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The promotion of cooperation by 
the poor in dynamic chicken games
Hiromu Ito1,2,*, Yuki Katsumata3,*, Eisuke Hasegawa4 & Jin Yoshimura2,3,5,6

The evolution of cooperative behavior is one of the most important issues in game theory. Previous 
studies have shown that cooperation can evolve only under highly limited conditions, and various 
modifications have been introduced to games to explain the evolution of cooperation. Recently, a utility 
function basic to game theory was shown to be dependent on current wealth as a conditional (state) 
variable in a dynamic version of utility theory. Here, we introduce this dynamic utility function to several 
games. Under certain conditions, poor players exhibit cooperative behavior in two types of chicken 
games (the hawk-dove game and the snowdrift game) but not in the prisoner’s dilemma game and the 
stag hunt game. This result indicates that cooperation can be exhibited by the poor in some chicken 
games. Thus, the evolution of cooperation may not be as limited as has been suggested in previous 
studies.

Game theory has been applied to biology to solve questions of cooperative behavior in animals and humans1–7. 
In humans and certain animals, individuals sometimes risk their lives to help others, e.g., people diving to help 
drowned children and alarm calls in animals. Why do animals and humans sometimes perform altruistic or 
cooperative behaviors even if the expected rewards are minimal (or absent) compared with the cost (death)?

When a group (society) consists of closely related individuals, kin selection may explain such altruistic and 
cooperative behaviors8,9. However, altruistic and cooperative behaviors often occur between unrelated individu-
als. For example, people who rescue drowning children are often strangers, and alarm calls help animals of species 
different from the caller. Present-day human societies are formed primarily by unrelated (non-kin) individuals. In 
some animal societies, helpers are often not related to their receivers. Thus, the evolution of altruism and cooper-
ation among non-kin members is an important issue in game theory4.

Because the evolution of altruism and/or cooperation is highly limited under simple game-theoretic condi-
tions, various modifications have been introduced, e.g., spatial structures10–18, population structures19,20, net-
works21–23, spatial heterogeneity24–26, and temporal stochasticity27. These models are very successful in showing 
the evolution of cooperative behavior, but it is uncertain whether societal cooperation indeed evolved under these 
conditions, as these models are highly complex and sophisticated, and cooperative behavior seems to occur more 
universally in nature.

The development of game theory was based on the axiomatic system of expected utility theory1. The axio-
matic system of expected utility theory has recently been found to be a static model based on the comparison of 
preferences28. Because game theory was developed based on this axiomatic system, game theory itself is a static 
model as well. Therefore, any dynamic extension of game theory should be a quasi-dynamic model that has no 
objective function (an optimization criterion). Bellman built the first dynamic optimization model, referred to as 
dynamic programming29. Dynamic programming is a numerical algorithm of dynamic optimization based on the 
“Principle of Optimality.” A theory of dynamic optimization has recently been developed, in which this optimality 
principle is applied to a stochastic process30,31. In the development of this theory, the dynamic utility function was 
derived as a form of maximization of the expected logarithmic growth rate. In a previous study, we applied the 
dynamic utility theory to the payoff matrix of a hawk-dove game. We specifically considered the interpretation 
of equal division in a dove-dove contest and showed that the payoffs in the matrix should be interpreted as the 
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amount of gain, instead of utility28. In the present study, we apply this interpretation to various games and com-
pare the optimal strategies with those of traditional game theory. Here, we analyze the optimal strategies of two 
players with various levels of current wealth in a single trial game.

