A Fixed Point Theorem for Holomorphic Mappings in Planar Domains

Kenzō Adachi and Siho Aikawa
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852-8521, Japan
(Received March.15, 2002)

abstract

Let U be some finitely connected domain in \mathbf{C} and let $f: U \rightarrow U$ be holomorphic. If $f(U)$ has compact closure in U, then there exists a unique fixed point in U.

1. Introduction

Let D be the unit disc in C. Using the Poincaré metric, Farkas and Ritt proved that if $f: D \rightarrow D$ is a holomorphic function such that $\overline{f(D)}$ is a compact subset of D, then there exists a unique fixed point P in D. Moreover, if f_{n} is the nth iterate of f, then $\left\{f_{n}\right\}$ converges uniformly to the constant function P on every compact subset of D (cf. [3]). Let E be a complex Banach space and let X be a bounded connected open subset of E. Then Earle and Hamilton[2] proved that if $f: X \rightarrow X$ is holomorphic and $f(X)$ lies strictly inside X, then f has a unique fixed point. In this paper, using the Caratheodory metric, we extend the above results to some finitely connected domains in \mathbf{C}.

2. The completeness of the Carathéodory metric

Definition. For $a \in \mathbf{C}$ and $r>0$, define

$$
B(a, r)=\{z \in \mathbf{C}| | z-a \mid<r\}, \quad \bar{B}(a, r)=\{z \in \mathbf{C}| | z-a \mid \leq r\} .
$$

We denote by D the unit disc $B(0,1)$. Let U be a domain in \mathbf{C}. For $P \in U$, define

$$
(D, U)_{P}=\{f \mid f: U \rightarrow D \text { is holomorphic such that } f(P)=0\}
$$

and

$$
F_{C}^{U}(P)=\sup \left\{\left|\varphi^{\prime}(P)\right| \mid \varphi \in(D, U)_{P}\right\}
$$

F_{C}^{U} is called the Carathéodory metric for U.
Lemma 1. Let U be a domain in \mathbf{C}. Then
(1) For all $P \in U$,

$$
0 \leq F_{C}^{U}(P)<\infty
$$

(2) Let K be a compact subset of U. Then there exists $C_{1}>0$ such that

$$
F_{C}^{U}(z) \leq C_{1} \quad(z \in K)
$$

(3) If U is bounded, then there exists $C_{2}>0$ such that

$$
F_{C}^{U}(P)>C_{2}
$$

Proof. (1) By definition, $0 \leq F_{C}^{U}(P)$. Let r be a positive number such that $\{z||z-P| \leq r\} \subset U$. Then Cauchy estimates imply that

$$
\left|f^{\prime}(P)\right| \leq \frac{1}{r} \quad\left(f \in(D, U)_{P}\right)
$$

Therefore, we have $F_{C}^{U}(P) \leq 1 / r<\infty$.
(2) Let $K \subset U$ be compact. Then for any $P \in K$, there exists $r_{0}>0$ such that $\left\{z\left||z-P| \leq r_{0}\right\} \subset U\right.$. Thus we have

$$
F_{C}^{U}(P) \leq \frac{1}{r_{0}} \quad(P \in K)
$$

$F_{C}^{U}(P)$ is bounded on K.
Therefore we have proved that $F_{C}^{U}(z) \leq C_{1}(z \in K)$.
(3) Suppose that U is bounded. That is, there exists $R>0$ such that

$$
U \subset\{z \in \mathbf{C}||z|<R\} .
$$

For $P \in U$, we set

$$
\varphi(\zeta)=\frac{\zeta-P}{2 R}
$$

Then we have $\varphi \in(D, U)_{P}$. By the definition of the Carathéodory metric, we obtain

$$
F_{C}^{U}(P) \geq\left|\varphi^{\prime}(P)\right|=\frac{1}{2 R}>0 .
$$

The proof of Lemma 1 is complete.

Definition. Let $\gamma: z=\gamma(t) \quad(a \leq t \leq b)$ be a smooth curve in a domain in C. We define the length $l_{\rho}(\gamma)$ of γ by the Carathéodory metric $\rho=F_{C}^{U}$:

$$
l_{\rho}(\gamma)=\int_{a}^{b} F_{C}^{U}(\gamma(t))\left|\gamma^{\prime}(t)\right| d t
$$

Definition. Let $C_{U}(P, Q)$ be the set of all piecewise smooth curves in U which connect P and Q. We define the distance $d_{\rho}(P, Q)$ of P and Q by the Carathéodory metric ρ as follows:

$$
d_{\rho}(P, Q)=\inf \left\{l_{\rho}(\gamma) \mid \gamma \in C(P, Q)\right\}
$$

