日本機械学会論文集(B編) 66巻647号(2000-7)

遠心羽根車入口循環流によるインデューサ失速の抑制* (第1報,環状溝による失速限界の改善)

植 木 弘 信^{*1}, 石 田 正 弘^{*1} 坂 口 大 作^{*1}, 孫 自 祥^{*1}

Suppression of Inducer Stall based on Inlet Recirculation in a Centrifugal Impeller

(1st Report, Improvement in Stall Limit by Ring Groove Arrangement)

Hironobu UEKI^{*2}, Masahiro ISHIDA, Daisaku SAKAGUCHI and Zixiang SUN

*2 Dept. of Mechanical Systems Engineering, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, Nagasaki, 852-8521 Japan

A ring groove arrangement is proposed to suppress unstable flow or surge in a centrifugal blower. The ring groove arrangement connects the upstream position of impeller inlet and the inducer throat tip through a bypass. The recirculation flow was formed by the pressure difference between the two positions, and the recirculation flow rate was changed by increasing the ring groove widths. The inlet recirculation results in a decrease in the flow rate of unstable flow inception, and an up to 8% improvement in stall limit was obtained by the ring groove arrangement at a small expense of the delivery pressure drop. The improvement of stall limit in the present experiment seems to be mainly due to decrease in flow incidence based on the inlet recirculation flow. The flow incidence decreases more as the recirculation flow rate increases, thus resulting in a larger improvement in stall limit.

Key Words : Centrifugal Impeller, Inducer Stall, Stall Limit, Suppression, Inlet Recirculation, Ring Groove

1. まえがき

遠心送風機や遠心圧縮機の低流量域で生じる不安定 流動すなわち旋回失速やサージに関する多くの実験結 果を調査した福島ら⁽¹⁾の結果によれば,後傾羽根遠心 羽根車の場合はディフューザ失速に原因があり, 径向 き羽根遠心羽根車の場合はインデューサ失速にあると おおよそ分類され,筆者ら⁽²⁾の実験結果も同様であっ た. 高比速度型径向き羽根遠心羽根車についての筆者 ら⁽³⁾の可視化実験によれば、シュラウド隙間を逆流す る低エネルギ流体は羽根車入口に向かう途中で羽根通 路内に戻って安定した循環流が形成されており、この 場合のディフューザ失速は不安定流動の発生原因には なっていないので、インデューサ失速が不安定流動の 発生原因と判断された. 遠心羽根車の不安定流動の発 生要因の解明とともにサージ限界改善策がこれまでに 数多く提案されており、Botros ら⁽⁴⁾が展望した中で、 Jansen⁽⁵⁾が示した羽根車入口部のアキシャルグルーブに よるケーシングトリートメント効果が注目された.ま た, Fisher⁽⁰⁾は遠心圧縮機の羽根車入口インデューサ部 にバイパスを構成し、入口循環流を形成することに よってサージマージンが顕著に改善されることを示し た.この抑制策の概念は、羽根車入口案内羽根による 予旋回のおよび噴流による予旋回®と同様で,主として 羽根車に流入する流れの入射角の減少, 換言すれば羽 根前縁剥離の抑制を図ったものと推定され、本研究の 主旨に近い.一方,軸流羽根車や斜流羽根車などのよ うに、羽根車入口羽根先端部に生じる逆流が原因で発 生する不安定流動の抑制策は、インデューサ失速に基 づく遠心羽根車の不安定流動の抑制策として参考にな る点が多い.例えば、西岡ら⁹⁹は軸流送風機の壁面に 設けたケーシングトリートメントおよび吹出し・吸出 し装置において, 翼弦方向相対運動量を増加するよう な方向で吹出すと失速改善率が大きくなることを示し た.また、金子ら⁽¹⁰⁾は斜流送風機に前置環状翼を設け て羽根車入口における逆流を主流から分離することに よって設計点流量にほとんど悪影響を及ぼすことなく 低流量域の不安定特性が改善されることを示した.

本研究では、径向き羽根遠心羽根車のインデューサ 失速を抑制するため、インデューサ喉部シュラウド壁 面および羽根車入口上流吸込管壁面に設けた2つの環 状溝を環状通路で連結し、 両環状溝間の圧力差を利

^{*} 原稿受付 2000年1月14日.

^{*1} 正員,長崎大学工学部 (〒852-8521 長崎市文教町1-14).

