HETEROCYCLES, Vol. 95, No. 2, 2017, pp. 950-971. © 2017 The Japan Institute of Heterocyclic Chemistry
Received, 31st August, 2016, Accepted, 24th October, 2016, Published online, 16th February, 2017
DOI: 10.3987/COM-16-S(S)63

# SYNTHESIS OF LAMELLARINS VIA REGIOSELECTIVE ASSEMBLY OF 1,2-DIARYLATED [1]BENZOPYRANO[3,4-b]PYRROL-4(3H)-ONE CORE 

Tsutomu Fukuda,* Takatoshi Katae, Issei Harada, and Masatomo Iwao

Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; E-mail: t-fukuda@nagasaki-u.ac.jp


#### Abstract

A modular synthesis of lamellarins has been developed. The key reactions in this synthesis are the assembly of 1,2-diarylated [1]benzopyrano-[3,4-b]pyrrol-4(3H)-ones from a preexisting [1]benzopyrano[3,4-b]pyrrol$4(3 \mathrm{H})$-one core and the appropriate arylboronic acids. The obtained 1,2-diarylated [1]benzopyrano[3,4-b]pyrrol-4(3H)-ones could be easily converted into the corresponding lamellarin derivatives by intramolecular annulation between the pyrrole nitrogen and the C 2 aromatic ring.


## INTRODUCTION

Lamellarins are polycyclic pyrrole alkaloids possessing a unique 14-phenyl-6 H -[1]benzopyrano[ $\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo $\left[2,1-a\right.$ ]isoquinolin-6-one ring system. ${ }^{1}$ In rare cases (lamellarins $\mathrm{O}, \mathrm{P}, \mathrm{Q}$, and R ), the compounds possess simple, nonfused 3,4-diarylpyrrole-2-carboxylate structures. ${ }^{2 d, 2 e}$ Since the first isolation of lamellarins A-D from the marine prosobranch mollusk Lamellaria sp. in 1985, more than 50 lamellarins have been isolated from tunicates, sponges, and prosobranchs. ${ }^{2}$ These lamellarins exhibit a wide range of useful biological activities: potent antiproliferative activity against several cancer cell lines, ${ }^{2 \mathrm{~g}, \mathrm{~h}, \mathrm{j}, \mathrm{k}, \mathrm{m}, \mathrm{n}, 3}$ multi-drug resistance (MDR) reversal activity, ${ }^{2 \mathrm{n}, 3 \mathrm{a}}$ anti-HIV activity, ${ }^{2 \mathrm{j}, \mathrm{cc}, 4}$ topoisomerase I inhibition, ${ }^{5}$ inhibition of mitochondrial function, ${ }^{6}$ and protein kinase inhibition. ${ }^{3 \mathrm{j}, 7}$ Because of their unique structures and significant biological activities, lamellarins have attracted the attention of synthetic organic and medicinal chemists. Since the first synthesis of lamellarins in 1997, numerous methods for their preparation have been proposed. ${ }^{8}$ The methods can be categorized into two groups: one utilizes formation of the pyrrole core as the key step and the other employs regioselective functionalization of the
preexisting pyrrole core. Compared to the former approaches, the latter syntheses are more effective since a wide range of natural and artificial lamellarins can be obtained easily by simple modification of the aromatic building blocks substituted on the central pyrrole core (C-ring). In fact, the syntheses of lamellarins using such modular approaches have been developed by several groups. ${ }^{8 \mathrm{~h}, \mathrm{j}, \mathrm{j}, \mathrm{q}, \mathrm{w}, \mathrm{x}}$ For example, we developed a modular synthesis of lamellarins $L(\mathbf{4})$ and $N(\mathbf{5})$ via the following sequence: 1) regioselective assembly of 3,4,5-differentially arylated pyrrole-2-carboxylates 2 from 2,5-dibromo-1-(tert-butoxycarbonyl)-1H-pyrrole $\mathbf{1}$ and arylboronic acids; 2) lactonization of $\mathbf{2}$ to construct the B-ring of lamellarins; 3) intramolecular annulation of 1,2-diaryl-[1]benzopyrano[3,4-b]pyrrol-4(3H)-ones 3 to construct the D-ring; and 4) deprotection (Scheme 1). ${ }^{8 u}$


Scheme 1

In most of the modular lamellarin syntheses, the A-ring module is introduced after construction of the Eand F-rings, whereas the synthesis using the other strategy has been rarely reported. ${ }^{8 q}$ To prepare libraries of biologically active lamellarin analogues for lead discovery and/or optimization in medicinal chemistry, it is essential to develop a synthetic method based upon a new strategy. We focused our attention on compound $\mathbf{3}$ and expected that another total synthesis of lamellarins would be possible if 1,2-diaryl-[1]benzopyrano[3,4-b]pyrrol-4(3H)-ones could be efficiently synthesized by introduction of the E- and F-ring modules into a preexisting [1]benzopyrano[3,4-b]pyrrol-4(3H)-one core, which corresponds to the $\mathrm{A}-\mathrm{C}$ ring system of lamellarins. In this paper, we report the alternative modular synthesis of lamellarins starting from 7-isopropyl-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one $\mathbf{6}$.

## RESULTS AND DISCUSSION

We initially selected lamellarins $\eta(7)$ and $D(8)$, and 5,6-dehydrolamellarin $Y(9)$, as the targets for this synthetic approach. Lamellarins 7, 8, and 9 can be prepared from 1,2-diaryl-[1]benzopyrano[3,4-b]-pyrrol-4(3H)-ones 10a, 10b, and 10c, as depicted retrosynthetically in Scheme 2. Since the substituents at the C 1 and C 2 positions of $\mathbf{1 0 a} \mathbf{- c}$ are the same, intermediates $\mathbf{1 0}$ may be obtained by the double cross-coupling of 1,2-dibromo-[1]benzopyrano[3,4-b]pyrrol-4(3H)-ones $\mathbf{1 1}$ with arylboronic acids $\mathbf{1 2}$. Dibromide $\mathbf{1 1}$ can be prepared from [1]benzopyrano[3,4-b]pyrrol-4 $(3 H)$-one $\mathbf{6}$, which is easily accessible from N -benzenesulfonyl- 1 H -pyrrole. ${ }^{8 \mathrm{p}}$




Scheme 2

Based on the retrosynthetic analysis, we first synthesized 10a-c. Dibromide $\mathbf{1 1}$ was obtained by the treatment of $\mathbf{6}$ with $N$-bromosuccinimide (NBS) in DMF (Scheme 3).


Scheme 3

We next investigated the Suzuki-Miyaura cross-coupling of $\mathbf{1 1}$ with arylboronic acids 12. The results are summarized in Table 1. Treatment of $\mathbf{1 1}$ with 3.0 equiv of 12a in the presence of $10 \mathrm{~mol} \%$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and 6.6 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in a 1,2-dimethoxyethane (DME)/water mixture under reflux for 12.5 h furnished 10a in $78 \%$ yield (entry 1). Cross-coupling of $\mathbf{1 1}$ with arylboronic acids 12b and 12c under similar conditions afforded the corresponding products $\mathbf{1 0 b}$ and $\mathbf{1 0} \mathbf{c}$ in identical yields of $72 \%$ (entries 2 and 3).

Table 1. Synthesis of 1,2-diarylated [1]benzopyrano[3,4-b]pyrrol-4(3H)-ones $\mathbf{1 0}$ via cross-coupling of 11 with arylboronic acids $\mathbf{1 2}$




| entry | $\mathbf{1 2}$ | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | time $(\mathrm{h})$ | $\mathbf{1 0}$ | ${\text { yield }(\%)^{a}}^{(12 a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1 2 a}$ | Me | Me | 12.5 | $\mathbf{1 0 a}$ | 78 |
| 2 | $\mathbf{1 2 b}$ | $i-\mathrm{Pr}$ | Me | 13 | $\mathbf{1 0 b}$ | 72 |
| 3 | $\mathbf{1 2 c}$ | Me | $i-\mathrm{Pr}$ | 15 | $\mathbf{1 0 c}$ | 72 |

[^0]We then focused on the conversion of 10a-c to lamellarins $\eta$ (7) and $D(8)$, and 5,6-dehydrolamellarin $Y$ (9) (Scheme 4). Treatment of 10a-c with bromoacetaldehyde dimethyl acetal in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base in DMF gave 2,2-dimethoxyethylated 13a-c in $72-96 \%$ yields. Subsequently, TfOH-mediated cyclization of $\mathbf{1 3 a} \mathbf{a} \mathbf{c}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 2.5 h afforded $\mathbf{1 4 a - c}$ in good to excellent yields. Final deprotection of the isopropyl groups of $\mathbf{1 4 a - c}$ using excess $\mathrm{BCl}_{3}$ afforded the corresponding lamellarins 7, 8, and $\mathbf{9}$ in $87-98 \%$ yields.


