very strong evidence supporting the lipid mediated formation theory of 259 

hemozoin (37-39). On examining the trophozoite stage of RBCs infected with Plasmodium 260 

falciparum by electron microscopy, Pisciotta et al found nanosphere lipid droplets containing 261 
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hemozoin crystals (40). Crystallization of β-haematin usually occur in a hydrophobic 262 

environment that is preferred for hydrogen bonds between the hydrophilic ferriprotoporphyrin 263 

IX’s (Fe(III)PPIX) propionate linkage to be formed (41, 42). All these causes make the 264 

lipophilicity an important property of a compound enabling it to inhibit β-haematin or hemozoin 265 

formation. On cellular bases, lipophilic compounds can permeate through the lipid bilayer 266 

membrane of the food vacuole of P. falciparum, therefore can easily reach hemozoin crystals.  267 

The index of refraction, also known as refractive index, is an optical property defined as 268 

the difference of velocity of light between the vacuum and the medium in which it propagates. In 269 

the Lorentz-Lorenz equation, refractive index is estimated using molar refraction, which is a sum 270 

of contributions of corresponding atoms and bonds (43). Hence, index of refraction related to 271 

polarizability, purity, density of organic compounds is applied to evaluate characteristics of the 272 

material (44). Moreover, presence and quantity of some heavy atoms and functional groups with 273 

high refractive index, such as sulfur (45), halogen elements (especially, bromine and iodine) (46), 274 

and phosphorus (47), play an important role in increasing the molar refraction. Therefore, 275 

presence of heavy atoms increases the index of refraction. However, our models could not detect 276 

an association of anti-hemozoin with any specific heavy atom, probably due to small sample size 277 

of each atom. Nevertheless, we were not able to find any research on the relationship between 278 

compound refractive indices and anti-hemozoin effect. Therefore, compounds with high 279 

refractive indices can be an interesting topic for antimalarial studies in the future. 280 

The number of hydrogen bond donors plays an important role in β-hematin or haemozoin 281 

crystal inhibition through intramolecular formation of hydrogen bonds between neighboring 282 

complexes in the crystal (48). For instance, hydrogen bond donors of known antimalarial drugs, 283 

such as halofantrine and quinoline, form hydrogen bond bridge with β-hematin in parasite food 284 
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vacuoles (48, 49). Thus, these antimalarials are likely to inhibit hemozoin formation via 285 

hydrogen bond conformation (49). In summary, the number of hydrogen bond donors of 286 

compound candidates, positively related to anti-hemozoin capability of compounds, should be 287 

considered, on cellular base, for evaluation of various compounds’ permeability and absorption 288 

based on Lipinski’s rule (50). 289 

In this study, we proposed two different approaches in the development of the prediction 290 

models for calculating the probability of inhibition of hemozoin formation by each compound. 291 

The AUC of both the multivariate model and the BMA model indicate that both models can be 292 

applied in a real setting (51). Interestingly, when testing against five well known antimalarial 293 

drugs including chloroquine, quinine, amodiaquine, halofantrine, and artemisinin,  the BMA 294 

model accurately predicted all four well known anti-hemozoin drugs (Probability: chloroquine = 295 

0.63, quinine = 0.60, amodiaquine = 0.88, halofantrine= 0.94) and one non anti-hemozoin drug 296 

(artemisinin = 0.12), while the multivariate model correctly predicted four drugs including 297 

chloroquine (0.58), amodiaquine (0.78), halofantrine (0.93) (probability > 0.536), and 298 

artemisinin (0.20), but wrongly predicted quinine (0.42) as a non-hemozoin inhibitor (probability 299 

< 0.536)..  300 

The prediction models also have some advantages for the antimalarial design. Firstly, 301 

while other approaches such as development of analogs of existing agents or natural products 302 

mainly detect new antimalarials by the chemical modifications of known compounds (52), new 303 

antimalarial compounds can be discovered by the prediction equation based on the well-known 304 

metabolic target. Thus, the models help researchers to find out the good chemical groups for 305 

synthetic compounds. Secondly, the expensive equipment and specialized labwares are not 306 

essential in these prediction models. Therefore, millions of library compounds can be screened 307 
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in-silico by using the models. Thirdly, the relationship between the   properties of compounds 308 

and anti-hemozoin activity is also interpreted from the models. It can be the first clue for 309 

understanding the mechanism of action of antimalarials. In addition, we proved that BMA is 310 

likely a good approach in the development of prediction models because it considers the 311 

