橋梁用ゴム支承の材料・構造特性に関する 実験及び解析的研究

東哲平* · 松田浩* · 古賀揭維** Experimental and analytical studies on material and structural properties of rubber bearings for bridges

by

Teppei AZUMA*, Hiroshi MATSUDA* and Aoi KOGA**

Laminated rubber bearings have large deformation properties. On the other hand, in fact, it is designed without considering its three dimensional characteristics. Therefore, we measured the three - dimensional properties of laminated rubber bearings using DICM to verify whether strain distribution can be obtained. FEM analysis was also performed to examine the validity of experiments.

Key Words :DICM, large deformation, laminated rubber bearing, FEM analysis

1. 背景

支承は従来,剛性の高い鋼製支承が主流であったが, 平成7年の兵庫県南部地震により支承橋梁部に想定を超 えた衝撃力の作用や,上部工との大きな相対変位が生じ たため,多数の鋼製支承やそれらを採用した橋梁に大き な損傷が生じ,橋梁の被害拡大の一因となった.この地 震の経験を踏まえて改訂された道路橋の耐震設計基準で は橋梁支承への要求性能として「支承本体は大規模地震 (レベル2)に対しても破損することなく,上部工慣性 力を確実に下部工に伝達すること」となった.

鋼製支承と対比してゴム支承は、地震による被害が小 さかったことや、鉛直と水平の双方に変形性能を有して いることから、兵庫県南部地震以降は新設橋梁には積層 ゴム支承が多く使用されるようになり、現在では全国的 に普及し、支承の主流となっている.

さらに、ゴムと鋼板を交互に積み重ね、加硫密着した 積層ゴム支承は、鉛直荷重載荷時にはらみ変形が拘束さ れる.そのため、高い荷重支持機能を有し、水平力に対 して柔軟なばねとして作用するため高い水平変形機能、 復元機能を有する.以上の点から、反力分散支承には積 層ゴム支承が一般的に用いられている.また、ゴム支承 に一般的に使用されている天然ゴムは、酸素やオゾンの 影響を受けやすいため、老化防止剤と被覆ゴムにより劣 化を防ぐ設計がなされている.

積層ゴム支承のせん断ひずみは,ゴム積層部の厚さの 70% (温度変化など桁の常時伸縮時)まで許容されている 一方で,ゴム材料の変形特性は大きく上述のようにはら み変形も生ずる材料である.

その一方,ゴム支承の3次元的材料特性は厳密には考 慮されずに設計されているのが現状である.しかし,東 日本大震災や熊本地震において,ゴム支承部に損傷 (Fig.1)を受けた橋梁があったことからも,ゴムの大 変形特性の定量的評価が必要とされている. 以上に鑑み、本論では、実験的に橋梁用ゴム支承の大 変形特性の定量的な評価法としてデジタル画像相関法 (DICM)を提案している.

(a) 積層部破断

(b) 取付ボルト破断Fig.1 地震によるゴム支承部の破断

36

2. DICM概要

2.1 原理

DICMは、測定対象物表面の模様のランダム性を基に して、変形前後の測定対象物表面を撮影したデジタル画 像を画像処理することにより、計測範囲全体にわたって 変位の大きさと方向を求めることができる手法である. DICMの特長としては、2台のカメラを使用することで3 次元変形・ひずみの計測が可能となる. さらに、レーザ ー干渉を利用した計測法と比べると測定空間の揺らぎに 優位性があることが挙げられる.

重要になるのが,任意の点の移動量の算出である. DICMの解析原理は,デジタル画像が一般的に256濃度階 調で表現される画像から構成された濃淡のある画像であ ることを利用したものである.まず,測定対象物表面の 模様のランダム性を基にして測定対象物の変形前後をデ ジタルカメラ等で撮影し,得られたデジタル画像の輝度 値分布から測定対象物表面の変位量と方向を同時に求め る方法である.

まず、変形前の画像において、任意の点(1画素)を 中心としたN×N画素の任意領域(サブセット)を指定 する(Fig.2(a)).計測対象物に変形を与えると、変形 後の画像でのサブセットの位置は変化する(Fig.2(b)). 変形後のサブセットを対象に、変形前のサブセットの輝 度値分布と高い相関性を示すサブセットを数値解析で探 索する.このサブセット中心の点の移動より変位方向、 変位量を算出する.この処理を全ての小領域で繰り返す 事によって、全視野の変形データを得ることができる.