E-mail: ueki@net.nagasaki-u.ac.jp

Fig.1 Meridional section of test blower and configuration of impeller blade

用して循環流を形成する方法について実験的に検討し た.低流量ではインデューサ部において減速が著しく 剥離を生じ易いので,この部分の低エネルギ流体の吸 出しを目的にインデューサ喉部に環状溝を設けたこと, および環状溝幅を種々変化することによって循環流量 を変化させたことが本研究の特徴である.失速抑制効 果をさらに明確にするため,循環流による入射角の変 化を熱線プローブを用いて計測し,また,上流溝を閉 じて循還流を停止した状態において,別途準備した吸 引装置を用いて喉部環状溝外周部から強制吸出しを 行った.入口循環流形成によるインデューサ失速抑制に 関するこれらの実験結果について, 喉部環状溝によ る隙間増大の影響,ケーシングトリートメント効果,羽 根前縁における入射角の軽減効果およびインデューサ 喉部における入射角の軽減効果およびインデューサ

2. 実験装置および実験方法

供試遠心送風機子午面断面および羽根形状を図1に示 す.羽根車は,出口半径 r_2 =105.4 mm,羽根出口高さ b_2 =15 mmの20枚の径向き羽根を有するインデューサ付 遠心羽根車で,羽根車羽根先端とシュラウドケーシン グの隙間は0.5 mmで一定である.羽根車入口羽根先端 羽根角は周方向から34°で,羽根先端での無衝突流入 流量(ϕ_a =0.36)を設計流量と定義した.シュラウド壁面 には羽根車入口からディフューザ入口までの間の14箇 所に静圧孔を設け,壁面静圧分布を計測した.また, 図に示すようにシュラウドケーシングおよび吸込み管 を3分割構造とし,それぞれの軸方向位置の組合わせ により,上流および喉部の環状溝幅を最小0 mmから最 大8 mmの間で設定した.上流溝と喉部溝の間には通路

Fig.2 Change in impeller characteristics due to ring groove width

深さ4mmの環状連絡通路があり、低流量では両溝間圧 力差により下流溝から上流溝へ向かう逆向きの循環流 が、また高流量では順方向のバイパス流れが形成され る.羽根車に流入する流れの方向を計測するため、羽 根車入口羽根前縁より5mm上流の位置で羽根前縁に 沿って単一熱線プローブを挿入した.なお、実験は羽 根車回転速度4000 rpmの一定条件で、高流量から低流 量へ一方向に絞ることによって失速限界吐出流量を確 定した.

3. 実験結果および考察

3・1 失速限界流量に及ぼす環状溝幅の影響

図2は環状溝幅に基づく羽根車特性ψ,,-φの変化を示 す. $\phi(=V_{m2}/U_2)$ は吐出流量係数, $\psi_{s2}(=2\Delta p/[\rho U_2^2])$ は羽根 車出口静圧係数であり、V_mは子午面分速度、U₂は羽根 車周速度, Δpは羽根車上流に設けたプレナムタンクの 全圧を基準とした静圧上昇量,添字2は羽根車出口を 表す. 図中の黒印は圧力センサを用いた壁面静圧変動 計測によって大きな振幅の変動が計測された流量で, その右端がサージ初生流量換言すれば失速限界吐出流 量を示す.また、上流および喉部の溝幅が0mmの場合 を基準状態(STD="F0R0")とし、"F0R2"は上流の溝幅が 0mmかつ喉部溝幅が2mmの状態を表す. "F0R2"の場 合, 喉部溝は一種のケーシングトリートメントと考え られるが、失速限界流量の改善率は僅かである.加え て2 mmの上流溝幅を与えた"F2R2"の場合は、約5%だ け失速限界流量を低流量側へ移行できている. この場 合,羽根車出口静圧ψ₂₂は基準状態と同じレベルにあ り、羽根車性能を悪化させることなく失速限界流量を 低流量側へ移行できている、溝幅をさらに拡げたF4R4

1708

0.7

0.65

0.6 w/∪2

0.55

0.5

0.45

0

0.2

Fig.3 Improvement of stall limit due to inducer groove width

Fig.4 Wall static pressure distribution along the shroud casing wall (with "F4R4" groove)

の場合は、失速限界流量を約7.8%低流量側へ移行でき たが、羽根車出口静圧係数が全流量範囲で約2.6%低下 している.なお、両溝幅を4mm以上に増加しても、失 速限界流量は"F4R4"の状態よりも低流量側へ移行でき ず、羽根車出口静圧係数が低下するだけであった、こ のことは環状連絡通路深さが4mmであることに起因 しており、環状溝幅を4mm以上に増加しても循環流量 が増加しないためと考えられる.