Theorem 1. Let U_{1} and U_{2} be domains in \mathbf{C}, and let $\rho_{j}(j=1,2)$ be the Carathéodory metric in U_{j}, respectively. If $h: U_{1} \rightarrow U_{2}$ is holomorphic, then we have
(1) $\rho_{2}(h(z))\left|h^{\prime}(z)\right| \leq \rho_{1}(z) \quad\left(z \in U_{1}\right)$
(2) $d_{\rho_{2}}\left(h\left(P_{1}\right), h\left(P_{2}\right)\right) \leq d_{\rho_{1}}\left(P_{1}, P_{2}\right) \quad\left(P_{1}, P_{2} \in U_{1}\right)$.

Proof. Let $P \in U_{1}, Q=h(P)$ and $\varphi \in\left(D, U_{2}\right)_{Q}$. Then we have $\varphi \circ h \in\left(D, U_{1}\right)_{P}$. From the definition of the Carathéodory metric,

$$
F_{C}^{U_{1}}(P) \geq\left|(\varphi \circ h)^{\prime}(P)\right|=\left|\varphi^{\prime}(Q) \| h^{\prime}(P)\right| .
$$

Taking the supremum over all $\varphi \in\left(D, U_{2}\right)_{Q}$ yields

$$
F_{C}^{U_{1}}(P) \geq F_{C}^{U_{2}}(Q)\left|h^{\prime}(P)\right| .
$$

That is

$$
\rho_{1}(P) \geq \rho_{2}(h(P))\left|h^{\prime}(P)\right| .
$$

Let $\gamma:[0,1] \rightarrow U_{1}$ be a piecewise smooth curve. Then

$$
\begin{aligned}
l_{\rho_{2}}(h \circ \gamma) & =\int_{0}^{1} \rho_{2}(h \circ \gamma(t))\left|(h \circ \gamma)^{\prime}(t)\right| d t \\
& \leq \int_{0}^{1} \rho_{1}(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \\
& =l_{\rho_{1}}(\gamma)
\end{aligned}
$$

Using the above inequality, we have

$$
\begin{aligned}
d_{\rho_{2}}\left(h\left(P_{1}\right), h\left(P_{2}\right)\right) & =\inf \left\{l_{\rho_{2}}(\gamma) \mid \gamma \in C_{U_{2}}\left(h\left(P_{1}\right), h\left(P_{2}\right)\right)\right\} \\
& \leq \inf \left\{l_{\rho_{2}}(h \circ \gamma) \mid \gamma \in C_{U_{1}}\left(P_{1}, P_{2}\right)\right\} \\
& \leq \inf \left\{l_{\rho_{1}}(\gamma) \mid \gamma \in C_{U_{1}}\left(P_{1}, P_{2}\right)\right\} \\
& =d_{\rho_{1}}\left(P_{1}, P_{2}\right)
\end{aligned}
$$

The proof of Theorem 1 is complete.

Definition. Let U_{1} and U_{2} be domains in C. We say $f: U_{1} \rightarrow U_{2}$ is biholomorphic if $f: U_{1} \rightarrow U_{2}$ is holomorphic and bijective.

Corollary. Let U_{1} and U_{2} be domains in \mathbf{C}, and let $\rho_{j}(j=1,2)$ be the Carathéodory metric in U_{j}, respectively. If $h: U_{1} \rightarrow U_{2}$ is biholomorphic, then

$$
\rho_{2}(h(z))\left|h^{\prime}(z)\right|=\rho_{1}(z)
$$

Proof. Since $h^{-1}: U_{2} \rightarrow U_{1}$ is holomorphic, by Theorem $1(1)$

$$
\rho_{1}\left(h^{-1}(w)\right)\left|\left(h^{-1}\right)^{\prime}(w)\right| \leq \rho_{2}(w)
$$

If we set $h^{-1}(w)=z$, then

$$
\rho_{1}(z)\left|h^{\prime}(z)\right|^{-1} \leq \rho_{2}(h(z))
$$

Together with Theorem 1(1), we obtain the desired equality.
Lemma 2. Let $D=\{z \in \mathbf{C}| | z \mid<1\}$. Then the Carathéodory metric $F_{C}^{D}(z)$ for D is given by

$$
F_{C}^{D}(z)=\frac{1}{1-|z|^{2}}
$$

The right side of the above equality is called the Poincare metric for the unit disc.