ひずみ分布は、以上の方法により得た変位量を利用し て算出する.これは、Fig.3に示すように、あらかじめ 求めたい点を中心として、ある画素数だけ離れた点の変 位を基に、変形後の二点間の長さの変化を求め、計測点 のひずみとする解析手法である.この解析手法の特長と して、水平、垂直、斜め方向ひずみの値を求めることが 可能であること、任意に解析点の距離を変えること、す なわちゲージ長の自由な選択が可能となること、などが 挙げられる

Fig.2 変形前と変形後のデジタル画像

Fig.3 ひずみ解析

(e) 主ひずみ

2.2 計測システム

計測装置の写真をFig.4に示す.本システムは、モノ クロCCD カメラ、レンズ、ノートパソコン、接続ケーブ ルで構成される.簡易なシステムかつ軽量で持ち運びが 容易である.カメラ自体にメモリ等が内蔵されていない ため、撮影画像はノート パソコンに保存される.画像 の撮影は、通常のデジタルカメラとほぼ同様なため、測 定に際して特別な技量は必要としない.本研究では、2 台のCCDカメラを用いたステレオ撮影による3次元計測を 行い、ひずみを算出した.ステレオ撮影は、通常のカメ ラ1台の撮影と比較して、カメラと試験体を正確に正対 させて撮影する必要がないことや試験中に試験体が面外 方向に変形しても高精度に計測できることなどのメリッ トがある.一般に、レンズは曲面となっているため、撮 影された画像はひずみを持っている.また、2台のカメ ラでステレオ撮影する場合は、カメラ画像の位置合わせ を行う必要がある.ここでは、計測前に2台のCCDカメラ でFig.5に示すキャリブレーションプレートを用いて、 位置や角度を変えながら複数枚(20枚から30枚程度)撮 影することで、画像のひずみ補正やカメラの位置合わせ を行う.

3. DICMの適用事例

現在DICMによる様々な対象物の計測が行われている. 同研究室では過去にコンクリート,鋼,円筒シェル,膜 構造の試験を行い,DICMでの計測を行っている.ここ でいくつかの事例を示す.

3.1 PCT桁の載荷試験

試験体は2径間単純ポストテンションT桁橋の撤去部材 (Fig. 6)を使用した.試験機は30MN大型構造部材万能 試験機を用いて曲げ載荷試験を行った.Fig.6に示す計 測範囲に白色と黒色のランダムパターンを施しDICMで の計測を行った.

ひずみ分布を Fig.7 に示し,実構造レベルにおいても DICM での計測は有効であり,ひずみの発生,進展過程 を可視化できることを示せた.

3.2 薄肉円筒シェルの軸圧縮試験

試験は等方性,異方性の薄肉円筒シェルの終局挙動の 把握のために座屈実験を行った.試験体寸法を Fig.8 に 示し,等方性材料としてアルミニウムを,異方性材料と して CFRP (Table 1)を用い,それぞれに白色と黒色の ランダムパターンを施した.試験機は島津製の 10kN 万 能試験機を用いた.

試験結果を Fig. 9, Fig. 10 に示し, それぞれの座屈形 状の可視化できることを示せた.

Fig.4 計測装置

Fig.5 キャリブレーション画像

Fig. 7 RC ひずみ分布

Table 1 CFRP 材料物性

材料物性	弾性係数((GPa)	ポアソ	ン比	引張強度	隻(MPa)
	EL	140	v 12	0.32	FL	2200
	Εī	9	v 21	0.02	Ft	50
	Ez	9	v 23	0.35	Fz	50
	Glt	4.2	v 32	0.35	Flt	110
	Gtz	3.4	v 13	0.32	Ftz	18.5
	Gzl	4.2	v 31	0.02	Fzl	110

Fig.9 等方性薄肉円筒シェルの座屈形状

(a) ひずみ(b) 変位Fig. 10 異方性薄肉円筒シェル座屈形状

3.3 溶接中および冷却過程における鋼材の変形・ひず み挙動の計測

溶接中および冷却過程における鋼板表面に生じる変 形・ひずみの計測を目的に溶接中のSM400Aを計測した. 試験片寸法,計測範囲をFig.11に示す.試験片は,開先 等を設けない一枚の試験片とし,ビードオン溶接とした. 試験片には白色と黒色のランダムパターンをVHT社耐熱 スプレーを用いて施してある.