Scheme 4. Reagents and conditions: (a) $\mathrm{BrCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}$ ( 6.6 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (6.6 equiv), DMF, $110{ }^{\circ} \mathrm{C}$, $14-18 \mathrm{~h}$ (13a: $72 \%$, 13b: $94 \%$, 13c: $96 \%$ ); (b) cat. $\mathrm{TfOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}(\mathbf{1 4 a}$ : $\mathbf{9 9 \%}$, 14b: $87 \%, \mathbf{1 4 c}$ : $99 \%$ ); (c) $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}, 0.5$ h then $\mathrm{rt}, 3 \mathrm{~h}(7: 87 \%, \mathbf{8}: 98 \%, 9$ : $98 \%)$.

Encouraged by the successful total synthesis of lamellarins 7, 8, and 9, we attempted the synthesis of other types of lamellarins, $\alpha(\mathbf{1 5})$ and $\mathrm{N}(\mathbf{5})$. The retrosynthetic analysis of $\mathbf{1 5}$ and $\mathbf{5}$ is depicted in Scheme 5. Both $\mathbf{1 5}$ and $\mathbf{5}$ can be obtained from 1,2-diaryl-[1]benzopyrano[3,4-b]pyrrol-4(3H)-ones 10d and $\mathbf{3}$ in a similar manner as described above. As opposed to the cases of $\mathbf{1 0 a} \mathbf{c}$, the C 1 and C 2 aryl


Scheme 5
substituents on 10d and $\mathbf{3}$ are different. Hence, we planned to synthesize 10d and $\mathbf{3}$ via two different routes: the stepwise cross-coupling of $\mathbf{1 1}$ with arylboronic acids $\mathbf{1 2 c}$ and $\mathbf{1 2 a}$ or $\mathbf{1 2 b}$; or the iterative bromination/cross-coupling sequence of $\mathbf{6}$.
According to the retrosynthetic analysis, we first examined the regioselective Suzuki-Miyaura cross-coupling of dibromide $\mathbf{1 1}$ with arylboronic acid 12c. Initially, we tried to accomplish the cross-coupling by modifying the reaction conditions described in Table 1. The results are summarized in Table 2. When 1.5 equiv of $\mathbf{1 2 c}$ was used for the reaction, the 1,2 -diarylated product $\mathbf{1 0 c}$ was obtained in only $62 \%$ yield (entry 1). However, when the amount of $\mathbf{1 2 c}$ was reduced to 1.0 equiv, no monoarylated product was observed and $\mathbf{1 0} \mathbf{c}$ was obtained in $39 \%$ yield, along with the unreacted $\mathbf{1 a}$ ( $38 \%$, entry 2 ). The monoarylated product was not furnished even after changing the solvent to THF and reducing the reaction temperature to $65^{\circ} \mathrm{C}$ (entry 3). These results suggested that conversion of the monoarylated product into the 1,2-diarylated product 10c proceeds much faster than the conversion of $\mathbf{1 1}$ into the monoarylated product. The reason for this trend is not clear at present.

Table 2. Attempted regioselective cross-coupling of $\mathbf{1 1}$ with 12c


| entry | 12c (equiv) | solvent | temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{1 0 c}(\%)^{\mathrm{a}}$ | $\mathbf{1 1}(\%)^{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.5 | DME | 85 | 62 | 0 |
| 2 | 1.0 | DME | 85 | 39 | 38 |
| 3 | 1.0 | THF | 65 | 14 | 55 |

${ }^{2}$ Isolated yield.

Dodd et al. reported that 2,5-dibromo-1-(tert-butoxycarbonyl)-1H-pyrrole (1) could be regioselectively monoarylated under the standard cross-coupling conditions in the presence of $\mathrm{LiCl} .^{9}$ Accordingly, we carried out the reaction of dibromide 11 with 12c under similar conditions, as mentioned in Table 3 $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}\right.$ ( 8.0 equiv), LiCl (3.0 equiv), DME, water, $\left.85^{\circ} \mathrm{C}, 3 \mathrm{~h}\right]$; however, the desired product was not formed and $\mathbf{1 1}$ was recovered in $67 \%$ yield (entry 1 ). When the reaction time was extended to 15 h , the monoarylated product $\mathbf{1 6}$ was obtained in poor yield ( $12 \%$ ), along with the 1,2-diarylated product $\mathbf{1 0 c}(53 \%)$ and unreacted $\mathbf{1 1}$ (9\%) (entry 2).
We then used the cross-coupling conditions established by Bach et al. for the conversion of methyl 4,5-dibromo-1H-pyrrole-2-carboxylate to 5-aryl-4-bromo-1H-pyrrole-2-carboxylate. ${ }^{10}$ Dibromide 11

Table 3. Attempted regioselective cross-coupling of $\mathbf{1 1}$ with $\mathbf{1 2 c}$ in the presence of LiCl


| entry | time (h) | $\mathbf{1 6}(\%)^{\mathrm{a}}$ | $\mathbf{1 0 c}(\%)^{\mathrm{a}}$ | $\mathbf{1 1}(\%)^{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 0 | 0 | 67 |
| 2 | 15 | 12 | 53 | 9 |

${ }^{\text {a }}$ Isolated yield.
was treated under similar conditions $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}\right.$ (1.2 equiv), toluene-EtOH-water (5:1:1), $\left.110{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}\right]$. However, this reaction, too, was not very successful and afforded 1-debrominated [1]benzopyrano[3,4-b]pyrrol-4(3H)-one 17 in $36 \%$ yield along with the 1,2-diaryl product 10c in $31 \%$ yield (Scheme 6).





Scheme 6

At this stage, we discontinued the synthesis of $\mathbf{1 0 d}$ and $\mathbf{3}$ via the stepwise cross-coupling of $\mathbf{1 1}$, since the regioselective cross-coupling of $\mathbf{1 1}$ with 12c was inefficient for the preparation of the monoarylated [1]benzopyrano[3,4-b]pyrrol- $4(3 H)$-one $\mathbf{1 6}$. We next focused on the synthesis of $\mathbf{1 0 d}$ and $\mathbf{3}$ via the iterative bromination/cross-coupling sequence of $\mathbf{6}$. The results for the regioselective bromination of $\mathbf{6}$ with NBS are summarized in Table 4. Treatment of $\mathbf{6}$ with 1.05 equiv NBS in DMF at $0^{\circ} \mathrm{C}$ for 2 h gave the 1-monobrominated product $\mathbf{1 8}$ and 1,2-dibrominated product 11 in $48 \%$ and $24 \%$ yields, respectively; the starting material $\mathbf{6}$ was recovered in $15 \%$ yield (entry 1). All attempts to separate 18, 11, and $\mathbf{6}$ by column chromatography failed because of the poor solubility of $\mathbf{1 8}$ in most of the commonly used eluents; thus, the yields of these products were estimated by ${ }^{1} \mathrm{H}$ NMR analysis of the mixtures. When a less polar solvent such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used, the formation of $\mathbf{1 1}$ was suppressed ( $1 \%$ yield) and $\mathbf{1 8}$ was obtained in $68 \%$ yield (entry 2). Although the addition of 1.0 equiv pyridine promoted the reaction to afford $\mathbf{1 8}$ in $75 \%$ yield, compound $\mathbf{1 1}$ was also formed in $6 \%$ yield (entry 3). In contrast, when 1.0 equiv AcOH was used as the acidic additive, the yield of $\mathbf{1 8}$ improved to $79 \%$ without significant

Table 4. Regioselective bromination of [1]benzopyrano[3,4-b]pyrrol-4(3H)-one $\mathbf{6}$ with NBS ${ }^{\text {a }}$


| entry | solvent(s) | additive | $\mathbf{1 8}(\%)$ | $\mathbf{1 1}(\%)$ | $\mathbf{6}(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | DMF | - | 48 | 24 | 15 |
| 2 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | - | 68 | 1 | 25 |
| 3 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | pyridine (1 equiv) | 75 | 6 | 6 |
| 4 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | AcOH (1 equiv) | 79 | $<1$ | 9 |
| 5 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOH}(4: 1)$ | - | $99^{\text {b }}$ | 0 | 0 |

${ }^{\text {a }}$ Unless mentioned otherwise, the yields of 18, 11, and $\mathbf{6}$ were estimated by ${ }^{1} \mathrm{H}$ NMR analysis of the inseparable mixture. See ref. 11. ${ }^{\text {b }}$ Isolated yield.
formation of $\mathbf{1 1}$ (entry 4). Finally, $\mathbf{1 8}$ was obtained as the sole product in $99 \%$ yield when a $4: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and AcOH was used as the solvent system for the reaction (entry 5).
With the 1-brominated [1]benzopyrano[3,4-b]pyrrol-4(3H)-one $\mathbf{1 8}$ in hand, we next attempted the conversion of 18 into differentially 1,2-arylated [1]benzopyrano[3,4-b]pyrrol-4(3H)-ones 10d and 3 (Scheme 7). Suzuki-Miyaura cross-coupling of 18 with arylboronic acid 12c under the standard conditions $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}\right.$, water, DME, reflux] afforded 19 in $76 \%$ yield. Subsequent bromination of $\mathbf{1 9}$ with 1.6 equiv NBS in the presence of pyridine ( 1.0 equiv) gave the 2 -brominated product 20 in good yield (92\%). When the bromination was carried out in the absence of pyridine, the reaction was slow and the addition of excess NBS was necessary to complete the reaction. Then, $\mathbf{2 0}$ was treated with 3.0 equiv arylboronic acids 12a and 12b under the standard conditions to give $\mathbf{1 0 d}$ and $\mathbf{3}$, respectively, in identical yields (83\%). At this point, the formal synthesis of lamellarin N (5) was achieved since the conversion of $\mathbf{3}$ into $\mathbf{5}$ has been reported previously by us. ${ }^{\text {8u }}$


Scheme 7. Reagents and conditions: (a) 12c (3.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ( $10 \mathrm{~mol} \%$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ( 6.6 equiv), water, DME, reflux, 13 h ( $76 \%$ ); (b) NBS ( 1.6 equiv), pyridine ( 1.0 equiv), DMF, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}$ ( $92 \%$ ); (c) 12a or 12b (3.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ( 6.6 equiv), water, DME, reflux, 14 h (10d: 83\%, 3: 83\%).