Proof. We set $\rho(z)=F_{C}^{D}(z)$. Fix $z_{0} \in D$. Define

$$
h(z)=\frac{z+z_{0}}{1+\overline{z_{0}} z} .
$$

Then $h: D \rightarrow D$ is holomorphic and bijective. In view of the Corollary of Theorem 1

$$
\rho(h(0))\left|h^{\prime}(0)\right|=\rho(0) .
$$

Therefore,

$$
\rho\left(z_{0}\right)=\frac{1}{1-\left|z_{0}\right|^{2}} \rho(0) .
$$

If we set $\rho(0)=c$, then

$$
\rho(z)=\frac{c}{1-|z|^{2}} .
$$

If $\varphi \in(D, D)_{\mathbf{0}}$, then by the Schwarz lemma, $\left|\varphi^{\prime}(0)\right| \leq 1$. Hence $\rho(0) \leq 1$. On the other hand, if $\varphi(\zeta)=\zeta$, then $\varphi^{\prime}(0)=1$. Thus $c=\rho(0)=1$. The proof of Lemma 2 is complete.

Next we prove the completeness of the Carathéodory metric in a bounded domain whose boundary consists of finitely many pairwise disjoint, simple closed C^{2} curves. The proof is given in Krantz[2]. But for reader's convenience, we give a detailed proof.

THEOREM 2. Let U be a bounded domain in \mathbf{C} whose boundary consists of finitely many pairwise disjoint, simple closed C^{2} curves. Then U is complete in the Carathéodory metric.

Proof. We set $\rho=F_{C}^{U}$ and denote by d_{ρ} the distance induced by the Carathéodory metric ρ. If $z \in U$ is sufficiently close to ∂U there exists a unique point $P \in \partial U$ such that $|z-P|=\operatorname{dist}(z, \partial U)$. Then there exists $r_{0}>0$ and $C(P) \in \mathbf{C} \backslash U$ such that

$$
\bar{B}\left(C(P), r_{0}\right) \cap U=\{P\}, \quad U \cap B\left(C(P), r_{0}\right)=\phi
$$

Define $\mathbf{i}_{p}: U \rightarrow B\left(C(P), r_{0}\right)$, and $\mathbf{j}_{p}: B\left(C(P), r_{0}\right) \rightarrow B(0,1)$ by

$$
\mathbf{i}_{p}(\zeta)=C(P)+\frac{r_{0}^{2}}{\zeta-C(P)}, \quad \mathbf{j}_{p}(\zeta)=\frac{\zeta-C(P)}{r_{0}}
$$

By Theorem 1,

$$
F_{C}^{U}(z) \geq\left|\left(\mathbf{j}_{p} \circ \mathbf{i}_{p}\right)^{\prime}(z)\right| F_{C}^{D}\left(\mathbf{j}_{p} \circ \mathbf{i}_{p}(z)\right)
$$

On the other hand, if we set $\delta=|z-P|$, then, there exists constant L such that $\delta \leq L$. Then we have

$$
\begin{aligned}
\left(\mathbf{j}_{p} \circ \mathbf{i}_{p}\right)^{\prime}(z) & =\mathbf{j}_{p}\left(\mathbf{i}_{p}(z)\right)^{\prime}=\mathbf{j}_{p}^{\prime}\left(\mathbf{i}_{p}(z)\right) \cdot \mathbf{i}_{p}^{\prime}(z) \\
& =\frac{-r_{0}}{(z-C(P))^{2}}=\frac{-r_{0}}{\left(\delta+r_{0}\right)^{2}} \\
\left|\left(\mathbf{j}_{p} \circ \mathbf{i}_{p}\right)^{\prime}(z)\right| & =\left|\frac{-r_{0}}{(z-C(P))^{2}}\right|=\frac{r_{0}}{\left(\delta+r_{0}\right)^{2}} \\
\mathbf{j}_{p} \circ \mathbf{i}_{p}(z) & =\frac{r_{0}}{z-C(P)}
\end{aligned}
$$

Using Lemma 2, we obtain

$$
\begin{aligned}
F_{C}^{D}\left(\mathbf{j}_{p} \circ \mathbf{i}_{p}\right)(z) & =\frac{1}{1-\left|\frac{r_{0}}{z-C(P)}\right|^{2}}=\frac{1}{1-\frac{r_{0}^{2}}{\left(\delta+r_{0}\right)^{2}}} \\
& =\frac{1}{\left(1+\frac{r_{0}}{\delta+r_{0}}\right)\left(1-\frac{r_{0}}{\delta+r_{0}}\right)}=\frac{1}{\left(2-\frac{\delta}{\delta+r_{0}}\right)\left(\frac{\delta}{\delta+r_{0}}\right)} \\
& \geq \frac{1}{2 \cdot \frac{\delta}{\delta+r_{0}}}=\frac{\delta+r_{0}}{2 \delta} \geq \frac{r_{0}}{2 \delta}
\end{aligned}
$$

