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Regulation and Functions of Clusterin: A Protector Against Stress
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Radiation therapy is a common treatment for many types of tumors. Therefore, it is vital to understand the cellular responses to radiotherapy
in malignant cells, as well as the surrounding normal tissues in order to optimize antitumor efficacy. Clusterin (CLU) is a secreted glycoprotein
that has been implicated in many normal biological processes as well as many pathological diseases, including cancer. Our laboratory identified
the secreted form of clusterin (sCLU) as a protein/transcript that could be induced by doses of ionizing radiation (IR) as low as 0.02 Gy, sug-
gesting a role for sCLU in the cellular response to IR. While the exact functions of CLU are complex, it has been suggested that sCLU, the fully
processed and glycosylated form of the CLU protein, plays a role in cytoprotection after cellular stress. sCLU appears to provide cytoprotection
against cellular injury and inflammatory responses potentially by acting as a molecular chaperone, clearing cellular debris or binding to inflam-
matory and growth suppressive cytokines, such as TGF-R1. A better understanding of this protein and its various roles in cellular responses
to stress will allow us to generate better treatments and therapies for many different pathological processes. The functions of sCLU and its

role(s) in disease processes will be discussed.
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Introduction
Clusterin

Expression from the clusterin (CLU) gene results in the generation
of a full-length CLU mRNA that encodes a secreted glycoprotein
(secreted clusterin, sCLU). sCLU was originally identified in 1983 as
a protein involved in cellular aggregation in ram rete testis fluid."” In
1987, Leger et al. demonstrated that CLU transcription was induced
in the ventral rat prostate after castration and named it testosterone-
repressed prostate message 2 (TRPM-2)." Since then, many groups
working in diverse fields have identified/cloned CLU, resulting in a
diverse nomenclature for this protein*"'; in 1998, at the first CLU
workshop, an international team adopted clusterin as the official name
of this gene. Our laboratory isolated full-length CLU mRNA as an
X-ray-inducible protein/transcript (xip8), in which northern blot and
nuclear run-on studies demonstrated enhanced transcript synthesis
and steady state mRNA accumulation within IR-exposed human ma-
lignant melanoma cells."™” Interestingly, we then identified a trun-
cated version of the CLU mRNA as a Ku70 binding partner (KUB
1) using a yeast two hybrid screen with Ku70 as bait. Since Ku70

is predominantly localized to the nucleus, we proposed that this
truncated form of the mRNA encoded a nuclear form of the CLU
protein (nCLU). We then found that a 49 kDa nCLU protein resided
in the cytoplasm of unirradiated MCF-7 cells and that after IR, this
form translocated to the nucleus as a 55 kDa protein." The post-
translational modifications that result in this change in molecular
weight are currently being investigated.

The human CLU mRNA contains two AUG start sites separated by
32 amino acids—therefore one message appears to encode two sepa-
rate proteins, whose processing is dictated by the presence (sCLU)
or absence (nCLU) of this leader peptide sequence (Figure 1).
When full-length CLU mRNA is read at its first AUG sequence, a
leader peptide targets the protein to the endoplasmic reticulum (ER).
This 60 kDa unmodified peptide (pre-sCLU) is cleaved at an a/B
cleavage site to yield two 40 kDa subunits that heterodimerize
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through the formation of five disulfide bonds to form the mature
80 kDa secretory form of the protein that is further processed and
glycosylated in the Golgi apparatus.>’ sCLU separates as an 80 kDa
protein or ~40 kDa proteins under SDS-PAGE non-reducing or re-
ducing conditions, respectively."” Treatment of log-phase MCF-7
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Figure 1. Schematic of CLU gene structure and protein processing. (A)
Hashed boxes correspond to the two coiled—coil domains at amino acids
42-98 and 319-349, respectively. The black box corresponds to the func-
tional nuclear localization site. (B) The human CLU mRNA contains two
AUG start sites separated by 32 amino acids. When the CLU mRNA is
translated from its first AUG sequence, a leader peptide targets the protein
to the endoplasmic reticulum (ER) as it is being translated. This 60 kDa un-
modified peptide (psCLU) is cleaved at an a/b cleavage site to yield two 40
kDa subunits that heterodimerize through the formation of 5 disulfide
bonds to form the 80 kDa secretory form of the protein that is highly
glycosylated in the Golgi apparatus. Translation from the second AUG start
site results in the production of the nuclear form of CLU (nCLU).