“uncertainty” in model selections. Hence, the habit of building the only-right model in traditional 312 

approach should be compared with other approaches which consider “uncertainty” in model 313 

selections (e.g. BMA) in similar studies to this one. 314 

Besides the benefits of high throughput screening assay already mentioned, the study has 315 

several limitations. First, in the anti-hemozoin assay, we did not remove all the soluble contents 316 

before dissolving the non-crystallized heme by adding pyridine solution (35). Lack this step 317 

probably resulted in the false positives due to compounds’ color and/or aggregation. These were 318 

eliminated in the second step using dose-response assay. Secondly, the interaction between the 319 

positive hits and intra-parasitic condition was not fully evaluated in this paper, although the 320 

assay was performed under conditions that closely mimic the physiological environment in the 321 

parasite food vacuole. It is known that only a small fraction of hemozoin inhibitors possesses an 322 

antimalarial activity in vitro. Our ongoing experiments revealed a total of 23 positive hit 323 

compounds and two negative hit compounds exhibited antimalarial activity with IC50 value less 324 

than 10 µM. Among them, four compounds of positive hits showed IC50 below 1 µM. However, 325 

using anti-hemozoin as a HTS, we could lower the in vitro antimalarial assay workload 326 

approximately 40 times.  The last limitation is that the prediction models have not been validated 327 

yet in external samples. 328 

In conclusion, the in vitro high-throughput hemozoin formation assay was performed 329 

with a high degree of reproducibility and robustness. A total 224 true positive hits were 330 
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identified from the “core library” with a hit rate of 2.34%. The prediction models based on 331 

physicochemical parameters represent a new, useful and cost-effective approach for antimalarial 332 

drug discovery in developing countries. Moreover, the physicochemical properties, namely: log 333 

P, index of refraction, and the number of hydrogen bond donors should be investigated further in 334 

order to find out their effects on the anti-hemozoin activity of compounds. 335 
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FIGURE LEGENDS 506 

FIG 1 Scheme for building a prediction model of anti-hemozoin compounds. Positive hits 507 

were firstly identified from 9600 structurally diverse compounds by high-throughput screening 508 

(HTS) and dose-response assay of hemozoin formation. Secondly, physical properties of 224 true 509 

positive hits and 199 random negative compounds were extracted using the ChemSpider 510 

software. Thirdly, prediction models were built by traditional approach vs. Bayesian approach 511 

using these physical properties. 512 

FIG 2 Anti-hemozoin HTS of 9,600 diverse compounds. Dots represents % hemozoin 513 

inhibition of 9600 compounds including 224 true positive hits (closed dots above cut-off line), 514 

170 false positive compounds (open dots above cut-off line), and negatives (dots under cut-off 515 

line). Cut-off value was determined as average absorbance value of negative DMSO control plus 516 

3 standard deviations by each HTS anti-hemozoin assay. The true positive hits were identified by 517 

subsequent dose-response assay. 518 

FIG 3 The discriminatory powers comparison of the best multivariate model and the best 519 

BMA model on the basis of AUC (left panel) and accuracy (right panel). The best multi 520 

variate model consists of three variables: Log P, the number of hydrogen bond donors, and the 521 

number of atoms of hydrogen. Whereas, the best BMA model consists of three variables: Log P, 522 

the number of hydrogen bond donors, and the index of refraction. The discriminatory power of 523 

the BMA model is better than that of the multivariate model in term of AUC and accuracy.  524 

 525 

 526 

 527 
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TABLE 1 Univariate and multivariate analyses of positive hit versus negative hit compounds.  

Predictors Univariate analysis Multivariate analysis 

 OR (95%CI) p value Adjusted OR 
(95%CI) 

P value 

Log P 1.54 (1.29-1.83) <0.0001 2.04 (1.27-3.27) 0.0028 

BCF_ pH 5.5 1.00 (1.00-1.00) 0.2181 // // 

BCF_pH7.4 1.00 (1.00-1.00) 0.185 // // 

KOC_pH5.5 1.00 (1.00-1.00) 0.052 1.00 (1.00-1.00) 0.9400 

KOC_pH7.4 1.00 (1.00-1.00) 0.041 1.00 (1.00-1.00) 0.4344 

LogD_pH5.5 1.34 (1.20-1.50) <0.0001 1.05 (0.69-1.62) 0.7939 

LogD_pH7.4 1.34 (1.18-1.52) <0.0001 0.88 (0.60-1.30) 0.5458 

Average Mass (Da) 1.00 (1.00-1.00) 0.251 // // 

Density (g/cm3) 17.10 (3.59-82.10) 0.0004 0.35 (0.01-18.5) 0.6088 

Index of refraction* 3.72 (2.38-5.81) <0.0001 1.55 (0.64-3.76) 0.3304 

Molar refractivity 
(cm3) 