Further conversion of $\mathbf{1 0 d}$ to lamellarin $\alpha(\mathbf{1 5})$ was achieved using the conditions indicated in Scheme 4 (Scheme 8).


Scheme 8. Reagents and conditions: (a) $\mathrm{BrCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}$ ( 6.6 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 6.6 equiv), DMF, $110{ }^{\circ} \mathrm{C}$, 14 h (quant); (b) cat. TfOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$ (94\%); (c) $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 0.5$ h then $\mathrm{rt}, 3 \mathrm{~h}(87 \%)$.

In conclusion, we have developed a synthesis of 1,2-diarylated [1]benzopyrano[3,4-b]pyrrol-4(3H)-ones via the double cross-coupling of 1,2-dibromo-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one $\mathbf{1 1}$ or iterative bromination/cross-coupling sequence of [1]benzopyrano[3,4-b]pyrrol-4(3H)-one 6. The 1,2-diarylated [1]benzopyrano[3,4-b]pyrrol- $4(3 H)$-ones thus obtained could be converted into the corresponding lamellarins. This strategy could be useful because it can facilitate the formation of a wide range of lamellarins by simple structural modifications of the [1]benzopyrano[3,4-b]pyrrol-4(3H)-one core and the arylboronic acid coupling partners.

## EXPERIMENTAL

Melting points were determined with a Yanagimoto micro melting point apparatus and are reported uncorrected. IR spectra were obtained with a Thermo Nicolet Nexus 670 NT FT-IR instrument and are reported in terms of absorption frequency $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded on a JEOL JNM-AL400 instrument ( 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ ) or a Varian NMR System 500PS SN instrument ( 500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$ ). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are expressed in parts per million $(\mathrm{ppm})$ relative to the following internal standards: $\mathrm{CDCl}_{3}$ and acetone- $d_{6}$ (tetramethylsilane, $\delta 0.0 \mathrm{ppm}$ ); DMSO- $d_{6}$ (DMSO, $\delta 2.50 \mathrm{ppm}$ ). Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ( $\delta$ ppm ), multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{sep}=$ septet, $\mathrm{m}=$ multiplet, br $\mathrm{s}=$ broad singlet), coupling constant $(\mathrm{Hz})$, and integration. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are expressed in ppm relative to the following internal standards: $\mathrm{CDCl}_{3}$ (tetramethylsilane, $\delta 0.0 \mathrm{ppm}$ ); DMSO- $d_{6}$ (DMSO- $d_{6}, \delta 39.52 \mathrm{ppm}$ ). ${ }^{13} \mathrm{C}$ NMR data are reported in terms of chemical shift. High-resolution mass spectra were recorded on a JEOL JMS-T100TD (direct analysis by real-time mass spectrometry, DARTMS). Column chromatography was conducted using silica gel 60N, 63-210 $\mu \mathrm{m}$ (Kanto Chemical Co., Inc.), Chromatorex NH-DM1020 (Fuji Silysia Chemical Ltd.), or aluminium oxide 90 (Merck

KGaA). Flash chromatography was conducted using silica gel $60 \mathrm{~N}, 40-50 \mu \mathrm{~m}$ (Kanto Chemical Co., Inc.).

1,2-Dibromo-7-isopropoxy-8-methoxy[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (11). Under an argon atmosphere, a solution of NBS ( $1.36 \mathrm{~g}, 7.63 \mathrm{mmol}$ ) in DMF ( 7.0 mL ) was added dropwise to a solution of $6(695 \mathrm{mg}, 2.54 \mathrm{mmol})$ in DMF $(14 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 h at $0^{\circ} \mathrm{C}$, the mixture was quenched with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(14 \mathrm{~mL})$ and then diluted with water $(175 \mathrm{~mL})$. The precipitate thus formed was collected by filtration, washed with water, and dried under reduced pressure. The crude product was recrystallized from acetone-hexane to give $\mathbf{1 1}$ as a colorless powder ( $914 \mathrm{mg}, 83 \%$ ). Mp $286.5-287.5^{\circ} \mathrm{C}$. IR (KBr): 3447, 1690, 1433, 1272, 1219, 1160, $1011 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta 1.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, 13.87 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta 21.7,55.7,70.6,92.8,103.2,103.6,107.8,115.6$, $116.5,125.9,145.6,146.3,147.5,152.7$. HRMS ( $\mathrm{m} / \mathrm{z}$ ) Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 429.9290$. Found: 429.9302.

## 1,2-Bis(3,4-dimethoxyphenyl)-7-isopropoxy-8-methoxy[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (10a).

 Under an argon atmosphere, a mixture of 1,2-dibromo-7-isopropoxy-8-methoxy-[1]benzopyrano-[3,4-b]pyrrol-4(3H)-one (11) ( $500 \mathrm{mg}, 1.16 \mathrm{mmol}$ ), 3,4-dimethoxyphenylboronic acid (12a) ( 633 mg , $3.48 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(134 \mathrm{mg}, 0.116 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(811 \mathrm{mg}, 7.65 \mathrm{mmol})$, DME ( 30 mL ), and degassed water ( 3.0 mL ) was refluxed for 12.5 h . After cooling to rt , the solvent was evaporated in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=2: 1$ ) and subsequent column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=\right.$ 5:1) to give 10a as a colorless solid ( $498 \mathrm{mg}, 78 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. $\mathrm{Mp} 256-257^{\circ} \mathrm{C}$. IR (KBr): 3302, 1683, 1457, 1264, 1240, 1216, $1027 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.01(\mathrm{~m}, 5 \mathrm{H}), 7.03$ (dd, $J=1.5$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.9,55.7,55.8,55.9,56.0$, $56.1,71.6,103.7,105.1,110.6,110.8,111.1,111.6,114.1,115.2,117.2,120.5,123.5,123.6,127.5,129.1$, $139.4,146.2,146.8,147.3,148.7,148.9,149.2,149.4,156.2$. HRMS ( $\mathrm{m} / \mathrm{z}$ ) Calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{8}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 546.2128 . \quad$ Found: 546.2151.
## 7-Isopropoxy-1,2-bis(4-isopropoxy-3-methoxyphenyl)-8-methoxy[1]benzopyrano[3,4-b]pyrrol-

$\mathbf{4} \mathbf{( 3 H})$-one (10b). According to the procedure described for the preparation of 10a, bromide $\mathbf{1 1}$ ( 500 mg , 1.16 mmol ) and 4-isopropoxy-3-methoxyphenylboronic acid (12b) ( $731 \mathrm{mg}, 3.48 \mathrm{mmol}$ ) were reacted for 13 h . After successive purification by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=\right.$

10:1) and column chromatography over Chromatorex NH-DM1020 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=20: 1\right)$, 10b was obtained as a colorless solid ( $501 \mathrm{mg}, 72 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 222.5-223.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3279, 1690, 1464, 1262, 1218, 1147, $1110 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 4.51-4.65(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.95-$ $7.01(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.9,21.9,22.1$, $22.1,55.6,55.8,56.1,71.2,71.6,71.7,103.8,105.1,110.6,111.3,114.8,114.8,115.1,116.6,117.2$, $120.1,123.5,128.1,129.1,139.3,146.2,146.8,146.8,147.3,147.6,150.0,151.0,156.2$. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 602.2754$. Found: 602.2734.

