Optimal L^{p} Estimates for the $\bar{\partial}$ Equation on Real Ellipsoids

Kenzō Adachi
Department of Mathematics, Nagasaki University
Nagasaki 852-8521, Japan
(Received October 31, 2001)
\section*{abstract}

Let D be a real ellipsoid in C^{n}. In this paper we give optimal L^{p} estimates for solutions of the $\bar{\partial}$ -problem on D.

1. Introduction

Range[5] obtained Hölder estimates for solutions of the equation $\bar{\partial} u=f$ on complex ellipsoids when f is a $(0,1)$-form. Chen-Krantz-Ma[1] obtained optimal L^{p} estimates for solutions of the equation $\bar{\partial} u=f$ on complex ellipsoids when f is a (0,1)-form. On the other hand, Ho[4] obtained Hölder estimates for solutions of the equation $\bar{\partial} u=f$ on complex ellipsoids when f is a $(0, q)$-form. Further, Diederich-Fornaess-Wiegerinck[2] obtained Hölder estimates for solutions of $\bar{\partial}$ on real ellipsoids. Fleron[3] studied Hölder estimates for solutions of the $\bar{\partial}$ problem on the complement of real or complex ellipsoids. In this paper we study the optimal L^{p} estimates for solutions of the $\bar{\partial}$-equation on real ellipsoids.

2. Solutions of the $\bar{\partial}$ equation on real ellipsoids

Let $l_{1}, \cdots, l_{n}, m_{1}, \cdots, m_{n}$ be positive even integers and let D be the real ellipsoid

$$
D=\left\{z \in \mathrm{C}^{n}: r(z)<0\right\}
$$

where

$$
r(z)=\sum_{k=1}^{n}\left(x_{k}^{l_{k}}+y_{k}^{m_{k}}\right)-1, \quad z_{k}=x_{k}+i y_{k}
$$

We set

$$
m=\max _{1 \leq k \leq n} \min \left(l_{k}, m_{k}\right)
$$

We may assume $m_{k} \leq l_{k}$. We set $\phi_{k}(x)=x^{l_{k}}, \psi_{k}(y)=y^{m_{k}}$. For some positive constant γ and $\zeta_{j}=\xi_{j}+i \eta_{j}$ we set

$$
P_{j}(\zeta, z)=-2 \frac{\partial r}{\partial \zeta_{j}}(\zeta)+\gamma\left(\phi_{j}^{n}\left(\eta_{j}\right)-\phi_{j}^{n}\left(\xi_{j}\right)\right)\left(z_{j}-\zeta_{j}\right)+\left(z_{j}-\zeta_{j}\right)^{m_{j}-1}
$$

and

$$
\Phi(\zeta, z)=\sum_{j=1}^{n} P_{j}(\zeta, z)\left(z_{j}-\zeta_{j}\right) \quad \text { for } \quad z, \zeta \in \bar{D}
$$

If we choose γ small enough, then we have for some positive constant c (Diederich-FornaessWiegerinck[2])
(1) $-r(\zeta)+r(z)+\operatorname{Re} \Phi(\zeta, z) \geq c \sum_{j=1}^{n}\left\{\left(\phi_{j}^{n}\left(\xi_{j}\right)+\psi_{j}^{n}\left(\eta_{j}\right)\right)\left|z_{j}-\zeta_{j}\right|^{2}+\left|z_{j}-\zeta_{j}\right|^{m_{j}}\right\}$
for $(\zeta, z) \in \bar{D} \times \bar{D}$.
Define

$$
\begin{gathered}
\beta=|\zeta-z|^{2}, \quad B(\zeta, z)=\frac{\partial_{\zeta} \beta}{\beta}, \quad W(\zeta, z)=\sum_{i=1}^{n} \frac{P_{i}(\zeta, z)}{\Phi(\zeta, z)} d \zeta_{i} \\
\hat{W}(\zeta, z)=\lambda W(\zeta, z)+(1-\lambda) B(\zeta, z) \\
\Omega_{q}(W)=c_{n} W \wedge\left(\bar{\partial}_{\zeta . \lambda} W\right)^{n-q-1} \wedge\left(\bar{\partial}_{z} W\right)^{q}
\end{gathered}
$$

where

$$
c_{n}=\frac{(-1)^{q(q-1) / 2}}{(2 \pi i)^{n}}\binom{n-1}{q}
$$

is a numerical constant. $\Omega_{q}(\hat{W})$ is defined in the same way, with \hat{W} instead of W. We define $K_{q}=\Omega_{q}$ (B). Then we have the following (cf. Range[6]):

Lemma 1. Let f be a $C^{1}(0, q)$-form in \bar{D}. Define

$$
T_{q}^{W} f=\int_{\partial D \times[0,1]} f \wedge \Omega_{q-1}(\hat{W})-\int_{D} f \wedge K_{q-1}
$$

Then $u=T_{q}^{w} f$ is a solution of the equation $\bar{\partial} u=f$.