1.01 (1.00-1.02) 0.0686 1.0. (0.99-1.06) 0.0976 

Molar volume 
(cm3) 

1.00 (0.99-1.00) 0.4041 // // 

Mono isotopic 
mass (Da) 

1.00 (1.00-1.00) 0.3383 // // 

No Freely rotating 
bonds 

0.92 (0.82-1.01) 0.0933 0.95 (0.79-1.16) 0.6712 

No H bond 
acceptors 

0.98 (0.86-1.11) 0.7777 // // 

No H bond donors 1.40 (1.13-1.73) 0.0017 1.38 (1.03-1.87) 0.0308 

No of rule of 5 
violations 

4.00 (1.45-10.98) 0.0071 3.42 (0.72-16.31) 0.1218 

Number of Br 1.79e+7 (0-Inf) 0.9855 // // 

Number of C 1.02 (0.96-1.07) 0.4763 // // 

Number of Cl 1.37 (0.79-2.37) 0.2517 // // 

Number of F 0.70 (0.46-1.06) 0.1000 // // 

Number of H 0.94 (0.91-0.98) 0.0105 0.87 (0.77-0.98) 0.0293 
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Number of N 1.25 (1.06-1.46) 0.0066 1.09 (0.82-1.46) 0.5150 

Number of O 0.81 (0.70-0.93) 0.0049 0.81 (0.59-1.10) 0.1795 

Number of S 1.13 (0.82-1.57) 0.4311   

Polar surface area 
(Å2) 

1.00 (0.99-1.01) 0.2108          //    // 

Polarizability 
(×1024 cm3) 

1.02 (0.99-1.05) 0.1016 // // 

Surface tension 
(dyne/cm) 

1.04 (1.02-1.06) <0.0001 1.01 (0.96-1.06) 0.4724 

LogP, octanol-water partition coefficient; LogD, distribution coefficient; BCF, bio-
concentration factor; KOC, adsorption coefficient; OR, odds ratio 
Significant P values (<0.05) in multivariate analysis were underlined.  
// These variables were not included in multivariate analysis because these variables had p value 
>= 0.1 in univariate analysis. 

*The original scale has been multiplied by 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2 The five most parsimonious models selected by Bayesian Model Average (BMA) 
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approach 

Model Explanatory variables Coefficient P value BIC** Posterior 
probability***

1 Log P 
No H bond donors 
Index of refraction*  
Intercept = -23.6 

0.5924 
0.3514 
1.322 
 

3.05e-09 
0.00495 
0.00215 
0.00192 

-1278 
 
 

0.318 
 

2 Log P  
Index of refraction* 
Intercept = -25.5 

0.5328 
1.487 
 

1.26e-10 
1.79e-05 
0.00098 

-1276 
 
 

0.118 

3 Number of H  
Log P 
No H bond donors 
Index of refraction*  
Intercept = -20.05 

-0.0519 
0.6506 
0.3600 
1.149 
 

1.18e-09 
5.37e-05 
0.00104 
0.01276 
 

-1276 
 
 

0.117 
 

4 Number of O  
Log P 
No H bond donors 
Index of refraction*  
Intercept =-22.0 

-0.1374 
0.5774 
0.3778 
1.247 
 

9.2e-09 
0.008566 
0.001341 
0.000925 
 

-1275 
 

0.066 
 

5 Log P 
No H bond donors 
No Freely rotating bonds 
Index of refraction*  
Intercept = -21.43 

0.6267 
0.3862 
-0.0946 
1.206 

2.83e-10 
1.16e-05 
0.000514 
 

-1275 
 

0.054 
 

Through the BMA process, 18 models were selected and 5 best models were presented. The 
cumulative posterior probability is equal to 0.6727 
*The original scale has been multiplied by 10 
**BIC stands for Bayesian Information Criteria. BIC smallest suggested the model with maximum 
parsimony (i.e. minimum explanatory variables and maximum discrimination power) 
***Posterior probability is the probability of a model being a “correct” model in BMA process 
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