## 7-Isopropoxy-1,2-bis(3-isopropoxy-4-methoxyphenyl)-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-

$\mathbf{4 ( 3 H})$-one (10c). According to the procedure described for the preparation of 10a, bromide $\mathbf{1 1}$ ( 300 mg , $0.696 \mathrm{mmol})$ and 3-isopropoxy-4-methoxyphenylboronic acid (12c) ( $439 \mathrm{mg}, 2.09 \mathrm{mmol}$ ) were reacted for 15 h . After purification by flash chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=10: 1\right)$, 10c was obtained as a colorless solid ( $303 \mathrm{mg}, 72 \%$ ). Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave a colorless powder. Mp 92.5-93.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3256, 1701, 1455, 1255, 1216, 1139, $1110 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.32(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{sep}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.03(\mathrm{~m}$, $4 \mathrm{H}), 9.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.9,22.0,22.1,22.2,55.7,56.0,56.2,71.1,71.2$, $71.5,103.7,105.1,110.6,111.8,112.4,114.5,115.0,117.2,118.0,120.2,123.4,123.7,127.4,129.1$, 139.3, 146.2, 146.8, 147.2, 147.3, 147.8, 149.9, 150.4, 156.2. HRMS (m/z) Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{8}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 602.2754$. Found: 602.2744.

## 3-(2,2-Dimethoxyethyl)-1,2-bis(3,4-dimethoxyphenyl)-7-isopropoxy-8-methoxy[1]benzopyrano-

[3,4-b]pyrrol-4(3H)-one (13a). Under an argon atmosphere, a solution of $\mathbf{1 0 a}(400 \mathrm{mg}, 0.733 \mathrm{mmol})$, 2-bromo-1,1-dimethoxyethane ( $572 \mu \mathrm{~L}, 4.84 \mathrm{mmol}$ ), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.58 \mathrm{~g}, 4.85 \mathrm{mmol})$ in DMF ( 40 mL ) was stirred for 14 h at $110^{\circ} \mathrm{C}$. After cooling to rt , the mixture was diluted with water, and the products were extracted with a mixed solvent of hexane-EtOAc (1:1). The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=5: 1\right)$ to give 13a as a colorless solid ( $335 \mathrm{mg}, 72 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 196.5-197.5 ${ }^{\circ} \mathrm{C}$. IR ( KBr ): 1709, 1464, 1438, 1262, $1139,1027 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.50(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=1.7$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.7$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,48.0,55.5,55.8,55.8,55.8,55.9,55.9,71.5,103.5,104.5,105.4$, $110.2,110.8,111.0,114.3,114.6,114.7,118.6,122.2,123.6,124.1,126.9,127.8,144.1,146.2,146.6$, $147.4,148.2,148.5,148.7,149.2$, 155.7. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 634.2652$. Found: 634.2671.

3-(2,2-Dimethoxyethyl)-7-isopropoxy-1,2-bis(4-isopropoxy-3-methoxyphenyl)-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (13b). According to the procedure described for the preparation of $\mathbf{1 3 a}, \mathbf{1 0 b}(350 \mathrm{mg}, 0.582 \mathrm{mmol})$, 2-bromo-1,1-dimethoxyethane ( $454 \mu \mathrm{~L}, 3.84 \mathrm{mmol}$ ), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.25 \mathrm{~g}, 3.84 \mathrm{mmol})$ were reacted for 18 h . After chromatographic purification over aluminium oxide $90\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=5: 1\right)$, 13b was obtained as a colorless powder ( $379 \mathrm{mg}, 94 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp $165-166{ }^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr):} \mathrm{1702}$, $1467,1440,1231,1135,1074 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.36(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.47-4.69$ $(\mathrm{m}, 5 \mathrm{H}), 4.88(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.91(\mathrm{~m}, 4 \mathrm{H})$, $6.95(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.9,21.9,22.0,22.1,47.9,55.4,55.6,55.8$, $55.9,71.2,71.5,71.5,103.5,104.5,105.3,110.3,114.5,114.7,115.1,115.2,115.9,118.6,122.3,123.5$, 123.9, 127.5, 127.8, 144.1, 146.2, 146.3, 146.6, 147.3, 147.5, 149.6, 150.2, 155.8. HRMS ( $\mathrm{m} / \mathrm{z}$ ) Calcd for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 690.3278$. Found: 690.3250.

## 3-(2,2-Dimethoxyethyl)-7-isopropoxy-1,2-bis(3-isopropoxy-4-methoxyphenyl)-8-methoxy-

[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (13c). According to the procedure described for the preparation of 13a, 10c ( $54.4 \mathrm{mg}, 94.8 \mu \mathrm{~mol}$ ), 2-bromo-1,1-dimethoxyethane ( $72.1 \mu \mathrm{~L}, 0.626 \mathrm{mmol}$ ), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $204 \mathrm{mg}, 0.626 \mathrm{mmol}$ ) were reacted for 14 h . After successive purification by column chromatography over silica gel 60 N (hexane-EtOAc $=2: 1$ ) and column chromatography over silica gel 60 N (toluene-EtOAc $=5: 1$ ) to give $\mathbf{1 3 c}$ as a colorless solid ( $60.5 \mathrm{mg}, 96 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 147-148 ${ }^{\circ} \mathrm{C}$. IR ( KBr ): 1709, 1461, 1264, 1136, 1028 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.15(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.32(\mathrm{~s}, 6 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{sep}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=1.9$ and 8.2 Hz , $1 \mathrm{H}), 6.93(\mathrm{dd}, J=1.9$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.6$, $21.8,22.2,47.8,55.3,55.8,55.9,56.0,71.1,71.2,71.4,103.4,104.4,105.4,110.3,111.5,111.7,114.7$, 118.6, 118.6, 118.7, 122.2, 123.9, 124.2, 126.9, 127.8, 144.1, 146.2, 146.6, 146.8, 147.0, 147.3, 149.5, 150.5, 155.8. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 690.3278$. Found: 690.3491.

14-(3,4-Dimethoxyphenyl)-3-isopropoxy-2,11,12-trimethoxy- $6 H$-[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo-[2,1-a]isoquinolin-6-one (14a). Under an argon atmosphere, 1 drop of TfOH was added to a solution of

13a ( $15.0 \mathrm{mg}, 23.7 \mu \mathrm{~mol})$ in $\mathrm{DCM}(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 2.5 h at $0^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{mg})$ and $\mathrm{MgSO}_{4}(10 \mathrm{mg})$ was added to the mixture. The suspension was allowed to warm to rt and then passed through a pad of Celite. The filtrate was evaporated and the residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=1: 1$ ) to give 14a as a colorless solid ( 13.3 mg , $99 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 238-239 ${ }^{\circ} \mathrm{C}$. IR ( KBr ): $1708,1430,1269,1226,1043 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta 1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$ ), 3.45 (s, $3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 6 \mathrm{H}), 4.58(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=$ 1.8 and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,21.8,55.2,55.6$, $56.0,56.2,56.3,71.5,103.5,105.3,105.6,107.4,107.9,109.9,110.9,112.0,112.3,114.5,119.1,123.3$, $124.2,124.8,128.3,129.5,134.4,146.6,146.7,148.0,149.1,149.2,149.9,150.1,155.5$. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 570.2128$. Found: 570.2112.
3,11-Diisopropoxy-14-(4-isopropoxy-3-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano-
[ $\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo $\left.2,1-a\right]$ isoquinolin- $6-o n e ~(14 b)$. According to the procedure described for the preparation of $\mathbf{1 4 a}, \mathbf{1 3 b}(100 \mathrm{mg}, 0.145 \mathrm{mmol})$ was reacted. After purification by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=10: 1\right), \mathbf{1 4 b}$ was obtained as a colorless powder ( $78.5 \mathrm{mg}, 87 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 193-194 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{8 k} \mathrm{Mp} 191-192{ }^{\circ} \mathrm{C}$ ). IR (KBr): 1705, 1431, 1418, 1267, 1223, $1036 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.57$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 3 \mathrm{H}), 9.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,21.8,21.9,21.9,21.9,55.2,55.5,56.2,71.2,71.5,71.8,103.5,105.5$, $105.7,107.8,110.0,110.5,111.1,112.3,115.1,116.9,119.0,123.2,123.9,124.7,128.8,129.4,134.4$, 146.5, 146.6, 147.2, 147.9, 148.5, 150.2, 151.4, 155.6. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 626.2754. Found: 626.2741. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{\text {8k }}$
3,12-Diisopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,11-dimethoxy-6H-[1]benzopyrano-
[ $\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo $\left.2,1-a\right]$ isoquinolin-6-one (14c). According to the procedure described for the preparation of $\mathbf{1 4 a}, \mathbf{1 3 c}(150 \mathrm{mg}, 0.217 \mathrm{mmol})$ was reacted. After purification by column chromatography over silica gel 60 N (hexane-EtOAc $=1: 1$ ), 14c was obtained as a colorless powder (134 $\mathrm{mg}, 99 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane gave a colorless powder. Mp 207-208 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1692, 1446, 1269, 1221, $1042 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.45$ $(\mathrm{s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{sep}, J=6.1$
$\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 7.17$ $(\mathrm{s}, 1 \mathrm{H}), 9.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 21.7,21.7,21.8,21.9,22.0,55.5,56.0$, $56.4,70.8,71.2,71.4,103.4,105.5,107.5,107.7,107.8,110.0,111.0,112.3,112.9,117.5,119.2,123.1$, 123.7, 124.5, 128.4, 129.5, 134.5, 146.6, 146.7, 147.6, 147.9, 148.5, 150.2, 150.9, 155.6. HRMS ( $\mathrm{m} / \mathrm{z}$ ) Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$626.2754. Found: 626.2726.

