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Asymptotic normality for sums along

data-dependent sampling schemes

Takuhisa Shikimi

Abstract

Let XCI) = {X1,tl,t1EN},. .., Xed) = {Xd,td, tdE N} be independent sequences of i.i.d. real-valued ran­

dom variables and let St= SUI + ... +SdY, where t= (t l, ... ,td) and Si,ti= Lsi,,;,ti( (Xi,Si - Pi) / ai), i
= 1, ... ,d. A sequential sampling plan determines the way of taking one observation from
one of the processes XO), ...,X(d), according to the previous sampled data. We show that
the random sum of observations under any sequential sampling scheme is asymptotical­
ly normal. An easy application of the normality yields the classical result of sequential
interval estimation of means of two polulations.

Key words: asymptotic normality; sequential sampling plan; sequential interval estima­
tion.

Introduction

This note intends to prove asymptotic normality for random sums of random variables in which

the summands are selected in a predictable manner from two or more independent sequences of

i.i.d. real-valued random variables. Let X(!) = {Xl,tl,t 1 EN}, ... , Xed) = {Xd,td,tdEN} be indepen­

dent sequences of Li.d random variables with EXi,l = Pi, VXi,l = a7 E (0,00), i = 1, ...,d. For t= (t1,

... ,td), let St=Sl,tl+"'+Sd,td, where Si,ti=Lsi,,;,ti((Xi,Si-Pi)/ai) (i=l, ... ,d). A sequential sam­

pling scheme determines which population to be observed based on the previous observations,

and therefore is represented by a sequence of Nd-valued stopping points (rn) satisfying a

predictable condition. Asymptotic normality of Sr. is shown by a straightforward application of a

martingale central limit theorem (Brown(197l), McLeish (1974) , Chow and Teicher (1988)

or Billingsley (1995)). This result will be applied to sequential estimation of the defference of

means of two populations.

2 Notation

The set N is the set of positive integers, N* the set N U {a} and d is a positive integer. Through­

out, the set N*d will be denoted by r, the set N*d - {O} by I, where 0 = (0, ... ,0). Ele-
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ments of r are denoted by the letters s,t, ... If s= (SI, ... ,Sd) and t= (tl, ...,td) are elements in rand

s i ~ t i for all i = 1, ... ,d, then we say that s is less than or equal to t (or t is greater than or equal to

s). This relation between sand t is denoted by s~ t, and this relation forms an partial order in the

set r. If s~ t and s* t, we write s< t. For t= (tl, ...,td ) Er,we set I tl = t l + ... + t d• The direct

successors of t E r are the elements u E r such that t < u and 1 u - t I = 1. The set of direct succes­

sors of t is denoted by Dt• The direct predecessors of tE I are the elements s E r such that s < t

and 1t - s 1= 1. If tn are elements in I, we will write tn ----+lX1 to express that I tn1----+ 00, and we use

the symbol I* to denote the set I U {lX1}. The order structure of r is extended to I* by setting t<

lX1. We agree by convention that 1 lX11 = 00.

Let (Q, gT, p) be a probalility space. A filtration {gTt, tE r} is a family of sub- (J -algebras of gT

such that gTs C 'fftfor s < t. A function T: Q ----+I* is called a stopping point if {T = t} E gTt for all t

E r. For a stopping point T relative to {gTt, t E r}, gTT is the class of subsets F in gT tx:i = (J (gTt,

tEr) such that Fn {T= t} E gTt for all tEr. A sequence of stopping points r = {rn, nEN*} is

said to be a predictable increasing path if

( i ) ro = 0 a.s.,

(ii) rn+1 EDr• a.s.,

(iii) rn+1 is gTrn -measurable.

A predictable increasing path can be thought of as a sampling strategy. Namely, it provides at

each stage of the observation a way of deciding which population to be observed, depending on

the previous data. A predictable increasing path naturally arises in sequential sampling or mul­

tiarmed bandits problems (Cairoli and Dalang (1996)). Clearly, in dimension 1 (d= 1), the con­

cept of a predictable increasing path is of little interest since in this case there is only one

predictable increasing path, namely, the deterministic increasing path defined by rn = n for all n

E N*. For all predictable increasing paths r, we agree by convention that roo = l><J. We will write

gTJ instead of gTr•. For precesses X indexed by I and predictable increasing paths r = {rn}, XJ

denotes X r•. If {Xt , tE n is a martingale relative to {gTt, tE nand r is a predictable increasing

path, then {XJ, tEN} forms a martingale relative to the filtration {gT~, nEN}.

3 The result

Let XCi) = {Xu, ti EN} (i = l, ... ,d) be a sequence of independent and identically distributed real-

valued random variables. We assume that X(j), ,X(d) are independent sequences. Further sym-

bols and assumptions are as follows: for i= l, ,d,

gTi,o={0, Q}.
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For t= (t1, ... ,td) EI*, let

St= SUI + +Sd,t d ,

fiTt= fiTUl V V fiTd,fd.