cells with = 2 ¢Gy (2 rads) of ionizing radiation (IR) results in
dramatic increases in sCLU message and protein. We initially noted
the massive accumulation of the 60 kDa peptide that is presumably
present in the ER and Golgi of IR-exposed cells within 24-72 h post-
IR exposure.""” Furthermore, the low levels of IR (= 2 ¢Gy) re-
quired to induce sCLU and the dramatic accumulation of sCLU pro-
tein following taxol, PMA or thapsigargin (a sarcoplasmic reticulum
Ca™ -ATPase (SERCA) pump inhibitor that caused dramatic altera-
tions in intracellular calcium homeostasis) exposures, strongly sug-
gested that DNA damage was not required for the activation of this
gene in MCF-7 breast cancer cells."

More recently we noted that, due to alternative splicing of the CLU
mRNA in which the leader peptide found in sCLU is eliminated by
Exon I/II junctional splicing, CLU could be translated from the sec-
ond, in-frame AUG start site in its mRNA, resulting in the formation
of a 49 kDa pre-nuclear (pnCLU) protein. This precursor form of
the nuclear clusterin protein is observed in the cytoplasm of control
non-irradiated MCF-7 human breast cancer cells.” The pnCLU pro-
tein contains two putative nuclear localization signals (NLS); the
first one located after the second AUG start site and the second lo-
cated at the C-terminus. The C-terminal NLS appears to be the func-
tional sequence.” We propose that these NLSs are kept concealed
either through homodimerization or protein folding, through two

coiled-coil domains, until after cellular stress.” After treatment of
log-phase MCF-7 cells with =1.0 Gy of IR, the levels of pre-nCLU
protein, as well as a ~55 kDa nuclear form of the protein (nCLU),
dramatically increased 48 to 72 h'* post-treatment. Analyses of
nCLU (isolated from the nuclei of IR-exposed MCF-7 cells) revealed
that the protein was not cleaved at its /B site, since its migration
was not altered under reducing or non-reducing SDS-PAGE condi-
tions. Furthermore, accumulation of nCLU protein appears to be suf-
ficient for signaling cell death, even in the absence of IR exposure,
and the protein appears to associate with the Ku70/Ku80 DNA dou-
ble strand break repair machinery."* More recent data from our lab
indicate that nCLU is also regulated by nuclear export sequences
and signaling, wherein CRM-1 excludes nCLU from the nucleus
(Leskov and Boothman et al., submitted). Our lab is currently work-
ing on the mechanism by which nCLU causes cell death.

Clusterin and disease

CLU has been implicated in many physiological processes such
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cell differen-

as lipid metabolism,”** complement regulation,

% reproduction,'*”’ 3 cell
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tiation, tissue remodeling/regeneration,

and cell death."**"*

adhesion, CLU has also been implicated in many
diverse disease processes including atherosclerosis,”* Alzheimer's dis-
ease,* glomerulonephritis, " preeclampsia,” lupus erythematosus,”
retinitis pigmentosa,™ and scrapie.” Therefore, sSCLU may be a

good therapeutic target for a wide range of diseases. Many of these
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diseases involve dysregulation of the immune system. Indeed, sCLU
has been shown to be an inhibitor of complement-mediated cytolysis
through inhibition of C9 polymerization and insertion of the membrane
attack complex into the plasma membrane of target cells.****
Thus, down-regulation of sCLU would result in over activation of the
complement system and an increase in inflammation. In agreement
with this idea, Hogasen et al. demonstrated that decreased CLU
mRNA levels in rheumatoid arthritis patients correlated with an in-
crease in the terminal complement pathway.” Over-expression of
CLU mRNA may also be harmful. Han et al. demonstrated that
CLU-deficient mice had 50% less brain injury following neonatal
hypoxic-ischemia insult, and that CLU localized to dying cells in
wild-type CLU-expressing mice.™ Gwon et al. demonstrated simi-
lar results in the rat retina following ischemia.” This disparity in
CLU function is most likely due to a balance that is required be-
tween the two different CLU isoforms, the cytoprotective functions
of sCLU versus the cytotoxic functions of nCLU. It is not yet un-
derstood how the cell regulates this balance (Figure 2).