## 14-(3,4-Dimethoxyphenyl)-3-hydroxy-2,11,12-trimethoxy-6H-[1]benzopyrano[ $\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo-

 [2,1-a]isoquinolin-6-one (lamellarin $\boldsymbol{\eta}, \mathbf{7}$ ). Under an argon atmosphere, a heptane solution of $\mathrm{BCl}_{3}$ ( $1.0 \mathrm{M}, 263 \mu \mathrm{~L}, 0.263 \mathrm{mmol}$ ) was added dropwise to a solution of $\mathbf{1 4 a}(50.0 \mathrm{mg}, 87.8 \mu \mathrm{~mol})$ in DCM (13 mL ) at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to warm to rt . After stirring for 3 h at rt , the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}$ and the precipitate thus formed was collected by filtration, washed successively with water, 1 M HCl , and water, and dried under reduced pressure. The crude product was purified by column chromatography over silica gel 60 N (acetone) to give 7 as a pale gray powder ( $40.2 \mathrm{mg}, 87 \%$ ). Mp 258-259 ${ }^{\circ} \mathrm{C}$ (sealed capillary) (lit. ${ }^{2 \mathrm{~m}} \mathrm{Mp} 268-272{ }^{\circ} \mathrm{C}$ ). IR (KBr): 3288, 1692, 1431, 1267, 1226, $1046 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=1.9$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $9.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.86$ $(\mathrm{s}, 6 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H})$, $9.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 55.2,55.6,56.0,56.2,56.3$, 103.6, 104.7, 105.3, 107.4, 107.9, 109.9, 110.8, 112.0, 112.3, 114.4, 119.1, 123.4, 124.2, 124.9, 128.4, 129.5, 134.4, 143.3, 146.4, 147.1, 149.1, 149.2, 149.9, 150.1, 155.5. ${ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta$ $54.5,55.0,55.6,55.9,56.0,103.7,104.8,105.6,106.6,108.1,108.2,110.7,112.6,113.0,114.7,118.3$, 122.2, 123.7, 124.4, 127.2, 128.9, 133.7, 144.6, 146.3, 147.9, 149.0, 149.0, 149.9, 150.0, 154.3. HRMS $(m / z)$ Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 528.1658$. Found: 528.1648. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{2 \mathrm{~m}, 81}$3,11-Dihydroxy-14-(4-hydroxy-3-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ -pyrrolo[2,1-a]isoquinolin-6-one (lamellarin D, 8). According to the procedure described for the preparation of $\mathbf{7}, \mathbf{1 4 b}(30.0 \mathrm{mg}, 47.9 \mu \mathrm{~mol})$ and $\mathrm{BCl}_{3}(1.0 \mathrm{M}, 432 \mu \mathrm{~L}, 0.432 \mathrm{mmol})$ were reacted. After purification by column chromatography over silica gel 60 N (acetone), $\mathbf{8}$ was obtained as a pale gray powder ( $23.5 \mathrm{mg}, 98 \%$ ). Mp $280-300{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary) [lit. $.^{8 k} \mathrm{Mp} 280-300{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary)]. IR (KBr): 3374, 1674, 1433, 1275, 1219, $1155 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta$ $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=1.7$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}$,
$J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta 54.5$, $55.1,56.0,103.7,105.4,105.7,106.4,108.3,110.8,111.5,112.3,115.1,116.4,117.6,122.0,123.8,124.7$, 125.5, 129.0, 134.1, 144.6, 146.3, 146.8, 147.8, 148.3, 148.5, 148.7, 154.3. HRMS ( $\mathrm{m} / \mathrm{z}$ ) Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 500.1345$. Found: 500.1327. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{8 k}$
3,12-Dihydroxy-14-(3-hydroxy-4-methoxyphenyl)-2,11-dimethoxy-6H-[1]benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ pyrrolo [2,1-a]isoquinolin-6-one (5,6-dehydrolamellarin Y, 9). According to the procedure described for the preparation of $\mathbf{7}, \mathbf{1 4 c}(50.0 \mathrm{mg}, 79.9 \mu \mathrm{~mol})$ and $\mathrm{BCl}_{3}(1.0 \mathrm{M}, 719 \mu \mathrm{~L}, 0.719 \mathrm{mmol})$ were reacted. After purification by column chromatography over silica gel 60 N (acetone), $\boldsymbol{9}$ was obtained as a pale gray powder ( $39.2 \mathrm{mg}, 98 \%$ ). $\mathrm{Mp}>300^{\circ} \mathrm{C}$ (sealed capillary) (lit. ${ }^{81} \mathrm{Mp}>250{ }^{\circ} \mathrm{C}$ ). IR (KBr): 3417, 1702, 1434, 1277, 1218, $1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=1.7$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.80$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta 54.9,55.6,55.8,103.7,105.5,106.5,108.2,108.4,109.0$, $111.1,112.9,113.4,117.9,118.9,121.4,121.7,123.6,127.1,129.0,133.3,144.5,146.2,147.2,147.6$, 147.7, 148.0, 149.6, 154.3. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 500.1345$. Found: 500.1323. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{81}$

Typical procedure for Suzuki-Miyaura cross-coupling of 1,2-dibromo-7-isopropoxy-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (11) with arylboronic acid 12c (Table 2). Under an argon atmosphere, a mixture of 1,2-dibromo-7-isopropoxy-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (11) $(50.0 \mathrm{mg}, 0.116 \mathrm{mmol})$, an appropriate amount of $\mathbf{1 2 c}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.4 \mathrm{mg}, 11.6 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ( $81.1 \mathrm{mg}, 0.765 \mathrm{mmol}$ ), DME or THF ( 3 mL ), and degassed water ( 3.0 mL ) was heatd at $85^{\circ} \mathrm{C}$ (DME) or $65^{\circ} \mathrm{C}$ (THF) for 15 h . After cooling to rt , the mixture was evaporated, and the products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=2: 1$ ). The results are summarized in Table 2.

Typical procedure for Suzuki-Miyaura cross-coupling of 1,2-dibromo-7-isopropoxy-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (11) with arylboronic acid 12c (Table 3). Under an argon atmosphere, a mixture of 1,2-dibromo-7-isopropoxy-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (11) ( $50.0 \mathrm{mg}, 0.116 \mathrm{mmol})$, 12c ( $36.5 \mathrm{mg}, 0.174 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.4 \mathrm{mg}, 11.6 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(98.4$ $\mathrm{mg}, 0.928 \mathrm{mmol}), \mathrm{LiCl}(14.8 \mathrm{mg}, 0.348 \mathrm{mmol})$, $\mathrm{DME}(3 \mathrm{~mL})$, and degassed water $(3.0 \mathrm{~mL})$ was heatd at $85^{\circ} \mathrm{C}$. After cooling to rt , the mixture was evaporated, and the products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was
purified by column chromatography over silica gel 60 N (hexane-EtOAc $=2: 1$ ). The results are summarized in Table 3.

1-Bromo-7-isopropoxy-2-(3-isopropoxy-4-methoxyphenyl)-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (16). Mp 226-227 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3228, 1688, 1519, 1460, 1265, $1218 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.44$ (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$ ), $1.45(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.61$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=2.1$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 10.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $21.9,22.1,56.1,56.4,71.6,71.6,89.5,103.6,104.7,109.7,111.9,115.2,115.4,121.3,122.1,128.0$, $139.8,146.3,147.0,147.5,148.0,151.3,155.3$. HRMS $(m / z)$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrNO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$ 516.1022. Found: 516.1021.

Procedure for Suzuki-Miyaura cross-coupling of 1,2-dibromo-7-isopropoxy-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (11) with arylboronic acid 12c (Scheme 6). Under an argon atmosphere, a mixture of 1,2-dibromo-7-isopropoxy-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (11) $(50.0 \mathrm{mg}, 0.116 \mathrm{mmol})$, 12c ( $29.2 \mathrm{mg}, 0.139 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.4 \mathrm{mg}, 11.6 \mu \mathrm{~mol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(37.8$ $\mathrm{mg}, 0.139 \mathrm{mmol})$, toluene ( 1 mL ), $\mathrm{EtOH}(0.2 \mathrm{~mL})$, and degassed water $(0.2 \mathrm{~mL})$ was heated at $110^{\circ} \mathrm{C}$ for 15 h . After cooling to rt , the mixture was evaporated, and the products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc) to give $\mathbf{1 7}$ ( $18.5 \mathrm{mg}, 36 \%$ ) and 10c ( $21.6 \mathrm{mg}, 31 \%$ ).
7-Isopropoxy-2-(3-isopropoxy-4-methoxyphenyl)-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)one (17). Mp 221-222 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3259, 1697, 1519, 1473, 1278, 1259, $1149 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.48(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{sep}, J$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=2.1$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 11.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 21.9,22.2,56.1,56.5,71.4,71.7,98.8,103.8,105.0,110.3,112.2,112.8,116.2$, 119.0, 123.7, 132.0, 143.5, 146.1, 147.5, 147.8, 147.8, 151.0, 156.1. HRMS ( $\mathrm{m} / \mathrm{z}$ ) Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{6}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 438.1917$. Found: 438.1935.