試験結果をFig. 12に示す. Fig. 12より熱応力による 鋼材のひずみ分布の可視化が可能であることが示せた.

以上より、RCの大型の対象物だけでなく、円筒シェルの座屈形状の計測や溶接中の熱応力の影響など、ひずみ ゲージによる計測ができない対象物にもDICMによる計 測の有効性が示せた.

4. 積層ゴム支承供試体の圧縮せん断試験

本章はDICMを用いて,積層ゴム支承供試体の圧縮せん断状況下のひずみ分布を得る試験方法を示す.

4.1 積層ゴム供試体概要

積層ゴム支承供試体の内部構造のイメージをFig. 13に 示し,供試体緒言をTable 2に示す.それぞれ3層,6層 の層数の違う供試体を使い,被覆ゴムに対してラッカー スプレーでランダムパターンを施している(Fig. 14).

ここで1次形状係数S1とは、従来防振ゴムの分野で単 に形状係数として呼び用いられており、式(1)のよう に拘束面積と自由表面積の比で表される.

$$\begin{split} S_1 &= \frac{\exists \Delta \mathcal{O} h \bar{\pi} \overline{\alpha} \overline{d} \overline{d} (\mathcal{G} \underline{F} \underline{\alpha} \overline{d} \overline{d})}{\exists \Delta 1 \underline{B} \mathcal{O} \dot{\beta} a h \bar{g} \overline{\alpha} \overline{d} \overline{d} (\underline{m} \overline{\alpha} \overline{d} \overline{d})} \\ &= \frac{\pi (D^2 - d_s^2)/4}{\pi (D + d_s) t_R} \end{split} \tag{1}$$

ここに、Dはゴム直径、 t_R はゴム 1 層厚である. 拘束 面積とは中間鋼板とゴムが接着されているため、積層ゴ ムに鉛直荷重が作用した場合、この境界面ではゴムは動 くことができない. 一方、自由表面積は拘束されていな いため、圧縮によるゴム変形が表面に凸状に膨らみ出す ことができる. 1 次形状係数 S₁は主に積層ゴムの鉛直剛 性や曲げ剛性に大きく影響を及ぼし、値が大きいほど変 形拘束効果が大きい. 2 次形状係数 S₂とは、積層ゴム用 に新たに導入された係数であり、式(2)のようにゴム の直径とゴムの層厚さ(内部鋼板を除いたトータル厚さ) の比で表される.

$$S_2 = \frac{ \vec{\neg} \, \Delta \, \vec{\underline{a}} \, \vec{\underline{k}}}{ \hat{\underline{k}} \, \vec{\neg} \, \Delta \, \vec{\underline{k}} \, \vec{\underline{k}}} = \frac{D}{n t_R} \tag{2}$$

ここに, nはゴム層数である.

2次形状係数S2は主に座屈荷重や水平剛性に関係し, 値が大きくなると水平剛性の鉛直荷重依存性が小さく, 大変形時にも相対的に安定した復元性能が得られる.

Fig.11 試験片寸法

Fig. 12 熱応力によるひずみ分布

Table 2 供試体緒言

供試体概要	3層	6層		
玉小	102mm imes 102mm imes 77.2mm	$102\text{mm} \times 102\text{mm} \times 76\text{mm}$		
71217	(被覆ゴム1mm)	(被覆ゴム1mm)		
積層構造	8mm×3層	4mm×6層		
ゴム材料	NRG=1.0N/mm²	NRG=1.0N/mm²		
1次形状係数	3.12	6.25		
2次形状係数	4.17	4.17		

Fig. 14 供試体

4.2 試験機概要

本試験は、宝山工業製「圧縮せん断試験機」を使用した. 試験機の写真をFig.15, 仕様をFig.16, に示す. 構造は、下から鋼板→供試体→鋼板→鉛直ジャッキ→鋼板 →ロードセル→球面座の順に積み重なっている. 供試体 と、供試体を挟む鋼板には同じ径の孔があり、その孔に せん断キーを入れて挟むことで鋼板と供試体を一体化し ている.