Then

$$
\begin{aligned}
F_{C}^{U}(z) & \geq F_{C}^{D}\left(\mathbf{j}_{p} \circ \mathbf{i}_{p}(z)\right)\left|\left(\mathbf{j}_{p} \circ \mathbf{i}_{p}\right)^{\prime}(z)\right| \\
& \geq \frac{r_{0}}{\left(\delta+r_{0}\right)^{2}} \cdot \frac{r_{0}}{2 \delta} \\
& \geq \frac{r_{0}}{\left(L+r_{0}\right)^{2}} \cdot \frac{r_{0}}{2 \delta}=C_{0} \frac{1}{\delta}
\end{aligned}
$$

where C_{0} is a positive constant depending only on r_{0}. Therefore we have

$$
\begin{equation*}
F_{C}^{U}(z) \geq \frac{C_{0}}{\operatorname{dist}(z, \partial U)} \tag{1}
\end{equation*}
$$

Next, fix $P_{0} \in U$. For $\varepsilon>0$, by the definition of d_{ρ}, there exists a piecewise smooth curve $\gamma: z=\gamma(t)(a \leq t \leq b)$ in U connecting P_{0} and z such that

$$
\begin{equation*}
d_{\rho}\left(P_{0}, z\right)+\varepsilon>\int_{a}^{b} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \tag{2}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
\left|\frac{d}{d t}\left\{\log |\gamma(t)-P|^{2}\right\}\right| & \left.=\frac{\frac{d}{d t}\{(\gamma(t)-P)(\overline{\gamma(t)}-\bar{P})\}}{|\gamma(t)-P|^{2}} \right\rvert\, \\
& \leq \frac{2\left|\gamma^{\prime}(t)\right|}{|\gamma(t)-P|}
\end{aligned}
$$

Using the above inequality, (1) and (2), we obtain

$$
\begin{aligned}
d_{\rho}\left(P_{0}, z\right)+\varepsilon & \geq \int_{a}^{b} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \\
& \geq C_{0} \int_{a}^{b} \frac{\left|\gamma^{\prime}(t)\right|}{\operatorname{dist}(\gamma(t), \partial U)} d t \\
& \geq C_{0} \int_{a}^{b} \frac{\left|\gamma^{\prime}(t)\right|}{|\gamma(t)-P|} d t \\
& \geq \frac{1}{2} C_{0} \int_{a}^{b}\left|\frac{d}{d t}\left\{\log |\gamma(t)-P|^{2}\right\}\right| d t \\
& \geq \frac{1}{2} C_{0}\left|\int_{a}^{b} \frac{d}{d t}\left\{\log |\gamma(t)-P|^{2}\right\} d t\right| \\
& =\left|C_{0}\left(\log \left|P_{0}-P\right|-\log |z-P|\right)\right| \\
& \geq \frac{C_{0}}{2}|\log | z-P| |
\end{aligned}
$$

In the last inequality, we used the fact that $-\log |z-P|$ is greater than $2|\log | P_{0}-P \|$. Since $\varepsilon>0$ is arbitrary, we obtain

$$
\begin{equation*}
d_{\rho}\left(P_{0}, z\right) \geq C|\log | z-P \| \quad\left(C=C_{0} / 2\right) \tag{3}
\end{equation*}
$$

Next we show that U is complete in the Carathéodory metric. Let $d_{\rho}\left(z_{j}, z_{k}\right) \rightarrow$ $0(j, k \rightarrow \infty)$. Then there exists a positive constant M such that

$$
d_{\rho}\left(z_{j}, P\right) \leq M
$$

Therefore from (3) we obtain

$$
M \geq d_{\rho}\left(z_{j}, P\right) \geq C\left|\log \operatorname{dist}\left(z_{j}, \partial U\right)\right|
$$

Hence we have

$$
e^{-\frac{M}{C}} \leq \operatorname{dist}\left(z_{j}, \partial U\right)
$$

Therefore $\left\{z_{j}\right\}$ is contained in a compact subset K in U. Since U is bounded, by Lemma 1 , there exists a constant $C_{2}>0$ such that $\rho(z) \geq C_{2}$. Then

$$
d_{\rho}\left(z_{j}, z_{k}\right) \geq C_{2}\left|z_{j}-z_{k}\right|
$$

Therefore $\left\{z_{j}\right\}$ is a Cauchy sequence in the Euclidean metric. Then $\left\{z_{j}\right\}$ converges to a point z in K. Let γ_{0} be a segment in K which connects z_{j} and z. From Lemma 1, there exists $C_{1}>0$ such that $\rho(z) \leq C_{1}(z \in K)$. Then we have

$$
d_{\rho}\left(z_{j}, z\right) \leq \int_{0}^{1} \rho\left(\gamma_{0}(t)\right)\left|\gamma_{0}^{\prime}(t)\right| d t \leq C_{1}\left|z-z_{j}\right|
$$

Thus we obtain $d_{\rho}\left(z_{j}, z\right) \rightarrow 0$. Therefore U is complete in the Carathéodory metric. The proof of Theorem 2 is complete.