sCLU nCLU

A

Homeostasis

Cell survival Cell death

Figure 2. Schematic diagram of the homeostatic balance between sCLU
and nCLU and therefore cell survival and cell death.
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Elevated levels of secretory CLU (sCLU) protein and mRNA
have been observed in several different types of human neoplasias
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and malignancies including prostate cancer,”® pancreatic cancer,”

hepatocellular carcinoma,” hemangiomas,” malignant lymphomas,™®
ovarian cancer,”” breast cancer,”’ melanoma, colorectal carcinoma”
and renal clear cell carcinomas.”” Additionally, forced over-expression
of sCLU in transformed cell lines resulted in an increased resis-
tance to doxorubicin, cisplatin and taxol®™™ and abrogation of CLU
mRNA expression following antisense expression lead to modest
chemo- and IR-sensitization in various cell lines.””””™ More re-
cently, it was shown that treatment of Her2 positive BT474 cells
with antisense to sCLU in combination with Trastuzumab, a Her2
monoclonal antibody, resulted in a significant increase in apoptotic
cells compared to cells treated with Trastuzumab alone.” These
data support a cytoprotective role for sCLU and suggest that over-
expression of endogenous sCLU provides a survival advantage for
the tumors in which it is expressed. Indeed, Redondo et al. demon-
strated a correlation between increased sCLU expression and a
metastatic phenotype in breast cancer.”

Functions of clusterin

Clearly, delineating the functions of CLU will rely on the various
functions of the two protein forms of the CLU gene. The defining
property of CLU gene expression seems to be that it is induced under
conditions that result in cellular stress. This fits with its proposed
role as a molecular chaperone involved in the clearance of cell de-
bris after cellular stress.”™ Indeed, it has been shown that exposure
of fibroblasts to apoptotic vesicles and cellular debris can induce
sCLU expression.” Bailey et al. demonstrated that heat shock-induced
apoptosis in the testes of CLU-deficient mice occurred more rapidly
and that clearance of cellular debris was slightly impaired compared
to sCLU-expressing wild-type mice.”

Additionally, Humphreys et al. demonstrated that sCLU has
properties similar to small heat shock proteins.” sCLU could pro-
tect the proteins, glutathione S-transferase and catalase, from heat-
induced precipitation caused by stress-induced improper protein
folding, through the formation of high molecular weight com-
plexes.” Furthermore, Poon et al. demonstrated that the ability of
sCLU to protect cells from precipitation was maximal at a slightly
acidic pH.*” This suggested a role for sCLU at sites of injury and
inflammation, where the pH is slightly acidic to prevent against in-
fection. It is intriguing to speculate on what role sCLU is perform-
ing as a secreted chaperone, since sCLU induction does not occur
until several days after stress. It may be that sCLU is secreted from
cells that survive cytotoxic stress, and is needed to clear cellular de-
bris from dying cells in order to "turn over" factors that could be po-
tentially cytotoxic or inflammatory.

The development of a CLU knock-out mouse allowed further in-
sight into the function of this protein.” The CLU knock-out mice de-
velop a more severe myocarditis, compared to wild-type mice, with
substantial scarring after challenge with murine myosin,” and Han
et al. demonstrated that CLU deficient mice had 50% less cell death

after hypoxic/ischemic insult.” Additionally, Rosenberg et al. showed
that CLU deficient mice had increased immune complex deposition
in the kidneys, indicative of progressive glomerulopathy.” These
data suggested a protective role for CLU during tissue injury and in-
flammatory responses. Additionally, CLU (also termed apolipoprotein
J) and apolipoprotein E (4poE) double knock-out mice showed a
decrease in deposition of fibrillar B-amyloid in the brain,” support-
ing a role for CLU in Alzheimer's disease and diseases of aging.