Theoretical Rationale
First, we explain the derivation of the dynamic utility function30,31. Let time t =​ 0, …​, T (final time) and suppose 
that wt and rt are wealth at t and the growth rate at t, respectively. Note that rt (>​0) is the non-negative state vari-
able of a decision maker (independent, identically distributed random variables). We immediately get wt+1 = rtwt. 
Wealth at the final timestep, wT, is then expressed as follows:

= −w w r r r r (1)T T0 0 1 2 1

The decision maker can optimize this stochastic process by choosing the best option at every time point in Eq. (1). 
We therefore maximize the final wealth at T, wT, as follows:

→w max (2)T

The maximization of wT (Eq. (2)) is equivalent to that of the geometric mean growth rates, as follows:
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Taking the logarithm of Eq. (3), we obtain the following equation:

∑= = →r
T
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Therefore, we can define the dynamic utility function u(r) for this maximization:

=u r r( ) log (5)

We now maximize the expected dynamic utility E{u} =​ E{log r}32. From the temporal equation wt+1 =​ rtwt, we 
obtain the following equation:

=
+r g w
w

, (6)

where g and w are the current gain and the current wealth, respectively. The dynamic utility function (Eq. (5)) is 
then translated into the function of gain, g (decision variable), given current wealth w (state variable), as follows:
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We now maximize the expected utility, E{u(g; w)}, which indicates that current wealth is the state variable.
Thus, the derived dynamic utility is in the form of a logarithmic function (Eq. (7)). Note that the value of g 

satisfies −​w <​ g. This analytical solution demonstrates that the utility function depends on the current gain and 
the current wealth status at the time of decision-making. This dynamic utility function is applicable to animals as 
well as human beings30,31.

Here, we introduce this state-dependent utility function u g w( ; ) to game theory. Specifically, we re-evaluate 
the optimality of strategies in four traditional games—the hawk-dove game, the snowdrift game, the prisoner’s 
dilemma game and the stag hunt game33 —whose payoff matrices are shown in Fig. 1–4. The first two games are 
types of chicken games.

Models and Analyses
The hawk-dove game.  The payoff matrix of the hawk-dove game is given by two parameters: the victory 
reward, V, and fighting cost, C (Fig. 1a). Here, one hawk wins, and the other hawk loses in a contest between two 
hawks because the probability of their winning is equal (i.e., 0.5). Applying u g w( ; ) (Eq. (7)) to the hawk-dove 
game, the average payoffs of the hawk, EH, and the dove, ED, are calculated as follows:
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where p is the frequency of hawks, and w is the wealth of the player. As a numerical example, the average pay-
offs of EH and ED for w =​ 5 are plotted against the hawk frequency, p, when V ≥​ C (Fig. 1b) and V <​ C (Fig. 1c). 
When V ≥​ C, the optimal mix strategy (p* <​ 1) differs from the traditional hawk-dove game (porg* =​ 1) (Fig. 1b). 
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Figure 1.  Wealth-dependent hawk-dove game. (a) Payoff matrix of the hawk-dove game. (b–e) The average 
payoffs of a hawk, EH(u), and a dove, ED(u), against p under (b) V ≥​ C (w =​ 5, V =​ 4, C =​ 3), and (c) V <​ C 
(w =​ 5, V =​ 3, C =​ 4) and against w under (d) V ≥​ C (p =​ 0.5, V =​ 4, C =​ 3) and (e) V <​ C (p =​ 0.5, V =​ 3, C =​ 4). 
The terms p*, porg*, and w* indicate that EH(u) =​ ED(u). For comparison, the payoffs of the hawk (red dashed 
line) and dove (blue dashed line) in the traditional game are included. (f–g) Phase diagram of current wealth, w, 
and the hawk frequency, p, when (f) V ≥​ C (V =​ 4, C =​ 3) and (g) V <​ C (V =​ 3, C =​ 4). Outcomes (superiority) 
depend on the values of the differences in dynamic utility, EH(u) −​ ED(u): Dove (blue and green), hawk (red). 
The dashed line indicates equal utility, i.e., EH(u) =​ ED(u). The optimal strategy shifts from hawk to dove when a 
player becomes sufficiently poor. Note that payoffs are undefined in green areas.
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When V <​ C, the proportion of doves becomes larger in the optimal mix strategy compared with the traditional 
hawk-dove game (p* <​ porg* <​ 1) (Fig. 1c). The average payoffs of EH and ED at p =​ 0.5 are also plotted against cur-
rent wealth, w, when V ≥​ C (Fig. 1d) and V <​ C (Fig. 1e). In both cases, the dove strategy becomes superior when 
w <​ w*, unlike the traditional hawk-dove game, in which the hawk is always superior to the dove. Note that w* 
is the amount of wealth when the average payoffs of the hawk and dove are equal (e.g., EH(u) =​ ED(u)) at p =​ 0.5 
(Fig. 1d and e), where p*, porg*, and w* indicate that EH(u) =​ ED(u), respectably.