Remark. Let $D^{*}=\left\{z \in \mathbf{C}|0<|z|<1\}\right.$. Then D^{*} is not complete in the Carathéodory metric. Since the boundary of D^{*} is not smooth, This fact does not contradicts Theorem 2. Now we give the proof. Let $\left\{z_{n}\right\}$ be a sequence in D^{*} converging to 0 in the Euclidean metric. We may assume that $\left|z_{n}\right| \leq \frac{1}{4}$.
Let $f: D^{*} \rightarrow D$ be a holomorphic function. Then by the Riemann removable singularities theorem, f is holomorphic in D. Using Cauchy estimates,

$$
\left|f^{\prime}(z)\right| \leq 4 \quad(|z| \leq 1 / 4)
$$

Thus, $|\rho(z)| \leq 4 \quad\left(|z| \leq \frac{1}{4}\right)$.
Let γ be a piecewise smooth curve in $D^{*} \cap\left\{z| | z \left\lvert\, \leq \frac{1}{4}\right.\right\}$ connecting z_{n} and z_{m}. Let $\gamma: z=\gamma(t)(a \leq t \leq b)$. Then

$$
d_{\rho}\left(z_{n}, z_{m}\right) \leq \inf _{\gamma} \int_{a}^{b} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \leq 4 \inf _{\gamma} \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=4\left|z_{n}-z_{m}\right| .
$$

Thus, $\left\{z_{n}\right\}$ is a Cauchy sequence in D^{*} in the Carathéodory metric. Suppose that $\left\{z_{n}\right\}$ converges to z in D^{*} in the Carathéodory metric. Then by Lemma

1, there exists $C_{2}>0$ such that $\rho(z)>C_{2}$. Let γ be a piecewise smooth curve in D^{*} connecting z_{n} and z.

$$
\begin{aligned}
d_{\rho}\left(z_{n}, z\right) & =\inf _{\gamma} \int_{a}^{b} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \\
& \geq \inf _{\gamma} \int_{a}^{b} C_{2}\left|\gamma^{\prime}(t)\right| d t \\
& \geq C_{2}\left|z_{n}-z\right|
\end{aligned}
$$

which is a contradiction.

3. The fixed point theorem

Definition. Let $\left(E_{1}, d\right)$ be a metric space. $f: A \rightarrow E_{1}$ is called a contraction mapping for $A \subset E_{1}$, if there exists $\alpha(0 \leq \alpha<1)$ such that

$$
d(f(x), f(y)) \leq \alpha d(x, y) \quad(x, y \in A)
$$

Then we have the following (cf. [1]):
THEOREM 3. Let f be a contraction mapping from a closed subset F of a complete metric space E into F. Then there exists a unique $z \in F$ such that $f(z)=z$.

Proof. There exists $\alpha(0 \leq \alpha<1)$ such that for all $x, y \in F$,

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

Let x_{0} is an arbitrary point in F. We define $x_{n}=f\left(x_{n-1}\right)(n=1,2, \cdots)$, then

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right) & =d\left(f\left(x_{n}\right), f\left(x_{n-1}\right)\right) \\
& \leq \alpha d\left(x_{n}, x_{n-1}\right) \\
& =\alpha d\left(f\left(x_{n-1}\right), f\left(x_{n-2}\right)\right) \\
& \leq \alpha^{2} d\left(x_{n-1}, x_{n-2}\right) \leq \cdots \\
& \leq \alpha^{n} d\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

We assume $m, n \in \mathbf{N}, m<n$, then

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{m}\right)
$$

$$
\begin{aligned}
& \leq d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{n-2}\right)+d\left(x_{n-2}, x_{m}\right) \\
& \leq d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{n-2}\right)+\cdots+d\left(x_{m+1}, x_{m}\right) \\
& \leq \alpha^{n-1} d\left(x_{1}, x_{0}\right)+\alpha^{n-2} d\left(x_{1}, x_{0}\right)+\cdots+\alpha^{m} d\left(x_{1}, x_{0}\right) \\
& =\left(\alpha^{n-1}+\alpha^{n-2}+\cdots+\alpha^{m}\right) d\left(x_{1}, x_{0}\right) \\
& =\frac{\alpha^{m}\left(1-\alpha^{n-m}\right)}{1-\alpha} d\left(x_{1}, x_{0}\right) \\
& \leq \frac{\alpha^{m}}{1-\alpha} d\left(x_{1}, x_{0}\right)
\end{aligned}
$$