0.4

0.6

s/s2

0.8

図3は両溝幅が0mmのFOR0を基準とした失速限界流 量の改善率 Δφ_{eeee}と設計流量 φ_eにおける羽根車出口静圧 係数低下率 Δψ₂₄を示す. なお設計流量では、後出の図 6から推定されるように、上流溝から喉部溝へ向かう バイパス流が発生し、インデューサを通過する流量は 吐出流量より小さい. 上流溝を閉じて喉部環状溝幅だ けを与えた簡単なケーシングトリートメントとしての 作用では、出口静圧低下率は小さいが失速限界流量の 改善率が小さい. 上流および喉部の両溝に幅を与えた

場合には循環流が形成され、僅か2mmの溝幅でも出 口静圧を低下させることなく失速限界流量を 5%ほど 低流量側へ移行できている.また,喉部溝幅が4mm 以上では失速限界流量の改善率は高いが、同時に設計 流量において 2~3%の羽根車出口静圧低下を招いてい る. この設計流量での静圧低下は、上述の過大な溝幅 に基づく隙間損失の増加に加えて、バイパス流による 何らかの圧力低下が生じたものと考えられる.

なお、バイパス流が形成される設計流量ではイン デューサ部を通過する流量が減少するので仕事の減少 すなわち入力の減少が考えられるが、径向き羽根の場 合(11), シュラウド隙間の増加によって羽根車出口にお ける二次流れが変化しても、羽根車出口での滑り係数 がほとんど影響を受けていないことから判断すると, 本実験の場合も入力の減少はないものと推定され、羽 根車出口静圧低下率は羽根車効率の低下率にほぼ等し いものと見なされる.

Fig.6 Static pressure difference between front and rear grooves

3・2 インデューサ部における滅速率 図4は "F4R4"の場合のシュラウド壁面静圧分布を示す. 横軸 s/s_は羽根車シュラウド面に沿う子午面方向無次元距離 で,羽根入口を基準としたシュラウド面に沿う距離s を羽根車出口までの距離s_で無次元化した. なお,斜 線部分は環状溝の位置を示す. 設計流量および過大流 量では,喉部溝の静圧が上流溝のそれより低く,環状 通路内では上流から下流へ向う流れが生じていると推 定される. 低流量の φ=0.295 では喉部溝の静圧が上流溝 より高く,喉部羽根先端近傍の流体が環状通路を介し て上流の吸込管内へ導かれ,いわゆる入口循環流が形 成される. このために図2に示したような失速限界流 量の低流量化がなされたものと考えられる.

羽根車内流れに回転系のベルヌーイの式が適用でき ると仮定して、計測されたシュラウド壁面静圧分布か ら羽根車内相対速度分布Wを求めた. 図 5(a)は喉部溝 幅を一定の4mmとし、上流溝幅を増加した場合の相 ものである.静圧孔間隔が大きいため減速率の正確な 評価は困難であるが、喉部下流のs/s,=0.22における相 対速度の大きさから判断すると、白四角印で示す溝幅 ゼロの基準状態から"F0R4", "F2R4", "F4R4"の順にイ ンデューサ部での減速率が低下している.STDと "F0R4"の場合は循還流は形成されないから、両者の差 は喉部溝に基づく翼端翼面負荷の減少および隙間損失 である. "F0R4", "F2R4", "F4R4"の場合喉部溝幅は一定 であるが循環流量が順に増加する. いわゆる隙間損失 はほぼ等しいと推定されるから, 循環流量が大きいほ どインデューサへの流入流量が増加し、インデューサ 部の減速率が低下したものと判断される.

Fig.7 Change in flow incidence due to inlet recirculation estimated by 1-D flow analysis

図 5(b)はそれぞれの溝幅条件の失速限界流量におけ る相対速度分布である.循環流量が大きいほど失速限 界流量は小さくなっているが,羽根車出入口間の相対 速度分布はほぼ同じである.このことは,インデュー サへ流入する流量,すなわち循環流量と羽根車吐出流 量の和がほぼ等しい状態であることが推定される.

3・3 入射角と失速限界流量との関係 図6は図 4と同様の壁面静圧分布において、内挿により求めた 上流および喉部両溝幅中央の壁面静圧差 Δψ_sの吐出流 量による変化を示す. なお、Δψ_sは次式で定義した.