The phase diagrams are drawn for the hawk frequency, p, and current wealth, w, when V ≥​ C (Fig. 1f) and 
V <​ C (Fig. 1g). Here, the dotted line p* =​ p*(V, C; w) shows the boundary where the utilities of the hawk and dove 
are equal, that is, EH =​ ED:
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When V ≥​ C, the dove strategy becomes superior to the hawk strategy if w ≤​ C (=​3), irrespective of p, or if w 
is slightly larger than C when p is close to one, i.e., p >​ p* (Fig. 1f). Thus, when V ≥​ C, the optimal strategy is the 
dove if the player is very poor, even if the hawk was always optimal in the traditional game. The dove-superior 
region becomes much larger when V <​ C (Fig. 1f and g). This condition is satisfied if either p >​ p* or w <​ C 
(Fig. 1g). When V <​ C, the region where dove is optimal expands significantly when w decreases. Thus, in the 
hawk-dove game, the optimal strategy shifts from hawk to dove when the player becomes sufficiently poor 
(Fig. 1). Here, p* converges towards V/C when w increases towards ∞​ (infinity):
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Interestingly the resulting value is equal to the equilibrium of the mixed evolutionarily stable strategy (ESS) in the 
traditional game, i.e., V/C =​ porg* (Eq. (11), see supplementary information).

The snowdrift game.  The payoff matrix of the snowdrift game is given by two parameters: the reward, b, 
and the cooperating (working) cost, c (Fig. 2a). Applying u g w( ; ) (Eq. (7)) to the snowdrift game, the average 
payoffs of the defector, EDef, and the cooperator, ECop, are calculated as follows:
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where p is the frequency of defectors. In the snowdrift game, the optimal strategy shifts from defection to cooper-
ation when the player becomes sufficiently poor, and the cooperating cost, c, is smaller than the reward, b (Fig. 2). 
The average payoffs of EDef and ECop for w =​ 5 were plotted against the defector frequency, p, when c ≥​ b (Fig. 2b) 
and c <​ b (Fig. 2c). When c ≥​ b, the optimal mix strategy (p* <​ 1) does not appear as in the traditional snowdrift 
game (porg* =​ 1) (Fig. 2b), nor does not appear as in the traditional snowdrift game when c <​ b (p* <​ porg* <​ 1) 
(Fig. 2c). The average payoffs of EDef and ECop at p =​ 0.5 are plotted against current wealth, w, when c ≥​ b (Fig. 2d) 
and c <​ b (Fig. 2e). Interestingly, when c >​ b, the results of a dynamic version are qualitatively the same as in the 
traditional snowdrift game. In the case of c <​ b, however, the defector strategy becomes superior when w <​ w* 
(Fig. 2d and e).

Phase diagrams were drawn for the defector frequency, p, and current wealth, w, when c ≥​ b (Fig. 2f) and 
c <​ b (Fig. 2g). Here, the dotted line p* =​ p*(b, c; w) shows the boundary where the utility of the defector and 
co-operator are equal, that is, EDef =​ ECop:
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When c ≥​ b, defecting is always superior to cooperation, even if the wealth of a player increases (Fig. 2f). Thus, 
qualitatively, the current dynamic version is same as in the traditional snowdrift game. In the case of c <​ b, how-
ever, unlike the traditional snowdrift game, in which defector is always superior to cooperator (Fig. 2d and f), 
the cooperator becomes superior if w <​ w* (Fig. 2e and g). Specifically, the region where cooperation is optimal 
expands significantly when w decreases (Fig. 2g). Notably, p* is undefined if w ≤​ c −​ b, where EDef ≫​ ECop, indicat-
ing that defection is always advantageous (purple area in Fig. 2g).