If $m \rightarrow \infty$, then $d\left(x_{n}, x_{m}\right) \rightarrow 0$. Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence. Since F is a closed subset of a complete metric space, there exists z such that $\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0$. Then we have

$$
\begin{aligned}
d(f(z), z) & \leq d\left(f(z), x_{n}\right)+d\left(x_{n}, z\right) \\
& =d\left(f(z), f\left(x_{n-1}\right)\right)+d\left(x_{n}, z\right) \\
& \leq d\left(z, x_{n-1}\right)+d\left(x_{n}, z\right) \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

Hence $d(f(z), z)=0$, which implies $f(z)=z$. Thus we have proved that z is a fixed point. Next we show the uniqueness. We assume $f(w)=w$, then

$$
d(z, w)=d(f(z), f(w)) \leq \alpha d(z, w)
$$

Since $\alpha<1, d(z, w)=0$. Thus we have proved that $z=w$. The proof of Theorem 3 is complete.

Theorem 4. Let U be a bounded domain in \mathbf{C} whose boundary consists of finitely many pairwise disjoint, simple closed C^{2} curves. If $f: U \rightarrow U$ is holomorphic, and the image $M=\{f(z) \mid z \in U\}$ of f has compact closure in U, then there exists a unique point $P \in U$ such that $f(P)=P$. Moreover, if we set $f_{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n}$, then $\left\{f_{n}\right\}$ converges uniformly on compact sets to the constant function P.

Proof. By hypothesis, if $m \in M, z \notin U$, then there exists $\varepsilon>0$ such that $|m-z|>2 \varepsilon$. Since U is a bounded domain, there exists $R>0$ such that $U \subset B(0, R)$. Fix $z_{0} \in U$, we define

$$
g(z)=f(z)+\frac{\varepsilon}{R}\left(f(z)-f\left(z_{0}\right)\right)
$$

Then we have

$$
|g(z)-f(z)|=\frac{\varepsilon}{R}\left|f(z)-f\left(z_{0}\right)\right|<2 \varepsilon
$$

Thus, g maps U into U. Since $g^{\prime}\left(z_{0}\right)=\left(1+\frac{\varepsilon}{R}\right) f^{\prime}\left(z_{0}\right)$ we have

$$
\begin{aligned}
g^{*} \rho\left(z_{0}\right) & =\left|g^{\prime}\left(z_{0}\right)\right| \rho\left(g\left(z_{0}\right)\right) \\
& =\left|1+\frac{\varepsilon}{R}\right|\left|f^{\prime}\left(z_{0}\right)\right| \rho\left(f\left(z_{0}\right)\right) \\
& =\left(1+\frac{\varepsilon}{R}\right) f^{*} \rho\left(z_{0}\right) .
\end{aligned}
$$

Therefore, together with $g^{*} \rho\left(z_{0}\right) \leq \rho\left(z_{0}\right)$, we have

$$
\left(1+\frac{\varepsilon}{R}\right) f^{*} \rho\left(z_{0}\right) \leq \rho\left(z_{0}\right)
$$

We set

$$
\alpha=\left(1+\frac{E}{R}\right)^{-1} .
$$

Then we have

$$
\begin{equation*}
f^{*} \rho(z) \leq \alpha \rho(z) \quad(z \in U) \tag{4}
\end{equation*}
$$

Let $P, Q \in U$ and let $C: z=\gamma(t)(a \leq t \leq b)$ be a piecewise smooth curve in U conecting P and Q. Then, from (4) we obtain

$$
\begin{aligned}
l_{\rho}\left(f_{*} \gamma\right) & =\int_{a}^{b} \rho(f(\gamma(t)))\left|f^{\prime}(\gamma(t))\right|\left|\gamma^{\prime}(t)\right| d t \\
& =\int_{a}^{b} f^{*} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \\
& \leq \int_{a}^{b} \alpha \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \\
& =\alpha l_{\rho}(\gamma) .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
d_{\rho}(f(P), f(Q)) \leq \alpha d_{\rho}(P, Q) \tag{5}
\end{equation*}
$$

Since f is a contraction mapping in the Carathéodory metric, by Theorem 3 , there exists a unique point $P \in U$ such that $f(P)=P$. Define

$$
B_{\rho}(P, r)=\left\{z \in U \mid d_{\rho}(z, P)<r\right\}, \quad \bar{B}_{\rho}(P, r)=\left\{z \in U \mid d_{\rho}(z, P) \leq r\right\}
$$