(3.1)

(3.2)

Let {fiTt ,tE I*} denote the filtration defined by (3.2) and let r denote any predictable increas­

ing path relative to {fiTt, t E I*}. Clearly S = {St, tEn is a martingale (note that the sum St has

already been normalized) , and hence so is {Sf, j E N} as was mentioned in the preceeding sec­

tion. Define

Y/ = S/ - Sil (j?:: 1),

Z~j=Y/ l,[n (j=l, ... ,n).

(3.3)

(3.4)

It is evident that the triangular array {Z~ , fiT/ ' j = 1, ...,n}, n E N} is a martingale difference ar­

ray. Thus applying the martingale central limit theorem yields the following result.

Theorem 3.1. Let S= {St, tE I} be the process defined by (3.1) and r any predictable increasing

path. Then we have

~~N(O,1) (l~n-+oo), (3.5)

where ~ denotes the convergence in distribution.

proof By the martingale central limit theorem, it suffices to show that as n-+ oo

n

1:E[(Z,;j)21 fiTJ-l] ~ 1, (3.6)
j=l

n

1:E[(Z~j)21{IZkl~d] -+ 0,
j=l

(3.7)

where ~ denotes the convergence in probability and 1A stands for the indicator function of the

set A E fiT. The latter condition is called the Lindeberg condition. We assume without loss of

generality that f-Li= 0 and (Ji= 1, i= 1, ... ,d. We shall denote by P t the set of direct predecessors of

tEl. For j?::l, we have

It follows from the predictability of r that {n= t} n {rj-l =s} E fiTs. We see therefore the last dis­

play is equal to
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L L f{=t}n{. =s} (S/ -S/-1)2dP
t:ltl=jsEPt rJ rJ-l

= L L P(n=t, rj-l =S)EXY,1 = 1
t: It 1 =j SEPt

The last equality follows from the independence of l{n=t,n-l}=s} and (St-Ss)2(note that {n=t}

n {n-l =s} E grs)· Consequently, we obtain that

n 1 n
L E[ (ZJj) 21 gr/-IJ = ~ L E[ (Y/ ) 21 gr/-IJ = 1.
j=l nj=l

The proof of (3.7) will be done similarly. Since for each £ > 0

= L L P{n=t} n {n-l =s} f (St-Ss)21{ISt-Ssl~£.;n}dP
t: It 1 =j SEPt

Since the integral of the last display converges to 0 as n --+ 00 ,

n

,L E [ (ZJj) 21 { Iz~ I~ d ]
J= 1

1 n
=-L L L P({n=t}n{rj-l=S}) f(St-Ss)21{ISt-Ssl~£.;n}dP--+O(n--+ oo ).

nj=l t:lt!=jsEP t

This completes the proof of the theorem.

4 An application to sequential estimation

In this section we will consider an application of the result in the previous section to sequential

estimation for the difference of means of two independent populations, with the specified sam­

pling plan introduced by Robbins, Simons and Starr (1967). Before proceeding to discussing

the application, we need to prepare a simple extension of Anscombe's theorem to martingale

cases. Anscombe's theorem asserts that randomly stopped sums are asymptotically normally

distributed. The central idea used in the proof of Anscombe's theorem is the notion of uniform

continuity in probability. A sequence {Yn, n E N} of random variables is said to be uniformly

continuous in probability iff for all £ > 0, there exists an 0> 0 for which



sup p( max IYn+k- Ynl ~d < E.
n {O~k~na} .
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(4.1)

Anscombe's theorem is obtained by using the following lemma, which will be also applied to

prove its generalization to the martingale case stated below. The proof of the lemma can be

found in Ghosh, Mukhopadhyay and Sen (1997).

Lemma 4.1. Suppose that{ Yn, n E N}is uniformly continuous in probability. Let 'fb (b > 0) be a

positive integer-valued random variable such that 'fbib converges in probability to it constant c E (0,

00 ). If Y n converges in distribution to a random variable Yas n ----+ 00 , then Y r bconverges in distri­

bution to Y as b ----+ 00 •

An adapted process {Yn} is called an L2-martingale if it is a martingale and E Y~< 00 for

each n.

Theorem 4.2. Suppose that{YnJFn, nEN} is an L2-martingale with mean o. Let Zn= Yn­

Yn- 1(n ~ 2), Zl = Y 1and assume that E~ is bounded. Let 'fb (b > 0) be a positive integer-valued

random variable such that 'fbib converges in probability to a constant cE (0, 00 ). If Ynl jii con­

verges in distribution to N(O, 1) as n ----+00, then as b ----+00

?} ~N(O,1),
'V 'fb

~} ~ N(O,1),

(4.2)

(4.3)

Proof It suffices to prove (4.2) because YrJJbC= Yrb('fblbc)1/2/~. In proving that YrJ~

converges in distribution to N(O, 1), by virtue of Lemma 4.1, we need only verify the uniform

continuity in probability of Ynl jii. Let us begin with showing that {Ynl jii, n EN} is uniformly

integrable. Since {Zn} are uncorrelated and EZn= 0 (n E N), it follows from the boundedness of

E~ that

(say) ,

whence suPnE[ (n- 1/2Yn) 2J < 00. It follows therefore that Ynl jii is uniformly integralbe.