Typical procedure for regioselective bromination of 7-isopropoxy-8-methoxy-[1]benzopyrano-[3,4-b]pyrrol-4(3H)-one (6) with 1.05 equiv of NBS (Table 4). Under an argon atmosphere, NBS $(13.7 \mathrm{mg}, 76.8 \mu \mathrm{~mol})$ was added portionwise to a mixture of $\mathbf{6}(20 \mathrm{mg}, 73.2 \mu \mathrm{~mol})$, an appropriate additive, and solvent $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 2 h at $0^{\circ} \mathrm{C}$, the mixture was quenched with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and evaporated if necessary. The precipitate was collected by filtration, washed with water, and dried under reduced pressure. Since all attempts to separate of 18, 11, and $\mathbf{6}$ by column chromatography failed, the yields of $\mathbf{1 8}, \mathbf{1 1}$, and $\mathbf{6}$ were estimated by integration of ${ }^{1} \mathrm{H}$ NMR absorption of

H 9 of each compound ( $\delta \mathrm{H} 9$ of 18: $8.07 ; \delta \mathrm{H} 9$ of $\mathbf{1 1}: 8.03 ; \delta \mathrm{H} 9$ of $\mathbf{6}: 7.46$ ). ${ }^{11} \quad$ The results are shown in Table 4.

1-Bromo-7-isopropoxy-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (18). Under an argon atmosphere, NBS ( $82.1 \mathrm{mg}, 0.461 \mathrm{mmol}$ ) was added portionwise to a solution of $\mathbf{6}(120 \mathrm{mg}, 0.439 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.6 \mathrm{~mL})$ and $\mathrm{AcOH}(2.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at $0^{\circ} \mathrm{C}$, the mixture was quenched with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{~mL})$ and evaporated. The precipitate was collected by filtration, washed with water, and dried under reduced pressure. The crude product was recrystallized from acetone-EtOAc to give $\mathbf{1 8}$ as a colorless powder ( $153 \mathrm{mg}, 99 \%$ ). Mp 263.5-265.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3175, $1689,1499,1423,1278,1221,1109 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta 1.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$ ), $3.83(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta 21.7,55.8,70.6,89.8,103.5,104.0,109.0,115.9,124.8,130.3,145.5,146.4,147.2,153.8$. HRMS $(m / z)$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNO}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 352.0184$. Found: 352.0158 .

## 7-Isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-

one (19). Under an argon atmosphere, a mixture of bromide $\mathbf{1 8}(1.00 \mathrm{~g}, 2.84 \mathrm{mmol})$, 3-isopropoxy-4-methoxyphenylboronic acid (12c) ( $1.79 \mathrm{~g}, 8.52 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(328 \mathrm{mg}, 0.284 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.99 \mathrm{~g}, 18.7 \mathrm{mmol})$, DME ( 60 mL ), and degassed water ( 6 mL ) was refluxed for 13 h . After cooling to rt , the solvent was evaporated in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=2: 1$ ) and subsequently by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to give 19 as a colorless powder ( $941 \mathrm{mg}, 76 \%$ ). Mp 168$169.5^{\circ} \mathrm{C}$. IR (KBr): 3209, 1693, 1492, 1269, 1220, $1107 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.38(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{sep}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=1.7$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 11.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,22.2,56.0$, $56.1,71.5,71.5,103.8,105.4,110.7,111.9,116.4,117.2,121.4,122.5,126.8,126.9,128.2,145.9,146.9$, 147.3, 147.4, 149.9, 156.8. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 438.1917$. Found: 438.1889.

2-Bromo-7-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-8-methoxy-[1]benzopyrano[3,4-b]pyrrol$\mathbf{4 ( 3 H})$-one (20). Under an argon atmosphere, a solution of NBS ( $530 \mathrm{mg}, 2.98 \mathrm{mmol}$ ) in DMF ( 5 mL ) was added dropwise to a mixture of $19(814 \mathrm{mg}, 1.86 \mathrm{mmol})$, pyridine ( $150 \mu \mathrm{~L}, 1.85 \mathrm{mmol}$ ), and DMF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 4 h at $0^{\circ} \mathrm{C}$, the mixture was quenched with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2$ mL ), diluted with water, and the products were extracted with EtOAc. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=20: 1\right)$ to give 20 as a colorless solid ( 887 mg , $92 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 228.5-229.5 ${ }^{\circ} \mathrm{C}$. IR
(KBr): 3143, 1697, 1488, 1422, 1261, 1219, 1155, 1133, $1112 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $1.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{dd}, J=1.7$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 11.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,22.0,22.2$, $55.8,56.1,71.4,71.5,103.6,104.9,109.6,111.8,114.3,116.5,117.8,120.5,123.4,124.9,128.3,146.1$, 146.9, 147.3, 147.8, 150.2, 155.6. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrNO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 516.1022$. Found: 516.1023.

## 2-(3,4-Dimethoxyphenyl)-7-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-8-methoxy-

[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (10d). Under an argon atmosphere, a mixture of bromide 20 ( $100 \mathrm{mg}, 0.194 \mathrm{mmol}$ ), 3,4-dimethoxyphenylboronic acid (12a) ( $52.8 \mathrm{mg}, 0.290 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.4$ $\mathrm{mg}, 19.4 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(135 \mathrm{mg}, 1.28 \mathrm{mmol})$, $\mathrm{DME}(6.0 \mathrm{~mL})$, and degassed water $(0.6 \mathrm{~mL})$ was heated in a sealed tube at $85^{\circ} \mathrm{C}$ for 14 h . After cooling to rt , the solvent was evaporated in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash chromatography over silica gel 60 N (hexane-EtOAc $=1: 1)$ to give $\mathbf{1 0 d}$ as a colorless solid ( $92.4 \mathrm{mg}, 83 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. $\mathrm{Mp} 215-216{ }^{\circ} \mathrm{C}$. IR (KBr): 3297 , $1684,1458,1437,1265,1135,1107 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.28(\mathrm{br} \mathrm{d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{br} \mathrm{d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, 6 H ), $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{dd}, J=2.0$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=2.0$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.01(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,21.9,22.1,55.7,55.8,55.9,56.2,71.2,71.5,103.6,105.1$, $110.6,110.9,111.1,112.3,115.1,117.2,118.2,120.5,123.5,123.8,127.4,129.1,139.4,146.1,146.8$, 147.3, 147.7, 148.9, 149.1, 149.9, 156.2. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{\dagger}\right]: 574.2441$. Found: 574.2425.

## 7-Isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-2-(4-isopropoxy-3-methoxyphenyl)-8-methoxy-

[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (3). According to the procedure described for the preparation of $\mathbf{1 0 d}$, bromide $\mathbf{2 0}$ ( $100 \mathrm{mg}, 0.194 \mathrm{mmol}$ ) and 4-isopropoxy-3-methoxyphenylboronic acid ( $\mathbf{1 2 b}$ ) ( 61.0 $\mathrm{mg}, 0.290 \mathrm{mmol}$ ) were reacted. After purification by flash chromatography over silica gel 60 N (hexane-EtOAc $=3: 1$ to $1: 1$ ), $\mathbf{3}$ was obtained as a colorless solid ( $97.0 \mathrm{mg}, 83 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 212-213 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{8 u} \mathrm{Mp} 216-217{ }^{\circ} \mathrm{C}$ ). IR ( KBr ): $3282,1692,1464,1440,1264,1147,1110 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.26(\mathrm{br} \mathrm{d}, J=6.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.32(\mathrm{brd}$ d $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=2.1$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=1.8$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.9,22.0,55.7,55.8,56.2,71.2,71.2,71.5,103.7,105.1,110.7,111.3$, $112.3,114.8,115.1,117.2,118.2,120.3,123.5,123.8,127.5,129.1,139.4,146.1,146.8,147.2,147.5$, 147.6, 149.9, 150.0, 156.2. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 602.2754$. Found: 602.2738. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{84}$

3-(2,2-Dimethoxyethyl)-2-(3,4-dimethoxyphenyl)-7-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-8-methoxy-[1]benzopyrano[3,4-b]pyrrol-4(3H)-one (13d). According to the procedure described for the preparation of $\mathbf{1 3 a}, \mathbf{1 0 d}(57.4 \mathrm{mg}, 0.100 \mathrm{mmol})$, 2-bromo-1,1-dimethoxyethane $(78.0 \mu \mathrm{~L}, 0.660$ mmol ), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(215 \mathrm{mg}, 0.660 \mathrm{mmol})$ were reacted for 14 h . After chromatographic purification over silica gel 60 N (hexane-EtOAc $=1: 1$ ), 13d was obtained as a colorless powder ( 66.2 mg , quant). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ gave a colorless powder. $\mathrm{Mp} 165-166.5^{\circ} \mathrm{C}$. IR ( KBr ): 1702, $1465,1438,1267,1245,1137,1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.16(\mathrm{br} \mathrm{d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27(\mathrm{br} \mathrm{d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=$ 1.8 and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.8$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.5,21.8,22.2,48.0,55.5,55.8,55.8,56.0,71.2,71.4,103.4,104.5$, $105.4,110.3,110.8,111.6,114.5,114.7,118.6,118.8,122.2,123.9,124.1,126.8,127.9,144.0,146.2$, $146.6,146.9,147.3,148.5,149.2,149.6,155.8$. HRMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 662.2965$. Found: 662.2936.