4.3 載荷条件

Table 3に面圧条件を, Table 4に加振する最大せん断 変位条件をそれぞれ示し, この条件下で試験を行った. 本試験に使用する試験機器をTable 5に示す. 圧縮せん 断変形をジャッキ, 手動ポンプで与え, その様子をCCD カメラで撮影する. 画像撮影は圧縮荷重10kN増加する ごとに撮影し, せん断強制変位載荷後はせん断ひずみ率 10% (2.4mm)増加ごとに撮影する. 荷重, 変位の計測は 鉛直方向, せん断方向それぞれにロードセル, 変位計に より計測し, 試験状況として荷重変位曲線を得る. ここ で, 鉛直変位は, 供試体上部の鋼板にある鉛直ジャッキ の左右両側にそれぞれ変位計を設置させその沈下した変 位を圧縮変位とし, それぞれの圧縮変位の平均値を採用 して圧縮荷重変位曲線を描く.

ここで、大変形特性を有する積層ゴムのひずみの評価 法として積層ゴムの全ゴム厚さに対するあせん断変位量 をせん断ひずみ率(%)として表すのが一般的である. ここで、本試験で用いる積層ゴム供試体の全ゴム厚は 24mmであるため、与えるせん断強制変位は24mmの 175%である42mmである.

載荷手順は,「圧縮荷重載荷→圧縮完了→せん断変位 載荷→せん断変位完了」を各面圧条件で繰り返す.

4.4 留意項目

本試験機,本試験方法での試験を行うにあたり修正す べき点がいくつか見受けられた.以下に問題点,修正方 法について示す.

(1) ランダムパターンの施し方

3章のDICMの使用事例で述べたRC梁,円筒シェル等 にランダムパターンを施す際には輝度差を明瞭にするた めに下地とするスプレーと点を施すためのスプレーの2 色のスプレーを使用していた.しかし,積層ゴム支承供 試体では変形が大きいため,下地であるスプレーの塗膜 が表層剥離(Fig. 17(a))し,DICMによる計測ができな かった.そこで,本試験を行う際には被覆ゴムに直接ラ ッカースプレーで白色点(Fig. 17(b))を施すことでひ ずみ分布(Fig. 18)を得た.

Fig. 15 圧縮せん断試験機

Table 3 面圧条件

面圧(N/mm)	鉛直荷重(kN)	荷重条件
3	30	_
6	60	死荷重応力
8	80	—
12	120	最大圧縮応力

Table 4 せん断変位条件

せん断ひずみ率	せん断変位量		
175%	42mm		

Table.5 試験機器

計測機器	型番	会社
鉛直ジャッキ	RSM-500	オックスジャッキ株式会社
水平ジャッキ	ACS-104.4	オックスジャッキ株式会社
主働油圧ポンプ	HP-1	オックスジャッキ株式会社
ロードセル(鉛直方向)	CLP-200KNB	東京測器研究所
ロードセル(水平方向)	KCM-50KNA	東京測器研究所
変位計(鉛直方向)	CDP-25	東京測器研究所
変位計(水平方向)	CDP-50	東京測器研究所

a) 修正前 (D) 修正後 Fig. 17 ランダムパターン施し方

(2) 圧縮荷重の維持

本試験機は天板と供試体上部鋼板の間に位置する油圧 ジャッキで圧縮荷重の反力をとっている.しかし,せん 断変形を施す際にせん断変位の増加に伴い供試体上部鋼 板が下降する.そのため,天板と供試体上部鋼板の間の 圧力が低下することで圧縮荷重が低下してしまう

(Fig. 19(a)) .

それに対して、せん断変位増加に伴う圧縮荷重の低下 をモニタリングしながら手動ポンプを用いて荷重を調整 し、圧縮荷重の面圧条件である荷重を維持する必要があ る(Fig. 19(b)).