Regulation of clusterin expression

As previously mentioned, CLU was identified as an induced pro-
tein in the ventral rat prostate after castration and was thus termed
testosterone repressed prostate message-2 (TRPM-2).” The hormo-
nal regulation of CLU in the prostate has been well documented,
but its potential hormonal regulation in other tissues is not well un-
derstood. In addition to prostate cancer, CLU has been shown to be
over-expressed in breast, ovarian and endometrial cancers.”””** This
suggests that CLU may also be regulated by estrogens. In 1998,
Wunsche et al. demonstrated that CLU expression in RUCA-1 rat
endometrial could be induced by treatment with estradiol. This
same paper also demonstrated that CLU expression in vivo was
also dependent on the presence of estradiol in endometrial carcino-
mas.” A more recent report has shown that CLU expression in
RUCA-1 cells is dependent on the presence of estradiol and that
this expression can be completely blocked by the presence of the
pure anti-estrogen Faslodex (ICI 182,780). In contrast, the selec-
tive estrogen receptor modifier tamoxifen, which is commonly used
for the treatment of breast cancer, was shown to also induce CLU
in the endometrium.” They suggested that this induction of CLU
by tamoxifen in the endometrium might be causally related to the
high frequency of endometrial tumors seen in women treated with
tamoxifen.

The signaling pathways that result in CLU induction after stress
have not been elucidated. In 1992, Herrault et al. found that v-Src
could induce transcription of the avian CLU gene.” The involvement
of Src in human CLU induction has not been investigated. B-Myb
has also been shown to bind and activate the CLU promoter,” but
the physiologic relevance of this has yet to be determined. Finally,
TGF-B1 also appears to play a role in CLU gene and protein ex-
pression”” potentially through c-Fos binding to an Ap-1 site located
in the CLU promoter.” Additionally, extracellular CLU can bind to
the TGF-B1 receptor II, suggesting a possible feedback mechanism
where CLU affects downstream TGF-B1 signaling pathways. Recent
data from our lab indicate that CLU promoter and transcription in re-
sponse to TGF-81 is regulated by the activation of Smads 3 and 4
binding to three Smad Binding Elements within the CLU promoter.
Activation of both AP-1 and IGF-1R signaling also appear to be in-
volved.

Our recent studies revealed that sSCLU plays a role in cell survival
after exposure to IR. To further understand cellular responses to IR,
we investigated the signaling pathways required for the IR-induction
of sCLU. We report that IGF-1R activation after IR was required for
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Figure 3. Model depicting potential cross-talk between the IGF-1R de-
pendent signaling pathway leading to sCLU induction after IR and a poten-
tial pathway signaling to the p53 transc riptional repression of sCLU.

sCLU induction. We demonstrated that IR-induced sCLU was de-
pendent on a novel reactivation of the Src/Mek/Erk signaling cas-
cade 24-72 h after IR exposure, and that this signal culminated in
the activation of the Egr-1 transcription factor (model, Figure 3).
Interestingly, EGFR signaling was not apparently involved.

EGFR is over-expressed or constitutively activated in many types
of tumors including colorectal, breast, pancreatic and ovarian can-
cers,” and is known to be a mediator of radio-resistance in several
tumor types including glioblastoma multiforme and breast cancer
cells through the activation of Erk-1/2.""'""" As a result, many thera-
pies have been developed that specifically target EGFR including
monoclonal antibody therapies and small molecule inhibitors that
specifically target the kinase domain.'” Interestingly, the selective
EGFR inhibitor, AG1478, did not block CLU promoter induction
or regulate sCLU protein levels after 5 Gy, nor did it affect EGF-
stimulated sCLU protein expression, possibly due to the involve-
ment of other EGFR family members.

IGF-1R is another membrane receptor shown to be up-regulated
after IR. IGF-1R activation results in mitogenic growth and cell sur-
vival,'” and Gooch et al. demonstrated that treatment of cells with
IGF-1 could prevent doxorubicin and taxol induced apoptosis.'™
Using AG1024, a selective inhibitor of IGF-1R, we were able to
block sCLU induction after IR, demonstrating the requirement for
IGF-1R activation for IR-induced sCLU expression. In a recent re-
port, it was shown that AG1024 treatment of MCF-7 cells enhanced

cell death after IR exposure.'”