Here, p* converges to c/(2b −​ c) when w increases towards ∞​:
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Figure 2.  Wealth-dependent snowdrift game. (a) Payoff matrix of the snowdrift game. (b–e) The average 
payoffs of a defector, EDef(u), and a cooperator, ECop(u), against p under (b) c ≥​ b (w =​ 5, c =​ 4, b =​ 3), and 
(c) c <​ b (w =​ 5, c = 3, b =​ 4) and against w under (d) c ≥​ b (p =​ 0.5, c =​ 4, b =​ 3), and (e) c <​ b (p =​ 0.5, c =​ 3, 
b =​ 4). The terms p*, porg*, and w* indicate that EDef(u) =​ ECop(u). For comparison, the payoffs for the defector 
(red dashed line) and cooperator (blue dashed line) in the traditional game are included. (f–g) Phase diagram 
of current wealth, w, and the defector frequency, p, when (f) c ≥​ b (c =​ 4, b =​ 3) and (g) c <​ b (c =​ 3, b =​ 4). 
Outcomes (superiority) depend on the difference in dynamic utility, EDef(u) −​ ECop(u): Cooperator (blue), 
defector (red and purple). The dashed line indicates equal utility, i.e., EDef(u) =​ ECop(u). If the cooperating cost, c, 
is smaller than the reward, b, the optimal strategy shifts from defection to cooperation when the player becomes 
sufficiently poor to ensure small positive gains. Note that payoffs are undefined in purple areas.
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where this convergent value is equal to the equilibrium of the mixed ESS in the traditional snowdrift game, i.e., c/
(2b −​ c) =​ porg* (Eq. (15), see Supplementary Information).

The prisoner’s dilemma game.  The payoff matrix of the prisoner’s dilemma game is given by four param-
eters a, b, c and d, where b >​ d >​ a >​ c and d >​ (b +​ c)/2 (Fig. 3a). Applying u g w( ; ) (Eq. (7)) to the prisoner’s 
dilemma game, the average payoffs of confession, ECnf, and silence, ESil, are as follows:
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where p is the frequency of confession. We plotted the average payoffs of ECnf and ESil for w =​ 5 against the con-
fession frequency, p, when a =​ 1, b =​ 4, c =​ −​2, d =​ 2 (Fig. 3b). The optimal mixed strategy does not appear in this 
game, similar to the traditional prisoner’s dilemma game (Fig. 3b and c). Here, we can calculate p* =​ p*(a, b, c, d; w),  
that is, ECnf =​ ESil:

Figure 3.  Wealth-dependent prisoner’s dilemma game. (a) Payoff matrix of the prisoner’s dilemma game.  
(b and c) Average payoffs of confession, ECnf(u), and silence, ESil(u), against p under (b) (w =​ 5, a =​ 1, b =​ 4, 
c =​ −​2, d =​ 2) and against w under (c) (p =​ 0.5, a =​ 1, b =​ 4, c =​ −​2, d =​ 2). For comparison, the payoffs of 
confession (red dashed line) and silence (blue dashed line) in the traditional game are included. (d) Phase 
diagram of current wealth, w, and the defector frequency, p, under a =​ 1, b =​ 4, c =​ −​2 and d =​ 2. Outcomes 
(superiority) depend on the difference in dynamic utility ECnf(u)–ESil(u): Silence (blue: non-existent), confession 
(red and purple). In the prisoner’s dilemma game, confession is always superior to silence for all values of p and 
w. Note that the payoffs are undefined in purple areas.
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Equation (18) is always larger than 1 or smaller than 0, i.e., p* >​ 1 or p* <​ 0. In the prisoner’s dilemma game, 
confession is always superior to silence for any wealth, w (Fig. 3d). Here, p* converges to the same value (porg* >​ 1 
or porg* <​ 0) as in the traditional game when w approaches ∞​:
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Thus the convergent value becomes equal to the equilibrium of the traditional game (Eq. (19), see 
Supplementary Information). Numerically we found p* >​ porg* >​ 1 or 0 >​ p* >​ porg*. However, we could not prove 
these inequalities of porg* and p* analytically. Notably, p* is undefined if w ≤​ −​c, where ECnf ≫​ ESil, indicating that 
defecting is always advantageous (purple area in Fig. 3d).