3-Isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,11,12-trimethoxy-6H-[1]benzopyrano[4', $\left.\mathbf{3}^{\prime}: 4,5\right]$ pyrrolo $[2,1-a]$ isoquinolin-6-one (14d). According to the procedure described for the preparation of $\mathbf{1 4 a}, \mathbf{1 3 d}(20.0 \mathrm{mg}, 0.0302 \mathrm{mmol})$ was reacted. After purification by column chromatography over silica gel 60 N (hexane-EtOAc $=1: 1$ ), 14d was obtained as a colorless powder ( 17.0 $\mathrm{mg}, 94 \%$ ). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane gave a colorless powder. Mp $214.5-215.5^{\circ} \mathrm{C}$ (lit. ${ }^{3 \mathrm{c}}$ Mp 211-212 ${ }^{\circ} \mathrm{C}$ ). IR (KBr): $1702,1429,1267,1225,1167,1044 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.96$ $(\mathrm{s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.20$ (dd, $J=1.8$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \operatorname{DMSO}-d_{6}\right): \delta 1.21(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, $7.17(\mathrm{dd}, J=1.9$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,22.0,22.0,55.2,55.5$,
$56.0,56.4,71.3,71.4,103.4,105.3,105.5,107.4,107.8,110.0,111.1,112.3,112.8,118.2,119.2,123.4$, $124.1,124.8,128.2,129.5,134.4,146.6,146.7,147.9,148.2,149.2,150.1,150.3,155.6 .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $d_{6}$ ): $\delta 21.6,21.7,21.7,21.8,54.4,54.9,55.7,56.0,70.4,70.6,103.3,104.7,105.4,106.8$, $108.3,109.2,111.0,112.9,113.6,118.0,118.3,122.3,123.7,124.5,127.0,128.6,133.8,146.1,146.2$, $147.6,147.8,149.0,150.1,150.2,154.3$. HRMS $(m / z)$ Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 598.2441$. Found: 598.2441. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{3 \mathrm{c}}$

## 3-Hydroxy-14-(3-hydroxy-4-methoxyphenyl)-2,11,12-trimethoxy-6H-[1]benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ -

 pyrrolo[2,1-a]isoquinolin-6-one (lamellarin $\boldsymbol{\alpha}$, 15). According to the procedure described for the preparation of $\mathbf{7}, \mathbf{1 4 d}(30.0 \mathrm{mg}, 50.2 \mu \mathrm{~mol})$ and $\mathrm{BCl}_{3}(1.0 \mathrm{M}, 301 \mu \mathrm{~L}, 0.301 \mathrm{mmol})$ were reacted. After purification by column chromatography over silica gel 60 N (acetone), $\mathbf{1 5}$ was obtained as a pale gray powder ( $22.4 \mathrm{mg}, 87 \%$ ). $\mathrm{Mp}>300^{\circ} \mathrm{C}$ (sealed capillary) (lit. $.^{4} \mathrm{Mp}>300^{\circ} \mathrm{C}$ ). IR (KBr) 1690,1429 , 1270, 1227, 1160, $1045 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO- $d_{6}$ ): $\delta 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=2.0$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.37(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.82$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ( 126 MHz, DMSO- $d_{6}$ ): $\delta 54.5,55.1,55.6,56.1,103.7,104.8$, 105.7, $106.6,108.1,108.2,110.7,112.5,113.5,118.2,118.3,122.1,124.3,127.3,128.7,133.5,144.6,146.3$, $147.7,147.8,148.0,148.9,149.9,154.3$. HRMS $(m / z)$ Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 514.1502$. Found: 514.1494. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{4}$
## ACKNOWLEDGEMENTS

This work was financially supported by JSPS KAKENHI Grant Numbers 26293028 and 15K01802.

## REFERENCES AND NOTES

1. For reviews, see: (a) P. Cironi, F. Albericio, and M. Álvarez, Prog. Heterocycl. Chem., 2004, 16, 1; (b) C. Bailly, Curr. Med. Chem. - Anticancer Agents, 2004, 4, 363; (c) S. T. Handy and Y. Zhang, Org. Prep. Proced. Int., 2005, 8, 411; (d) H. Fan, J. Peng, M. T. Hamann, and J.-F. Hu, Chem. Rev., 2008, 108, 264; (e) D. Pla, F. Albrecio, and M. Álvarez, Anticancer Agents in Med. Chem., 2008, 8, 746; (f) J. Kluza, P. Marchetti, and C. Bailly, 'Modern Alkaloids: Structure, Isolation, Synthesis and Biology,' ed. by E. Fattorusso and O. Taglialatela-Scafati, Wiley-VCH, Weinheim, 2008, pp. 171-187; (g) D. Pla, F. Albericio, and M. Álvarez, Med. Chem. Commun., 2011, 2, 689; (h) A.-L. Fan, W.-H. Lin, and Y.-X. Jia, J. Chin. Pharm. Sci., 2011, 20, 425; (i) T. Fukuda, F. Ishibashi, and M. Iwao, Heterocycles, 2011, 83, 491; (j) D. Imbri, J. Tauber, and T. Opatz, Mar. Drugs, 2014, 12,