3. Optimal L^{p} estimates

Using the solution of the $\bar{\partial}$ equation in lemma 1 and (1), we have the following (Show[7] obtained the optimal L^{p} estimate for solutions of the $\bar{\partial}_{b}$-problem on D):

THEOREM 1. For every $\bar{\partial}$-closed $(0, q)$-form f with coefficients in $L^{p}(D)$, there exists $a(0, q-$ 1)-form u on D such that $\bar{\partial} u=$ fand u satisfies the following estimates:
(i) If $p=1$, then $\|u\|_{L^{\gamma-\varepsilon}(D)} \leq c\|f\|_{L^{1}(D)}$, where $\gamma=\frac{m n+2}{m n+1}$.
(ii) If $1<p<m n+2$, then $\|u\|_{L^{s}(D)} \leq c\|f\|_{L^{p}(D)}$, where $s<q_{0}$ and q_{0} satisfies $\frac{1}{q_{0}}=\frac{1}{p}-\frac{1}{m n+2}$.
(iii) If $p=m n+2$, then $\|u\|_{L^{s}(D)} \leq c\|f\|_{L^{p}(D)}$ for all $s<\infty$.
(iv) If $p>m n+2$, then $\|u\|_{\Lambda_{a}(D)} \leq c\|f\|_{L^{p}(D)}$, where $\alpha=\frac{1}{m}-\left(n+\frac{2}{m}\right) \frac{1}{p}$.

Proof. Define

$$
J_{1}(f)=\int_{\partial D \times[0,1]} f \wedge \Omega_{q-1}(\hat{W}), \quad J_{2}(f)=\int_{D} f \wedge K_{q-1}
$$

Then $J_{1}(\mathrm{f})$ is a linear combination of $I_{j}(0 \leq j \leq n-q-1)$:

$$
I_{j}(z)=\int_{\partial D} \frac{f(\zeta) \wedge \partial_{\zeta} \beta \wedge P \wedge\left(\bar{\partial}_{\xi} P\right)^{j} \wedge\left(\bar{\partial}_{\zeta} \partial_{\xi} \beta\right)^{n-q-j-1} \wedge\left(\bar{\partial}_{z} \partial_{\xi} \beta\right)^{q-1}}{\Phi(\zeta, z)^{j+1} \beta(\zeta, z)^{n-j-1}}
$$

where $P=\sum_{j=1}^{n} P_{i} d \zeta_{i}$.
Define

$$
\hat{\Phi}(\zeta, z)=\Phi(\zeta, z)-r(\zeta), b(\zeta, z)=|\zeta-z|^{2}+r(\zeta) r(z) .
$$

Then we have

$$
I_{j}(z)=\int_{D} f(\zeta) \wedge \bar{\partial}_{\xi}\left(\frac{\partial_{\xi} \beta \wedge P \wedge\left(\bar{\partial}_{T} P\right)^{j} \wedge\left(\bar{\partial}_{\xi} \partial_{\xi} \beta\right)^{n-q-j-1} \wedge\left(\bar{\partial}_{z} \partial_{\xi} \beta\right)^{q-1}}{\hat{\Phi}(\zeta, z)^{j+1} b(\zeta, z)^{n-j-1}}\right),
$$

where $\bar{\partial}_{T}$ denotes the tangential component of $\bar{\partial}$. For a neighborhood U of some boundary point, we may choose a system of local coordinates $t=\left(t_{1}, \cdots, t_{z_{n}}\right)$ in such a way that

$$
\left\{\begin{array}{l}
t_{k}=t_{2 k-1}+i t_{2 k}=z_{k}-\zeta_{k}(k=1, \cdots, n-1) \\
t_{2 n-1}=\operatorname{Im} \Phi(\zeta, z) \\
t_{2 n}=r(\zeta)-r(z)
\end{array}\right.
$$

For $a>1$ and $s(0 \leq s \leq n-q-1)$ we set

$$
I_{s}^{a}(z)=\int_{D \cap U} \frac{\left|\left(\bar{\partial}_{r} P(\zeta)\right)^{s}\right|}{\left(|\hat{\Phi}(\zeta, z)|^{s+2} b(\zeta, z)^{(2 n-2 s-3) / 2}\right)^{a}} d \mu(\zeta)
$$