 $\Delta \psi_{s} = (\psi_{s})_{\text{front groove}} - (\psi_{s})_{\text{rear groove}}$

流量の減少とともに両溝間圧力差は,設計流量 ϕ_d =0.36における正の値から失速限界流量 ϕ_{sall} =0.295に おける負の値へ減少している.図において,喉部溝幅 を2mmに固定して上流溝幅を種々変化させた場合の 両溝間圧力差は,溝幅ゼロの基準状態の場合とほぼ等 しくて-つのグループに属している.一方,喉部溝幅 が4mm以上の3つの場合の両溝間圧力差はほぼ同じで 別のグループを形成しており,喉部溝幅2mmのグルー プの半分程度の圧力差である.両グループの差は喉部 溝幅の大小よりは,循環流量の大小に依存しており, 吐出流量が等しくて循環流量が大きい場合にはイン デューサへ流入する流量が大きいから喉部静圧が低下 し溝間圧力差が小さくなる.

設定された最小溝幅および縮流係数などを考慮し て,図 6に示す実測の圧力差から循環流量を推定し た.簡単のため、上流溝から吹出された流れと吸込み 管内流れは直ちに混合し、羽根車入口における流れは 断面内で一様であると仮定して子午面分速度V_mを求

Fig. 8 Configuration of ring groove arrangement

$\Delta\beta_{tip} = (\beta_{blade} - \beta_{flow})_{blade \ leading \ lip}$

図7は循環流形成による推定入射角の変化を示す。同 図の実線で示すように、一般に吐出流量の減少ととも に入射角は増加する。 φ=0.295における羽根先端入射 角は、両溝幅ゼロの基準状態(STD)での 5.1°から、 "F2R2"および"F4R2"の場合の 4.1°へ減少し、本実験 で最大の循環流量が推定される"F4R4"の場合は3.5°ま で減少する.5.1。は見掛けの失速限界入射角である が、いずれの溝幅状態でも入射角がこの値に到達する まで吐出流量を減少することが出来る筈であり、図7 に示すように失速限界流量ではいずれの溝幅状態でも おおよそ5°である.すなわち,循還流による入射角 の減少により、"F2R2"および"F4R2"の場合には約 5%, "F4R4"の場合には約8%の失速限界吐出流量の低 流量化がなされたものと推定される. なお、羽根前縁 における羽根高さ方向には羽根角度および速度に分布 があるので、上述の失速限界入射角はあくまで見掛け の値である.

3・4 入射角の実測結果 熱線流速計による羽根 車入口速度分布および流れ角の計測は、図8に示すよ うに、羽根車入口の羽根前縁から5 mm上流において 行った.熱線を羽根車軸方向に対して+45°および-45° 。傾斜させて設定し、これら2通りの場合の熱線出力 比から羽根車に流入する周方向平均絶対流れの方向お よび速度を計測し、速度三角形の関係から相対流れを

Fig.9 Change in flow incidence $\Delta\beta$ due to inlet recirculation

求めた. なお、プローブの挿入によって流れの軸対称 性が乱されるため羽根根元側ほど計測精度が悪くなる 可能性がある. 図 9は計測された周方向平均入射角 Δβ の羽根高さ方向分布である. 羽根前縁に対しプローブ 挿入位置が同じで循環流量が異なる"F0R4"および "F4R4"の2つの場合を比較している.2次元翼列の場合 (12)に羽根前縁負圧面側で定常的剥離を生じる入射角が おおよそ7 であることから判断すると、図に示す供 試羽根車の場合,設計流量においても,また失速限界 流量においても、周方向平均入射角が7°を大きく越 えている羽根根元側では前縁剥離を生じている筈であ り,一方,羽根先端側では前縁剥離はないと推定され る. なお、この種の羽根車では羽根先端側から剥離あ るいは逆流が発生することが多いが、供試羽根車では 吸込み性能改善のため羽根前縁根元側を図に示すよう にカットしており、根元側での入射角が設計流量にお いても過大になっている.

設計流量近傍の φ= 0.345では、環状連絡通路内で上 流から下流へ向かうバイパス流れが生じ、インデュー サに流入する流量が減少するため、"F4R4"の場合は "F0R4"の場合に比べて僅かながら入射角が増加してい る.失速限界流量 φ_{sul}= 0.295では、"F4R4"の場合循環 流が形成されるから入射角は小さくなる筈であるが、 計測精度内の変化のためか羽根高さ全体に亘ってF0R4 と殆ど同じ入射角分布を示している."F4R4"の場合の 失速限界流量 φ=0.272では、喉部から上流へ向かう循還 流が形成されることが環状連絡通路内に装着されたタ フトにより確認されており、吐出流量の減少に伴う入 射角の増加と循環流に伴う入射角の減少がほぼ打消し 合う筈であるが、計測結果には明確に表われていな

Fig.10 Effect of inducer throat suction on impeller characteristics (with "F0R4" groove)

い: ただし, 循還流が形成された場合, 上流溝より吹 出される流れによって吸込み管壁面近傍の流れがブ ロックされ, その後流部分では入射角が顕著に増加す ることが明確に計測されている.