Our data strongly suggest that activa-
tion of IGF-1R may mediate cell survival effects through the down-
stream induction of sCLU.

MCF-7 cells produce and secrete IGF-1 under serum-free condi-
" Since IGF-1R is often over-expressed in breast cancer,"” the

MCF-7 model appears to be a god one for investigating CLU gene

tions.

expression. It was shown previously that peripheral lymph node
stromal cells produce and secrete EGF and IGF-1, which can increase
the growth of breast cancer cells.'” It is possible that EGF and IGF

secretion by lymph nodes can induce the tumorigenesis of neigh-
boring breast tissue, especially cells that have up-regulated expres-
sion of EGFR or IGF-1R, through a paracrine mechanism. It is inter-
esting to note that both EGF and IGF-1 were able to induce sCLU
expression. Additionally, serum starvation increased the basal activ-
ity of the CLU promoter compared to cells grown in whole serum,
suggesting a possible autocrine feedback loop induced by IR, where
irradiated cells not only up-regulate IGF-1R, but also presumably in-
crease production of the ligand, IGF-1. Consistent with a previous
report,'” we demonstrated induction of IGF-1R after IR, as well as
a 20% increase in secretion of IGF-1, 24-72 h post-IR. Importantly,
the induction of IGF-1R and its ligand provide a plausible explana-
tion for the late induction of CLU after IR, as well as the increase
in basal promoter activity after serum-starvation.

The Src-Raf-Mek-Erk-1/2 pathway is required for IR-induced
sCLU activation culminating in the activation of the Egr-1 transcrip-
tion factor. We demonstrated a novel re-activation of the MAPK cas-
cade after IR that correlates with the temporal activation of sCLU.
The physiological relevance of this biphasic activation of MAPK
is unknown. EGFR may be required for the initial induction of
MAPK after IR, and inhibitors to EGFR are known to potentiate the
cytotoxicity of radiation therapy.'” In addition, Lu et al. demonstrated
that increased IGF-1R production in MCF-7 cells caused increased
resistance to Herceptin (a monoclonal antibody to the Her2/neu re-
ceptor) induced cell death,"’ suggesting a role for IGF-1R signaling
in the development of resistance to this type of therapy. Our data
suggest that tumor cells that survive the initial phase of treatment
may develop resistance to EGFR inhibitors, as a result of the late
induction of MAPK signaling through IGF-R1 up-regulation, and
potentially the up-regulation of sSCLU. This suggests that the current
antibody and small molecule therapies used to treat EGFR positive
tumors may be optimized by the addition of inhibitors to the IGF-
IR pathway.

NF-%£B has also been shown to regulate SCLU expression. Saura et
al. demonstrate that NF-«B is required for LPS stimulation of sCLU
expression in glial cells'"' and Li et al. using microarray technology,
demonstrate that TNF-stimulated CLU expression is dependent on
the NF-£B/IKK complex."” Of interest, Santilli et al. demonstrated that
sCLU can disrupt NF-£B signaling by stabilizing the inhibitors of
NF-xB (IxBs).'"” This suggests a possible negative feedback loop,
wherein NF-£B stimulates the expression of sCLU after LPS or
TNF-a exposure that then acts to stabilize IxBs and silence NF-«B
signaling.

Our laboratory has recently demonstrated that sCLU is transcriptionally
repressed by the p53 transcription factor.” The p53 tumor suppressor
gene is mutated in over half of all human tumors,"* which commonly
leads to a stable protein with loss of function. Wild-type p53 protein
is stabilized after cellular stress and acts as a transcription factor for
various downstream genes, including Bax, p21 and GADDA45, result-
ing in either cell cycle arrest or apoptosis."*""” p53 can also act as a
repressor of transcription, although the exact mechanism of repres-
sion varies. Forced expression of the papillomavirus E6 protein in
MCF-7 human breast cancer cells, as well as HCT116 isogenically



Tracy Criswell et al.: Secretory Clusterin, A Pro-survival Stress Response Factor 59

matched colon cancer cell lines that differ only in their p53 status,
were used to demonstrate a role for p53 in the transcriptional re-
pression of sCLU in unirradiated cells. These data suggest that p53
responses after high doses of IR (= 1.0 Gy) down-regulate the
cytoprotective functions of this protein to allow for cell cycle
checkpoint responses and for cell death in severely damaged cells.