Writing p(0) = 1- (11 (1 + 0)) 1/2 for 0 > 0, we have

as 0 ----+ O. (4.4)

For n~ 1, k~ 1, we have
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I;n:~ - ~I = I;n:~ - J:~k+J:~k - ~I

~~I Yn+k~ Ynl + 1(n:l' ~111~1
~Jnl Yn+k- Ynl +-(n:krJ I~I

If 0> 0 and k~ no ,

It follows thereby that

sup p[ max 1 Yn+k
- Ynl >£]

n;'l O~k~na In+k In

~sup p[ max 1Yn+k - Ynl >£In/2J+sup p[p(o) I~I >£/2].
n;'l O~k~na n;'l 'Vn

(4.5)

From (4. 4) and (4. 5) it remains only to show that the first term of (4. 5) converges to 0 as 0--+

O. It should be noted that for each nEN, (Yn+k- Yn,9Tn+k,kEN) is a martingale. Hence, us­

ing the maximal inequality for martingales, we obtain

p[ max 1 Yn+k - Yn1 > £In/2] = p[ max I Yn+k - Yn1 > £In/2]
O~k~na O~k~[naJ

4 I 1

2
4 I n + [naJ 1

2

~-2E Yn+[no] - Yn =-2E L Zj
n£ n£ j=n+ 1

whence

sup p[ max 1 Yn+k - Ynl > £In/2J ~4~0 --+ 0
n;'l O~k~na £

(0--+0).

This completes the proof of the theorem.

By this theorem, if {SJ, n E N} is the process defined by (3.1), then

S~ SN(O 1)
JbC "
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provided that 'fbi b converges in probability to a positive constant c.

Let us introduce two independent sequences of i.i.d. real-valued random variables, say Xco

= {XI,t1,tIEN} and X(2) = {X2,t2 ,t2E N}, where ,uiEXi,1 and O<a7=VXi,I(i=1,2) are

unknown. The problem is interval estimation of ,u= ,ul- ,u2' Set :Jfr t= gfl,t1 V gf2,t2, for t= (tl ,t2),

where g-;',ti= a (Xi,si,Si~ti) and gfi,O= {0, Q}. Define, for t i;:;2,

whereXi,ti=(1lti)L.si~tiXi,siCi=1,2). Let r be a predictable increasing path withd=2. We

introduce a stopping rule relative to {gfJ ,nEN}, which is one of the stopping rules proposed

by Robbins, Simons and Starr (1967): for b> 0

(4.6)

where m;:; 2 is the initial sample size of observations on Xl and X2. Defining three more or less

equivalent stopping rules including (4.6), Robbins, Simons and Starr (1967) studied the se­

quential interval estimation of the difference of the means of two populations, where the vari­

ances are unknown. More precisely, with a sampling rule and several stopping rules Robbins,

Simons and Starr (1967) found a approximate confidence· interval for ,u of fixed width and of

preassigned coverage probality. Their procedure consists of (i) a sampling scheme that tells us

at each stage whether the next observation, if needed, would be an Xco or X(2) and (ii) a stop­

ping rule, e.g., (4.6). Their sampling strategies is as follows: we take m(;:;2) observations on

XCI) and X(2) to begin with. Then, inductively define r by

_ + I(d-l ~ Urk-l) + I(rh-l> Urk-l)rn-rn-l el 2 '" V e2 2 V 'rn-l r~-l rn-l r~-l

(4.7)

where el = (1 ,0) , and e2 = (0 , 1)' . Hereafter r denotes the predictable increasing path de­

fined (4.7). With the sampling scheme (4. 7) and the stopping rule (4.6), we will show that

Xl, rL - X 2,r;. - ,u has asymptotically normal distribution with mean 0 and variance b- I for large

b. This consequence implies the result of Robbins, Simons and Starr (1967).

For rand 'fb' they showed that as b-+ oo

and

a.s., (4.8)
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Set for t= (t l , t2)

a.s. (4.9)

U sing Theorem 3. 1, (4 . 9) and Theorem 4. 2, we have

and so by (4. 9) and (4. 10) we have

By (4.8) and (4.9) we have

Likewise, as b --+00

2

ri/ --+ a2 (al +a2) .

Therefore applying the central limit theorem and Anscombe's theorem yield

Further, note that by (4. 8) as b --+ 00

(al +a2hL --+ 1­
a(rb

(4.10)

(4.11)

(4. 12)

(4.13)

(4.14)

Since by (4. 12) and (4. 13) /b (Xi, rL - PI) converges in distribution, it follows from (4. 14) that

as b --+00
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Consequently, by (4.11) we obtain the following asymptotic normality:

This implies the result of Robbins, Simons and Starr (1967).
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