6142; (k) C. Bailly, Mar. Drugs, 2015, 13, 1105.
2. (a) R. J. Anderson, D. J. Faulkner, H. Cun-heng, G. D. Van Duyne, and J. Clardy, J. Am. Chem. Soc., 1985, 107, 5492; (b) N. Lindquist and W. Fenical, J. Org. Chem., 1988, 53, 4570; (c) A. R. Carroll, B. F. Bowden, and J. C. Coll, Aust. J. Chem., 1993, 46, 489; (d) S. Urban, M. S. Butler, and R. J. Capon, Aust. J. Chem., 1994, 47, 1919; (e) S. Urban, L. Hobbs, J. N. A. Hooper, and R. J. Capon, Aust. J. Chem., 1995, 48, 1491; (f) S. Urban and R. J. Capon, Aust. J. Chem., 1996, 49, 711; (g) M. V. R. Reddy, D. J. Faulkner, Y. Venkateswarlu, and M. R. Rao, Tetrahedron, 1997, 53, 3457; (h) C. L. Cantrell, A. Groweiss, K. R. Gustafson, and M. R. Boyd, Nat. Prod. Lett., 1999, 14, 39; (i) R. A. Davis, A. R. Carroll, G. K. Pierens, and R. J. Quinn, J. Nat. Prod., 1999, 62, 419; (j) M. V. R. Reddy, M. R. Rao, D. Rhodes, M. S. T. Hansen, K. Rubins, F. D. Bushman, Y. Venkateswarlu, and D. J. Faulkner, J. Med. Chem., 1999, 42, 1901; (k) J. Ham and H. Kang, Bull. Korean Chem. Soc., 2002, 23, 163; (l) P. Krishnaiah, V. L. N. Reddy, G. Venkataramana, K. Ravinder, M. Srinivasulu, T. V. Raju, K. Ravikumar, D. Chandrasekar, S. Ramakrishna, and Y. Venkateswarlu, J. Nat. Prod., 2004, 67, 1168; (m) S. M. Reddy, M. Srinivasulu, N. Satyanarayana, A. K. Kondapi, and Y. Venkateswarlu, Tetrahedron, 2005, 61, 9242; (n) F. Plisson, X.-C. Huang, H. Zhang, Z. Khalil, and R. J. Capon, Chem. Asian J., 2012, 7, 1616; (o) H. Zhang, M. M. Conte, X.-C. Huang, Z. Khalil, and R. J. Capon, Org. Biomol. Chem., 2012, 10, 2656.
3. (a) A. R. Quesada, M. D. G. Grávalos, and J. L. F. Puentes, Br. J. Cancer, 1996, 74, 677; (b) F. Ishibashi, S. Tanabe, T. Oda, and M. Iwao, J. Nat. Prod., 2002, 65, 500; (c) C. P. Ridley, M. V. R. Reddy, G. Rocha, F. D. Bushman, and D. J. Faulkner, Bioorg. Med. Chem., 2002, 10, 3285; (d) C. Tardy, M. Facmpré, W. Laine, B. Baldeyrou, D. García-Gravalos, A. Francesch, C. Mateo, A. Pastor, J. A. Jiménez, I. Manzanares, C. Cuevas, and C. Bailly, Bioorg. Med. Chem., 2004, 12, 1697; (e) D. Pla, A. Marchal, C. A. Olsen, A. Francesch, C. Cuevas, F. Albericio, and M. Alvarez, J. Med. Chem., 2006, 49, 3257; (f) M. Chittchang, P. Batsomboon, S. Ruchirawat, and P. Ploypradith, ChemMedChem, 2009, 4, 457; (g) L. Shen, N. Xie, B. Yang, Y. Hu, and Y. Zhang, Eur. J. Med. Chem., 2014, 85, 807; (h) K. Tangdenpaisal, R. Worayuthakarn, S. Karnkla, P. Ploypradith, P. Intachote, S. Sengsai, B. Saimanee, S. Ruchirawat, and M. Chittchang, Chem. Asian J., 2015, 10, 925; (i) A. Theppawong, P. Ploypradith, P. Chuawong, S. Ruchirawat, and M. Chittchang, Chem. Asian J., 2015, 10, 2631.
4. H. Kamiyama, Y. Kubo, H. Sato, N. Yamamoto, T. Fukuda, F. Ishibashi, and M. Iwao, Bioorg. Med. Chem., 2011, 19, 7541.
5. (a) M. Facompré, C. Tardy, C. Bal-Mahieu, P. Colson, C. Perez, I. Manzanares, C. Cuevas, and C. Bailly, Cancer Res., 2003, 63, 7392; (b) E. Marco, W. Laine, C. Tardy, A. Lansiaux, M. Iwao, F. Ishibashi, C. Bailly, and F. Gago, J. Med. Chem., 2005, 48, 3796; (c) S. Khiati, Y. Seol, K. Agama, I.
D. Rosa, S. Agrawal, K. Fesen, H. Zhang, K. C. Neuman, and Y. Pommier, Mol. Pharmacol., 2014, 86, 193.
6. (a) J. Kluza, M.-A. Gallego, A. Loyens, J.-C. Beauvillain, J.-M. F. Sousa-Faro, C. Cuevas, P. Marchetti, and C. Bailly, Cancer Res., 2006, 66, 3177; (b) M.-A. Gallego, C. Ballot, J. Kluza, N. Hajji, A. Martoriati, L. Castéra, C. Cuevas, P. Formstecher, B. Joseph, G. Kroemer, C. Bailly, and P. Marchetti, Oncogene, 2008, 27, 1981; (c) C. Ballot, J. Kluza, A. Martoriati, U. Nyman, P. Formstecher, B. Joseph, C. Bailly, and P. Marchetti, Mol. Cancer Ther., 2009, 8, 3307; (d) C. Ballot, J. Kluza, S. Lancel, A. Martoriati, S. M. Hassoun, L. Mortier, J.-C. Vienne, G. Briand, P. Formstecher, C. Bailly, R. Nevière, and P. Marchetti, Apoptosis, 2010, 15, 769.
7. (a) D. Baunbæk, N. Trinkler, Y. Ferandin, O. Lozach, P. Ploypradith, S. Rucirawat, F. Ishibashi, M. Iwao, and L. Meijer, Mar. Drugs, 2008, 6, 514; (b) F. Plisson, M. Conte, Z. Khalil, X.-C. Huang, A. M. Piggott, and R. J. Capon, ChemMedChem, 2012, 7, 983; (c) K. Yoshida, R. Itoyama, M. Yamahira, J. Tanaka, N. Loaëc, O. Lozach, E. Durieu, T. Fukuda, F. Ishibashi, L. Meijer, and M. Iwao, J. Med. Chem., 2013, 56, 7289.
8. (a) A. Heim, A. Terpin, and W. Steglich, Angew. Chem., Int. Ed. Engl., 1997, 36, 155; (b) M. Banwell, B. Flynn, and D. Hockless, Chem. Commun., 1997, 2259; (c) F. Ishibashi, Y. Miyazaki, and M. Iwao, Tetrahedron, 1997, 53, 5951; (d) C. Peschko, C. Winklhofer, and W. Steglich, Chem. Eur. J., 2000, 6, 1147; (e) S. Ruchirawat and T. Mutarapat, Tetrahedron Lett., 2001, 42, 1205; (f) M. Díaz, E. Guitián, and L. Castedo, Synlett, 2001, 1164; (g) P. Ploypradith, C. Mahidol, P. Sahakitpichan, S. Wongbundit, and S. Ruchirawat, Angew. Chem. Int. Ed., 2004, 43, 866; (h) S. T. Handy, Y. Zhang, and H. Bregman, J. Org. Chem., 2004, 69, 2362; (i) C. A. Olsen, N. Parera, F. Albericio, and M. Álvarez, Tetrahedron Lett., 2005, 46, 2041; (j) D. Pla, A. Marchal, C. A. Olsen, F. Albericio, and M. Álvarez, J. Org. Chem., 2005, 70, 8231; (k) N. Fujikawa, T. Ohta, T. Yamaguchi, T. Fukuda, F. Ishibashi, and M. Iwao, Tetrahedron, 2006, 62, 594; (1) P. Ploypradith, T. Petchmanee, P. Sahakitpichan, N. D. Litvinas, and S. Ruchirawat, J. Org. Chem., 2006, 71, 9440; (m) J. C. Liermann and T. Opatz, J. Org. Chem., 2008, 73, 4526; (n) L. Chen and M.-H. Xu, Adv. Synth. Catal., 2009, 351, 2005; (o) J. T. Gupton, B. C. Giglio, J. E. Eaton, E. A. Rieck, K. L. Smith, M. J. Keough, P. J. Barelli, L. T. Firich, J. E. Hempel, T. M. Smith, and R. P. F. Kanters, Tetrahedron, 2009, 65, 4283; (p) T. Ohta, T. Fukuda, F. Ishibashi, and M. Iwao, J. Org. Chem., 2009, 74, 8143; (q) K. Hasse, A. C. Willis, and M. G. Banwell, Eur . J. Org. Chem., 2011, 88; (r) Q. Li, J. Jiang, A. Fan, Y. Cui, and Y. Jia, Org. Lett., 2011, 13, 312; (s) B. L. Flynn and M. G. Banwell, Heterocycles, 2012, 84, 1141; (t) D. Imbri, J. Tauber, and T. Opatz, Chem. Eur. J., 2013, 19, 15080; (u) M. Komatsubara, T. Umeki, T. Fukuda, and M. Iwao, J. Org. Chem., 2014, 79, 529; (v) J. T. Gupton, N. Telang, J. Patteson, K. Lescalleet, S. Yeudall, J. Sobiesk, A. Harrison, and W. Curry, Tetrahedron,

2014, 70, 9759; (w) K. Ueda, K. Amaike, R. M. Maceiczyk, K. Itami, and J. Yamaguchi, J. Am. Chem. Soc., 2014, 136, 13226; (x) T. Fukuda, D. Sato, and M. Iwao, Heterocycles, 2015, 91, 782; (y) C. Dialer, D. Imbri, S. P. Hansen, and T. Opatz, J. Org. Chem., 2015, 80, 11605; (z) K. B. Manjappa, J.-R. Syu, and D.-Y. Yang, Org. Lett., 2016, 18, 332.
9. F. Beaumard, P. Dauban, and R. H. Dodd, Synthesis, 2010, 4033.
10. S. Schröter and T. Bach, Heterocycles, 2007, 74, 569.
11. In case $x$ mol of $\mathbf{6}$ was reacted to give $y \mathrm{~g}$ of a mixture of monobromide 18, dibromide 11, and $\mathbf{6}$ and the molar fractions of $\mathbf{1 8}, \mathbf{1 1}$, and $\mathbf{6}$ in the mixture were determined to be $N_{I 8}, N_{I I}$, and $N_{6}$ (see Supporting Information), the yields of $\mathbf{1 8}, \mathbf{1 1}$ and $\mathbf{6}$ were estimated by using the following equations:
The yield of $\mathbf{1 8}\left(Y_{18}\right)=\frac{y N_{I 8}}{x\left(M W_{I 8} N_{I 8}+M W_{I I} N_{I I}+M W_{6} N_{6}\right)} \times 100(\%)$
The yield of $\mathbf{1 1}\left(Y_{1 l}\right)=\frac{y N_{I I}}{x\left(M W_{I 8} N_{I 8}+M W_{I I} N_{I l}+M W_{6} N_{6}\right)} \times 100(\%)$
The yield of $\mathbf{6}\left(Y_{6}\right)=\frac{y N_{6}}{x\left(M W_{I S} N_{I S}+M W_{I I} N_{I I}+M W_{6} N_{6}\right)} \times 100(\%)$
where $M W_{18}, M W_{l 1}$, and $M W_{6}$ are molecular weights of $\mathbf{1 8}, 11$ and 6 .


[^0]:    ${ }^{a}$ Isolated yield.