(3) 摩擦力の低減

3N/md, 6N/md, 8N/md, 12N/mdの各面圧条件のせん断 荷重変位曲線をFig. 20に示す. せん断変形を与える際 に,供試体下部鋼板と試験冶具との間で摩擦力が生じる (Fig. 20(a)). これに対して,摩擦面にテフロンスプ レーを吹き付けて摩擦力を低減させた (Fig. 20(b)). 修正前では圧縮荷重の大きさに応じた静止摩擦力が生じ ていること,せん断変位が増加する際に引っ掛かりが起 き,変位の飛び移りが生じていることがが分かる. 修正 後では,圧縮荷重の大きさに関わらず同程度の静止摩擦 力が生じていることから影響を最小限に抑えられている ことが分かる.

(4) 残留変形の低減

圧縮荷重変位曲線をFig.21示す.連続して各面圧条件の試験を行うことで剛性が低下していることが分かる (Fig.21(a)).これは連続で試験を行うことで変形が 残っていたことが考えられ、これに対して、面圧条件を 変更する際に時間を空け、残留変形の回復をさせた.そ の結果、Fig.21(b)のように剛性の低下を解消できてい る.よって、残留変形を取り除くために各面圧条件の間 で時間を空け、残留変形を回復させる必要がある.

(5) 偏心の影響

DICMでひずみ分布を可視化すると圧縮荷重の偏心に よる影響が見受けられた.これに対して,偏心を施した 圧縮せん断試験を行い,偏心による積層ゴム支承供試体 のひずみ分布への影響を検証した.

3 層の供試体,面圧条件 3N/mdのみに固定し,圧縮荷 重の載荷位置を供試体上面の中心から 5 mm刻みで偏心さ せ,ひずみ分布への影響を比較した.

得たひずみ分布をFig.22に,最大ひずみ最小ひずみの 値をTable 6に示す.ここで偏心量は,供試体上面の中 心を0mmとし,左を負,右を正で表している.Fig.22よ り,せん断ひずみ0%,70%では圧縮荷重の偏心によるひ ずみ分布への影響が見受けられた.しかし,175%では 偏心によるひずみ分布への影響は小さい.また,Table 6(a).(b)より,せん断ひずみが大きくなるに伴って, ひずみの値の最大値と最小値の差が小さくなっている.

以上より, せん断ひずみが大きくなるに伴って圧縮荷 重の偏心によるひずみ分布への影響は小さくなることが 分かる.

よって本試験は圧縮荷重の載荷位置は中央に載荷させることは必要であるが、微小な偏心に対しては許容することとする.

(a) 修正前(b) 修正後Fig. 21 残留変形の低減

Fig. 22 ひずみ分布

Table 6 ひずみ数値比較

(a) 最大縦ひずみ比較

(b) 最小縦ひずみ比較

eau min					載荷位	置(mm)			
eyy min		-10	-5	0	5	10	15	20	25
	0	-0.07	-0.028	-0.032	-0.043	-0.0395	-0.06		-0.067
せん断ひずみ(%)	70	-0.0305	-0.05	-0.048	-0.05	-0.05	-0.05	-0.072	-0.092
	175	-0.05	-0.075		-0.07	-0.07	-0.07	-0.056	-0.055

5. FEM解析

5.1 解析概要

積層ゴム支承供試体の圧縮せん断試験より得られたひ ずみ分布の妥当性の検証,積層ゴム支承の破壊領域のモ デリングを目的として,Marc/mentatを用いた FEM 解析 を行った.解析モデルの寸法はTable 2 に,モデル概要 をFig. 23 に示す(紙面の都合により3層の供試体モデル のみ示す).ゴム要素には大ひずみ挙動に対応する9節 点立体要素(ハーマン/ムーニィ材料)を適用し,鉄板 要素には8節点アイソパラメトリック立体要素を適用し た.ゴムの材料定数は、本試験で用いる天然ゴム(NR) はG=1.0N/mdのNRG10の材料定数(Table 7)を用いる. 内部,上部下部鋼板の材料定数は E=210000, v=0.3 を 用いた.載荷条件として変位制御,荷重制御での解析を 行った.

5.2 変位制御

モデル上面に対して変位制御で Table 3 に示す面圧条 件に相当する強制変位を施す.モデル下面に対しても変 位制御でせん断ひずみ率 175%に相当する 42 mmの強制変 位を施した.結果を Fig. 24, Fig. 25 に示す.Fig. 25(a) よりせん断変形が始まるとモデル上面の圧縮変位が固定 されている.これにより,せん断変位の増加に伴う圧縮 変位の増加が追従できず圧縮荷重が低下してしいること が分かる.