The signaling pathway that relieves p53 repression, allowing for
sCLU induction after IR, has not yet been elucidated. Recently, in
a paper by Lu et al. it was shown that Src family kinases could in-
hibit the function of PTEN."* PTEN has been shown to be an in-
hibitor of IGF-1R activated MAPK'” as well as the Akt signaling
pathway.118 One function of Akt is to stabilize Hdm-2, allowing
for degradation of p53. Additionally, Tanno et al. have shown that
Akt activation can up-regulate IGF-1R." The cross-talk between the
IGF-1R, PTEN and Akt pathways may provide an intriguing connec-
tion between the signaling cascade resulting in sCLU induction after
IR and the repressive effects of p53 (model, Figure 3). Preliminary
data from our laboratory support a role for PTEN and Akt in the
regulation of sCLU. Over-expression of a constitutively active Akt
or expression of a catalytically dead PTEN in 1403 cells resulted
in significantly higher basal levels of CLU promoter activity as
compared to cells transfected with vector alone (Thakur et al., in
preparation). This pathway appears to be in operation in MCF-7 cells
that constitutively express AKT. In fact, we have recently shown that
over-expression of Hdm-2 can repress CLU expression basally and
after IR treatment. We also demonstrated that CLU up-regulation in
MCF-7 cells involved the Egr-1 transcription factor, and that p53
may regulate CLU gene expression by interaction with Egr-1 (Thakur
et al., in p reparation). Thus, the interactions between induction and
repression signaling in the overall control of clusterin appear to be
complex.

Recent data indicate that sCLU provides cytoprotection against
doxorubicin, taxol and cisplatin in the treatment of cancer cells.”"*™*
sCLU expression has been found to be elevated in many types of

SL671 1 a

tumors, including prostate, colorectal and breast cancer.
recent paper by Chen et al. it was shown that CLU message and
protein were elevated in intestinal tumors derived from mice con-
taining the Apc min (multiple intestinal neoplasia) mutation.” IGF-
1R and IGF-1 production are also elevated in many tumor types.
Gleave et al. in a recent review, suggest using CLU and insulin-like
growth factor binding proteins (IGFBPs) as targets for antisense

therapy against prostate cancer."”'

Although they did not mention a
possible connection between IGF-1R signaling and the induction
of sCLU. Our data strongly suggests such a connection, which may
explain the connection between elevated sCLU levels and the de-
velopment of prostate cancer.

It is intriguing to speculate about a possible role for sCLU in by-
stander effects, after radiation or chemotherapeutic therapies. An
increased production and secretion of sCLU by tumor cells into the
lymph or vasculature system may provide a survival effect for neigh-
boring or metastatic cancer cells. Additionally, secretion of IGF-1
by normal or tumor cells may provide an additional means for sCLU
up-regulation.

Exploiting CLU induction

The exact regions of the CLU promoter that are required for IR
induction have not yet been determined. Determining the exact ele-
ment required for IR induction will allow us to potentially utilize
the CLU promoter for combination gene targeting and radiation
therapies. The Egr-1 promoter linked to the herpes simplex virus
thymidine kinase gene is currently being utilized in this manner to
sensitize tumor cells for radio-therapy.'”"** The IR-inducible element
in the CLU promoter may be more useful since it is induced by much
lower doses of IR and because it is repressed by p53. Since p53 is
mutated in over 50% of all human tumors, using the IR-inducible
4250 CLU promoter with the p53 binding site will allow us to tar-
get this construct to be active in the tumor cells missing p53, while
sparing the normal cells that still contain wild-type p53.

Conclusions

In summary, CLU gene expression is implicated in many normal
biological processes and many pathological disease processes. The
function of sCLU is complex, but it seems to play a role in cellular
stress responses. SCLU appears to provide cytoprotection against
cellular injury and inflammatory responses while the nuclear form
of the protein appears to be cytotoxic. The regulation of this protein
after stress is not understood. A better understanding of this protein
and its various roles in cellular responses to stress will allow us to
generate better treatments and therapies for many of these different
pathological processes.
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