Stag hunt game.  The payoff matrix of the stag hunt game is given by four parameters a, b, c and d, where 
d >​ a ≥​ c >​ b (Fig. 4a). Applying u g w( ; ) (Eq. (7)) to the stag hunt game, the average payoffs of the hare, EHare, and 
the stag, EStag, are as follows:
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Figure 4.  Wealth-dependent stag hunt game. (a) Payoff matrix of the stag hunt game. (b and c) Average 
payoffs of the hare, EHare(u), and stag, EStag(u), against p under (b) (w =​ 5, a =​ 2, b =​ 1, c =​ 0, d =​ 4) and against w 
under (c) (p =​ 0.5, a =​ 2, b =​ 1, c =​ 0, d =​ 4). For comparison, the payoffs of the hare (red dashed line) and stag 
(blue dashed line) in the traditional game are included. (d) Phase diagram of current wealth, w, and the hare 
frequency, p, under a =​ 2, b =​ 1, c =​ 0 and d =​ 4. Outcomes (superiority) depend on the difference in dynamic 
utility EHare(u) – EStag(u): Stag (blue), hare (red). A poor player chooses the sure gain of a small hare instead of an 
uncertain large stag.
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where p is the frequency of hares. We plotted the average payoffs of EHare and EStag for w =​ 3 against hare fre-
quency, p, when a =​ 2, b =​ 1, c =​ 0, and d =​ 4 (Fig. 4b). In this case, the optimal mix strategy appears as in both the 
wealth-dependent and traditional stag hunt games (p* <​ porg* <​ 1). The average payoffs of EHare and EStag at p =​ 0.6 
are plotted against current wealth, w (Fig. 4c). Here, we can calculate p* =​ p*(a, b, c, d; w), that is, EHare =​ EStag:
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Equation (22) is always larger than 0 and smaller than 1, i.e., 0 <​ p* <​ 1. In the dynamic version of the stag hunt 
game, the optimal strategy shifts from stag to hare when the player becomes sufficiently poor (Fig. 4d). Here, p* con-
verges to the same value as the stable mixed strategy ESS in the traditional stag hunt game when w approaches ∞​:

=
− +
− − +

=
→∞

⁎ ⁎p b d
a b c d

plim
(23)w org

Interestingly the resulting value is equal to the equilibrium of the changing point of optimal strategy in the 
traditional game, i.e., (−​b +​ d)/(a −​ b −​ c+​d) =​ porg* (Eq. (23), see supplementary information). Numerically we 
found porg* >​ p*, as in Hawk-Dove game and snowdrift game. However, we could not prove these inequalities of 
porg* and p* analytically.

Discussion
Our analyses showed that in all four games analyzed, the traditional game is equivalent to the current dynamic 
game when the wealth of the player is infinite, suggesting that optimal strategies may be different under limited 
wealth. In the hawk-dove game, snowdrift game and stag hunt game, the optimal strategy becomes different from 
the traditional solution. However, the prisoner’s dilemma game demonstrates that a dynamic version of game 
theory can be quite similar to traditional game theory in some situations. Therefore, we must verify when the 
dynamic version departs radically from traditional game theory.

Individuals change their behavioral patterns depending on their current status. For example, among human 
beings, village people living in harsh environments (e.g., deserts or polar regions) frequently face survival crises 
that affect the entire village. They survive by building closely collaborative relationships, helping one another and 
sharing small amounts of leftover food34,35. In some cases, these communities develop their own customs (e.g., 
precepts) and promote cooperation with social penalties36. In contrast, the wealthiest 1% controls half of the 
global wealth by seeking short-term profits via huge asset utilization37–39.