We show that $B_{\rho}(P, r)$ is an open set in the Euclidean metric. Let $z_{0} \in$ $B_{\rho}(P, r)$ and $d_{\rho}\left(z_{0}, P\right)=s$. Then $s<r$. Let r_{1} be a positive constant such that

$$
\left\{z \in \mathbf{C}\left|\left|z-z_{0}\right| \leq r_{1}\right\} \subset U\right.
$$

Set $K=\left\{z \in \mathbf{C}| | z-z_{0} \mid \leq r_{1}\right\}$. Then from Lemma 1 , there exists a positive constant C_{1} such that $\rho(z) \leq C_{1}(z \in K)$. We choose $r_{2}>0$ such that

$$
r_{2}=\min \left\{r_{1}, \frac{r-s}{C_{1}}\right\}
$$

Let $\left|z-z_{0}\right|<r_{2}$ and let $\gamma: z=\gamma(t)(a \leq t \leq b)$ be a segment connecting z and z_{0}. Then

$$
d_{\rho}\left(z, z_{0}\right) \leq \int_{a}^{b} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \leq C_{1}\left|z-z_{0}\right|<r-s
$$

Therefore we obtain

$$
d_{\rho}(z, P) \leq d_{\rho}\left(z, z_{0}\right)+d_{\rho}\left(z_{0}, P\right)<r-s+s=r .
$$

Hence we have

$$
\left\{z \in \mathbf{C}\left|\left|z-z_{0}\right|<r_{2}\right\} \subset B_{\rho}(P, r)\right.
$$

Therefore $B_{\rho}(P, r)$ is an open set in the Euclidean metric. From (5) we obtain

$$
f\left(\bar{B}_{\rho}(P, r)\right) \subseteq \bar{B}_{\rho}(P, \alpha r)
$$

and, more generally,

$$
\begin{equation*}
f_{n}\left(\bar{B}_{\rho}(P, r)\right) \subseteq \bar{B}_{\rho}\left(P, \alpha^{n} r\right) \tag{6}
\end{equation*}
$$

Let K be a compact subset of U. Since for all positive integer $j, B_{\rho}(P, j)$ are open subsets in U and

$$
\bigcup_{j=1}^{\infty} B_{\rho}(P, j)=U
$$

there exists j such that

$$
K \subset B_{\rho}(P, j)
$$

Together with (6), we obtain

$$
f_{n}(K) \subset f_{n}\left(B_{\rho}(P, j)\right) \subset \bar{B}_{\rho}\left(P, j \alpha^{n}\right)
$$

By Lemma 1, for $z \in K$, we have

$$
\left|f_{n}(z)-P\right| \leq \frac{1}{C_{2}} d_{\rho}\left(P, f_{n}(z)\right) \leq \frac{1}{C_{2}} j \alpha^{n} \rightarrow 0
$$

which shows that $\left\{f_{n}\right\}$ converges uniformly on the compact set K to the constant function P. Thus the proof of Theorem 4 is complete.

DEFINITION. If E is a compact connected metric space which contains more than two points, then E is said to be a continuum.

THEOREM 5. Let U be a k-ply connected domain in \mathbf{C} such that each component of $\hat{\mathbf{C}} \backslash U$ is a continuum, where $\hat{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$ is the Riemann sphere. Then U is mapped biholomorphically onto a domain which consists of the unit disc with $k-1$ pairwise disjoint smooth closed subdomain removed.

Proof. Suppose $U=G \backslash C$, where G is a simply connected domain in \mathbf{C} such that $G \neq \mathbf{C}$, and C is a continuum in G. By the Riemann mapping theorem, there exists a biholomorphic map $f: G \rightarrow D$ such that

$$
f(U)=D \backslash f(C)
$$

By the Riemann mapping theorem, there exists a biholomorphic map g : $\hat{\mathbf{C}} \backslash f(C) \rightarrow D$ such that $g(f(U))=D \backslash[\overline{g(\partial D)}]$, where $[g(\partial D)]$ is the interior of $g(\partial D)$. Since $g(\partial D)$ is a smooth Jordan curve, U is mapped biholomorphically onto a domain which consists of the unit disc with a smooth closed subdomain removed. In the general case, Theorem 5 is proved by repeating the above method. The proof of Theorem 5 is complete.