Define

$$
\begin{aligned}
& A_{j}=\left|x_{j}-t_{2 j-1}\right|^{k_{j}-2}+\left|y_{j}-t_{2 j}\right|^{m_{j}-2}+\left(\left|x_{j}-t_{2 j-1}\right|^{l_{j-3}}+\left|y_{j}-t_{2 j}\right|^{m_{i}-3}\right)\left|t_{j}\right| \\
& B_{j}=\left\{\left(x_{j}-t_{2 j-1}\right)^{t_{j}-2}+\left(y_{j}-t_{2 j}\right)^{m_{j}-2}\right\}\left|t_{j}\right|^{2}+\left|t^{-}\right|^{m_{j}} .
\end{aligned}
$$

We define $t^{\prime}=\left(t_{1}^{\prime}, \cdots, t_{n-1}^{\prime}\right), t^{\prime \prime}=\left(t_{2 s+1}, \cdots, t_{2 n-2}\right), t=\left(t^{\prime}, t_{2 n-1}, t_{2 n}\right)$. Then we have

$$
\begin{aligned}
I_{s}^{a}(z) & \leq \int_{i t \leq 1} \frac{\Pi_{j=1}^{s} A_{j}}{\left(\left|t_{2 n-1}\right|+\left|t_{2 n}\right|+\sum_{k-1}^{n-1} B_{k}\right)^{(s+2) a}\left|t^{\prime}\right|^{(2 n-2 s-3) a}} d t \\
& \leq c \int_{t^{*} \leq 1} \frac{d t^{\prime \prime}}{\left(\left.\left|t^{\prime}\right|\right|^{2 m}\right)^{(s+2) a-s-2}\left|t^{n}\right|^{(2 n-2 s-3) a}} \\
& \leq c \int_{0}^{1} r^{(2 n-2 s-3+m s+2 m)(1-a)} d r<\infty,
\end{aligned}
$$

provided that

$$
a<\frac{m(s+2)+2 n-2 s-2}{m(s+2)+2 n-2 s-3}=a_{s} .
$$

Since

$$
a_{0}>a_{1}>\cdots>a_{n-2}=\frac{m n+2}{m n+1}
$$

we have proved that

$$
\int_{D}|K(\zeta, z)|^{a} d \mu(\zeta)<M_{1} \quad \text { uniformly } \quad z \in D
$$

where a is any number such that

$$
1<a<\frac{m n+2}{m n+1}
$$

Similarly we have

$$
\int_{D}|K(\zeta, z)|^{a} d \mu(z)<M_{2} \quad \text { uniformly } \quad \zeta \in D
$$

Therefore we have proved (i), (ii) and (iii) of theoem 1.The worst term we need to estimate for $\operatorname{grad}_{z} I_{j}(\zeta, z)$ is given by

$$
I(\zeta, z)=\frac{\left|\left(\bar{\partial}_{T} \partial r(\zeta)\right)^{n-2}\right|}{|\hat{\Phi}(\zeta, z)|^{n+1}|\zeta-z|}
$$

Let t be conjugate to p. Then

$$
\begin{aligned}
\left(\int_{D}|I(\zeta, z)|^{t} d \mu(\zeta)\right)^{\frac{1}{t}} & \leq c\left(\int_{D} \frac{\left|\left(\bar{\partial}_{T} \bar{\partial} r(\zeta)\right)^{n-2}\right|}{|\hat{\Phi}(\zeta, z)|^{t(n+1)}|\zeta-z|^{\mid}} d \mu(\zeta)\right)^{\frac{1}{t}} \\
& \leq \frac{c}{|r(\zeta)|^{1-\left(\frac{1}{m}-\left(x+\frac{2}{m} \frac{1}{m}\right)\right.} \cdot} .
\end{aligned}
$$

By the Hölder inequality, we have

$$
\int_{D}\left|\operatorname{grad}_{z} I_{j}(\zeta, z)\right| d \mu(\zeta) \leq c\|f\|_{L_{\phi}}|r(z)|^{-1+\left\{\frac{1}{m}-\left(x+\frac{2}{m}\right)_{\phi}^{1}\right\}}
$$

This proves (iv).