The results of wealth-dependent games may represent the nature of our human society. In dynamic hawk-dove 
games, when a player becomes sufficiently poor, the optimal strategy shifts from hawk to dove to avoid the fight-
ing cost, C (Fig. 1). In dynamic snowdrift games, if the cooperating cost, c, is smaller than the reward, b, then the 
optimal strategy shifts from defection to cooperation when the player becomes sufficiently poor to ensure positive 
gains in any outcome (Fig. 2). In the stag hunt game, a poor player chooses the sure gain of a small hare, instead of 
an uncertain large stag (Fig. 4). Note that this choice for smaller certain gains is expressed only by poor people31. 
It is known as the sure-thing principle40, also shown in the Allais Paradox31,41.

The sure-thing principle can be illustrated with the following example. Consider a game in which players have 
two choices. For the first choice, the payoff is 3 with a probability of p =​ 1.0 (100%), while for the second choice, 
it is either 8 with p =​ 0.5 or 0 with p =​ 0.5. When the state of the player (current wealth) is 1, the utility of the first 
and second choices (E1{u} and E2{u}) is as follows:

(1) First choice:

= . + =E u{ } (1 0)log[(3 1)/1] log(4)1

(2) Second choice:

= . + + . + =E u{ } (0 5)log[(8 1)/1] (0 5)log[(0 1)/1] log(3)2

This indicates that the player chooses the first choice. This situation, involving a small sure return, may appear 
in many chicken games, as in the current three games. However, if this game is repeated, then the current wealth 
of the player should accumulate, and the second choice becomes superior soon thereafter. The critical level of 
wealth is calculated from E1{u} =​ E2{u}: (1.0)log[(3 +​ w)/w] =​  (0.5)log[(8 +​ w)/w], and we obtain w =​ 9/2. As 
shown in this example, when the player becomes sufficiently wealthy, the optimal strategy approaches a condition 
that ensures the maximum arithmetic gain.

Our results may imply that the conditions for cooperation are much broader than expected in traditional 
game theory. We show that poor players exhibit cooperation in three types of chicken games, but not in the pris-
oner’s dilemma game. However, we are unsure whether this exhibition of cooperation by the poor players occurs 
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in other chicken games or any other games. Many attempts have been made to explain the evolution of coopera-
tion by introducing additional complexity10–26. Here, we find a new condition for the evolution of cooperation by 
incorporating dynamic decision making.

Note that the current dynamic utility was developed for the behavioral dynamics of an individual in the fields 
of behavioral ecology, microeconomics and operations research. This method can be applicable to evolution-
ary games such as ESS analysis. However, the current wealth of a player should be considered in the optimality 
analyses. Therefore, each value (numbers) in a payoff matrix should be treated as a real amount of gain, instead 
of a utility28. Our analyses of behavioral dynamics are also different from evolutionary adaptation in a stochastic 
environment, where geometric mean fitness is often used32. Even though the analyses of wealth dynamics (of an 
individual) are mathematically quite similar to geometric mean analyses of population growth under a stochastic 
environment, the former type of analysis involves the optimization of dynamic behavior at the individual level, 
while the latter involves the optimization of population size over generations. Therefore, we should not confuse 
the current individual analyses with the geometric mean fitness in evolutionary ecology.

We should also note that the current analyses are all based on one-trial games. Here, we cannot discuss stable 
equilibria. Nash equilibrium cannot be easily calculated in dynamic games, such as repeated and evolutionary 
games, because the optimal solutions change dynamically along with temporal changes in the current wealth of 
players. The concept of Nash equilibrium seems to be correct, but there are no simple solutions available for stable 
equilibrium in dynamic games. However, the dynamically optimal solutions for various chicken games deviate 
from the traditional solutions toward cooperation. In other words, poor players tend to behave more coopera-
tively. Therefore, cooperative behavior should be more common than previously expected.
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