3・5 喉部強制吸出しによる失速抑制 循還流 が形成されない"F0R4"の場合において、別の送風機を 用いて喉部溝外周部から強制的に吸出しを行った場合 の羽根車特性の変化を図10に示す. 横軸の流量係数 ♦ は、吸込み管上流において計測した吸込み流量から喉 部吸出し流量を差し引いた吐出流量係数である. 喉部 吸出し流量 qは設計流量 Q₄(φ₄=0.36)に対して0%から 6.3%まで変化しており、喉部吸出し流量を一定に保ち ながら吸込み流量を一方向に絞った. 喉部強制吸出し に基づく失速抑制効果は、環状溝による循還流形成に よる抑制効果と比べて遥かに大きく、6.3%の喉部吸出 し量で失速限界流量を約24%だけ低流量側へ移行出来 ている. 喉部吸出しによって吐出流量は減少するが羽 根車吸込み流量は減らないので前縁剥離発生限界入射 角は維持される. しかしながら, この失速限界流量の 低減量は入射角減少に基づく低減量より大きく、イン デューサ部における剥離流体の強制的吸出し効果が あったものと推定される.環状溝による循環流量をさ らに増加する対策を考案すれば、実用的なサージマー ジンの大幅な改善が可能であることが示唆された.

4. むすび

径向き羽根遠心羽根車のインデューサ失速を抑制す

るため、インデューサ喉部壁面および吸込管壁面に設 けた2つの環状溝とこれらを連結する環状通路で構成 される循環流路を構築し、 両溝間の圧力差を利用し た循環流形成によりサージマージンを約8%改善でき ることを示した、2mm幅の喉部環状溝によって、循環 流量が小さい場合にはケーシングトリートメント効果 が得られ、羽根車性能を殆ど低下することなく、失速 限界流量を約5%低減できている。一方、4mm溝幅で 循環流量が大きい場合は、羽根先端隙間増大に基づく 圧力損失などによる2.6%ほどの羽根車性能低下を伴う が、入射角の低減により約8%の失速限界流量の低減 が得られている、すなわち、この循還流形成によるイ ンデューサ失速抑制効果は、主として入射角の減少に よる前縁剥離の抑制作用に基づくものと判断された。

一方, 喉部環状溝から設計吐出流量の6.3%の流量を 強制的に吸出した場合, 24% もの失速限界流量の大幅 な低減が得られた. 羽根車吸込み流量の増加による入 射角減少に基づく低減量より大きく, インデューサ部 における剥離流体の強制的吸出しによる喉部有効流路 面積の確保がなされたものと推定された.

終りに、本研究に対し、文部省科学研究費ならびに 原田記念財団の助成があったことを記して謝意を表す. また、実験およびデータ解析については当時長崎大学 大学院学生であった井上瑞基君の協力に謝意を表す.

煵 文

 (1) 福島康雄・ほか2名,ターボ機械,17-3 (1989),149-159
(2) Ishida, M.・ほか3名, Proc. of JSME Intl. Conference on Fluids Engineering, Vol.II (1997),1097-1102

(3) 石田正弘・坂口大作,可視化情報学会誌,17-64 (1997), 46-50

(4) Botros, K. K. and Henderson, J. F., Trans. ASME Journal of Turbomachinery, 116-1 (1994), 240-249

(5) Jansen, W., Carter, A. E. and Swarden, M. C., AGARD Cp 282, Paper 19 (1980).

(6) Fisher, F. B., SAE Paper No. 880794 (1988).

(7) Rodgers, C., Trans. ASME, Journal of Turbomachinery, 113-3 (1991), 696-702

(8) Kyrtatos, N. and Watson, N. Trans. ASME, Journal of Engineering for Power, 102-4 (1980), 943-950

(9) 西岡清・ほか4名, 機論, 64-625, B(1998), 2950-2957

(10) 金子賢二·瀬戸口俊明,ターボ機械,22-5 (1994),286-289

(11) Ishida, M., Senoo, Y. and Ueki, H., ASME. Journal of Turbomachinery, 112-1 (1990), 19-24

(12) 西澤敏雄・高田浩之, 機論, 65-635, B(1999), 2293-2300