Let $1 \leq q \leq n-1$. Let Δ^{q} be the maximal order of contact of the boundary of the real ellipsoid D with q-dimensional complex linear subspaces. Suppose that $l_{j} \geq m_{j}(j=1, \cdots, n)$ and $m_{1} \leq m_{2} \leq \cdots \leq m_{n}$. Then $\Delta^{q}=m_{n-q+1}$. Using the method of Ho[4], theorem 1 is improved a bit. Now we define

$$
\tilde{P}_{i}\left(\zeta_{i}, z_{i}\right)= \begin{cases}P_{i}\left(\zeta_{i}, z_{i}\right) & (1 \leq i \leq n-q+1) \\ P_{i}\left(\zeta_{i}, z_{i}\right)+\bar{\zeta}_{i}-\bar{z}_{i} & (n-q+2 \leq i \leq n)\end{cases}
$$

Define

$$
\begin{gathered}
\tilde{\Phi}(\zeta, z)=\sum_{i=1}^{n} \tilde{P}_{i}\left(\zeta_{i}, z_{i}\right)\left(\zeta_{i}-z_{i}\right), \\
\zeta_{j}-z_{j}=v_{j}, \quad \zeta_{j}=\xi_{j}+i \eta_{j} \quad(j=1, \cdots, n)
\end{gathered}
$$

and

$$
v^{\prime}=\left(v_{1}, \cdots, v_{n-q+1}\right), \quad v^{\prime \prime}=\left(v_{n-q+2}, \cdots, v_{n}\right)
$$

Then we have the following:

Lemma 2. Let $m=\Delta^{q}$. Then there exists a positive constant c such that

$$
\begin{aligned}
& -r(\zeta)+r(z)+\operatorname{Re} \tilde{\Phi}(\zeta, z) \geq c\left\{\sum_{j=1}^{n-q+1}\left(\phi_{j}^{\prime \prime}\left(\xi_{j}\right)+\phi_{j}^{\prime \prime}\left(\eta_{j}\right)\right)\left|z_{j}-\zeta_{j}\right|^{2}+\left|v^{\prime}\right|^{m}+\left|v^{\prime \prime}\right|^{2}\right\} \\
& \operatorname{for}(\zeta, z) \in \bar{D} \times \bar{D}
\end{aligned}
$$

Using the argument of the proof of theorem 1, we have the following:

Theoerem 2. Let $m=\Delta^{q}$ and $p \geq 1$. For every $\bar{\partial}$-closed $(0, q)$-form f with coefficients in L^{p} (D), there exists $a(0, q-1)$ form u on D such that $\bar{\partial} u=f$ and u satisfies the following estimates:
(i) If $p=1$, then $\|u\|_{L^{\gamma-\varepsilon}(D)} \leq c\|f\|_{L^{1}(D)}$, where $\gamma=\frac{m n+2}{m n+1}$ and ε is any small number.
(ii) If $1<p<m n+2$, then $\|u\|_{L^{s}(D)} \leq c\|f\|_{L^{p}(D)}$, where $s<q_{0}$ and q_{0} satisfies $\frac{1}{q_{0}}=\frac{1}{p}-\frac{1}{m n+2}$.
(iii) If $p=m n+2$, then $\|u\|_{L^{s}(D)} \leq c\|f\|_{L^{\phi}(D)}$ for all $s<\infty$.
(iv) If $p>m n+2$, then $\|u\|_{A a(D)} \leq c\|f\|_{L^{p}(D)}$, where $\alpha=\frac{1}{m}-\left(n+\frac{2}{m}\right) \frac{1}{p}$.

References

[1] Z. Chen, S. G. Krantz and D. Ma, Optimal L^{p} estimates for the $\bar{\partial}$-equation on complex ellipsoids in C^{n}, Manuscripta math., 80 (1993), 131-149.
[2] K. Diederich, J. E. Fornaess and J. Wiegerinck, Sharp Hölder estimates for $\overline{\bar{\partial}}$ on ellipsoids, Manuscripta Math., 56 (1986), 399-417.
[3] J. F. Fleron, Sharp Hölder estimates for $\overline{\bar{\partial}}$ on ellipsoids and their complements via order of contact, Proc. Amer. Math. Soc., 124 (1996), 3193-3202.
[4] L. H. Ho, Hölder estimates for local solutions for $\bar{\partial}$ on a class of nonpseudoconvex domains, Rocky Mountain J. Math., 23 (1993), 593-607.
[5] R. M. Range, On Hölder estimates of $\bar{\partial} u=f$ on weakly pseudoconvex domains, Proceedings of International Conference, Cortona, Italy, 1977.
[6] R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, 1986.
[7] M. C. Show, Optimal Hölder and L^{p} estimates for $\bar{\partial}_{b}$ on the boundaries of real ellipsoids in C^{n}, Trans. Amer. Math. Soc., 324 (1991), 213-234.