5.3 荷重制御

変位制御での解析の改善案として圧縮荷重を面圧条件 を与えることができるフェース荷重を適用し,モデル上 面に施した.せん断ひずみは,変位制御での解析と同様 に 42 mmの強制変位をモデル下面に施した.解析結果を Fig. 26, Fig. 27 に示す.Fig. 27 (a)よりせん断変位に伴 う圧縮変位の増加の追従ができ,圧縮荷重曲線において 精度よく再現できている.しかし,Fig. 26よりせん断変 形が進むとモデル上面が回転して,傾きが生じている. また,Fig. 27 (b)に示す通り,せん断ひずみ率が増加す るにつれてせん断荷重が低下している.これは,モデル 上面の回転により,せん断変形が進む方向に対してモデ ルが押し出されるためせん断荷重の低下が生じているこ とが考えられる.

5.4 解析結論

圧縮荷重の載荷条件の比較から,変位制御では上面が 水平に落ちるがせん断変位増加に伴う圧縮変位の増加は 再現できない.一方,フェース荷重での載荷は,圧縮荷 重曲線の再現は可能であるが,モデル上面の水平の維持 ができないなどの長所および短所があった.よって,フ ェース荷重での圧縮変位をテーブルとして変位制御の圧 縮強制変位に適用することを検討している.また,接触 による圧縮荷重の載荷や RBE2 の多点拘束の適用も検討 している.

Fig. 23 解析モデル

Table 7 NRG10 材料定数

C10	0.263009
C01	0.0363394
C20	0.000541403
C11	-0.00103934
C30	0.000117418

Fig. 24 変位制御ひずみコンター図

Fig. 26 フェース荷重制御解析結果

Fig. 27 フェース荷重制御解析結果

6. 結論

4章で述べた試験機,試験方法,計測方法で積層ゴム 支承の圧縮せん断状況下での挙動を追従することは可能 であ.よって,大変形特性を有するゴム材料に対しても DICMでの計測は有効であることが示せた.ただし,大 変形特性のために留意すべき項目がある.今後本試験方 法により得た結果と,FEM解析結果とを比較,検証しひ ずみ分布,ひずみの値の再現を行う.そして,積層ゴム 支承の破壊領域のの三次元的特性の評価を行う.

参考文献

- 1) 飯塚博,山下義裕:ゴム材料の力学特性同定とFEM 解析への利用,日本ゴム協会誌,第77巻,第9号, 2004
- 抽木和徳,吉田純次,塩畑英俊,今井隆,杉山俊 幸:有限要素モデルを用いた積層ゴム支承の回転限 界の把握と設計式の構築
- 3) 橋本学,棚橋隆彦:GSMAC 有限要素法による非圧 縮超弾性体解析に関する実用化に向けた検討
- 出水享,松田浩:デジタル画像相関法のひずみ計測 向上に関する基礎的研究,土木学会論文集 A2(応用 力学), Vol. 68, No. 2 (応用力学論文集 Vol. 15), I_683-I_690, 2012.

- 5) 内野正和,岡本卓慈,肥田研一,伊藤幸広,松田 浩:デジタル画像相関法を用いたマルチロゼット解 析法の検討,日本実験力学会講演論文集
- 6) 板井 達志,出水 享,伊藤 幸広,松田浩,木村 嘉富 光学的全視野計測を用いたPCT桁の載荷試験時に おける非接触変位・ひずみ分布計測,土木学会西部 支部研究発表会(2012.3)
- 7) 古賀 掲維,東 哲平,鬼塚 友章,山口浩平,松田浩: 複合材料からなる円筒シェルの終局挙動に関する実験及び解析的研究,長崎大学大学院工学研究科研究報告,48(91),pp.31-38;2018
- 8) 出水享,松田浩,藤野義裕,伊藤幸広,趙程:溶 接中および冷却過程における鋼材の変形・ひずみ挙 動の光学的全視野計測と三次元熱弾塑性FE解析, 構造工学論文集 Vol.58A(2012年3月)
- http://www.tnst.org.tw/ezcatfiles/cust/img/img/ 20111121_jp15.pdf