Lemma 3. Let U_{1} and U_{2} be domains in \mathbf{C}. Let $\rho_{j}(j=1,2)$ be the Carathéodory metric on U_{j}, respectively. If there exists a biholomorphic map $f: U_{1} \rightarrow U_{2}$, then U_{1} is complete in the Carathéodory metric ρ_{1} if and only if U_{2} is complete in the Carathéodory metric ρ_{2}.

Proof. Suppose U_{2} is complete in the Carathéodory metric ρ_{2} and $\left\{z_{n}\right\}$ is a Cauchy sequence in U_{1} in the Carathéodory metric ρ_{1}. By the Corollary of Theorem 1 ,

$$
d_{\rho_{2}}\left(f\left(z_{n}\right), f\left(z_{m}\right)\right)=d_{\rho_{1}}\left(z_{n}, z_{m}\right) \rightarrow 0
$$

Thus $\left\{f\left(z_{n}\right)\right\}$ is a Cauchy sequence in the Carathéodory metric ρ_{2}. Since ($U_{2}, d_{\rho_{2}}$) is complete, there exists $w \in U_{2}$ such that

$$
d_{\rho_{2}}\left(f\left(z_{n}\right), w\right) \rightarrow 0 .
$$

Thus we obtain

$$
\lim _{n \rightarrow \infty} d_{\rho_{1}}\left(z_{n}, f^{-1}(w)\right)=0
$$

Hence, $\left\{z_{n}\right\}$ converges $f^{-1}(w)$ in the Carathéodory metric ρ_{1}. Thus $\left(U_{1}, d_{\rho_{1}}\right)$ is complete. The proof of Lemma 3 is complete.

Lemma 4. If U is a bounded domain in \mathbf{C}, equipped with the Carathéodory metric ρ, then $\left(U, d_{\rho}\right)$ is a metric space, where d_{ρ} is the distance induced by the Carathéodory metric ρ.

Proof. We must only show that if $d_{\rho}\left(z_{1}, z_{2}\right)=0$, then $z_{1}=z_{2}$. By the definition of the distance,

$$
d_{\rho}\left(z_{1}, z_{2}\right)=\inf _{\gamma} \int_{a}^{b} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t
$$

where the infimum is taken over all piecewise smooth curves γ in U connecting z_{1} and z_{2}. By Lemma 1 , there exists $C>0$ such that $\rho(\gamma(t)) \geq C$. Then

$$
0=d\left(z_{1}, z_{2}\right) \geq \inf _{\gamma} \int_{a}^{b} C\left|\gamma^{\prime}(t)\right| d t \geq C\left|z_{1}-z_{2}\right|
$$

Thus we obtain $z_{1}=z_{2}$. The proof of Lemma 4 is complete.
LEMMA 5. If a domain U_{1} is biholomorphically equivalent to a bounded domain U_{2}, then $\left(U_{1}, d_{\rho_{1}}\right)$ is a metric space, where $d_{\rho_{1}}$ is the distance induced by the Carathéodory metric ρ_{1} in U_{1}.

Proof. Let $f: U_{1} \rightarrow U_{2}$ be a biholomorphic map. From the Corollary of Theorem 1 ,

$$
d_{\rho_{1}}\left(z_{1}, z_{2}\right)=d_{\rho_{2}}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \quad\left(z_{1}, z_{2} \in U_{1}\right)
$$

where ρ_{2} is the Carathéodory metric in U_{2}. Hence, if $d_{\rho_{1}}\left(z_{1}, z_{2}\right)=0$, then $f\left(z_{1}\right)=f\left(z_{2}\right)$. Since f is one-to-one, $z_{1}=z_{2}$. Thus, $\left(U_{1}, d_{\rho_{1}}\right)$ is a metric space. The proof of Lemma 5 is complete.

Together with Lemma 3, Lemma 4 and Lemma 5, using the same method as the proof of Theorem 4, we obtain the following:

Theorem 6. Let U be a k-ply connected domain in \mathbf{C} such that each component of $\hat{\mathbf{C}} \backslash U$ is a continuum. Let $f: U \rightarrow U$ be a holomorphic function such that $\overline{f(U)}$ is a compact subset in U. Then there exists a unique point $P \in U$ such that $f(P)=P$. Moreover, if U is bounded, then the iterates $f, f \circ f, f \circ f \circ f, \cdots$ converge uniformly on compact sets to the constant function P.

References

[1] L. Debnath and P. Mikusinski, Introduction to Hilbert Spaces with applications, Academic Press, 1990.
[2] C. Earle and R. Hamilton, A fixed point theorem for holomorphic mappings, Proc. Symp. Pure Math., XVI, (1968), 61-65.
[3] S. G. Krantz, Complex Analysis: The goemetric viewpoint, Mathematical Association of America, Washington, D.C., 1990.

