On Rotation Matrices of given Axes and Angles and the Group Structure on $S O(3)$

K．Hiraoka，A．Nakasako and H．Kajimoto
Department of Mathematics，Faculty of Education， Nagasaki University，Nagasaki 852－8521，Japan
（Received October 31，2003）

Abstract

We treat rotation matrices of given axes and angles in the space $\mathbb{R}^{3}=\operatorname{Im} \mathbb{H}$ of pure imaginary quaternions．We give a product formula of rotation matrices of given axes vectors and so explain the group structure on $S O(3) \simeq \mathbb{R} P^{3}$ from the view point of axes and angles．

1 Introduction

We give the matrix expression $g(\theta ; u) \in S O(3)$ of rotation in \mathbb{R}^{3} of given axis $u \in \mathbb{R}^{3},|u|=1$ and angle θ by using the adjoint representation Ad：$S^{3}=S p(1) \longrightarrow$ $S O(3)$ ，as the following form：

$$
g(\theta ; u)=g(\theta u)=\operatorname{Ad}\left(\exp \frac{\theta}{2} u\right)
$$

where $u \in \mathbb{R}^{3}$ is identified with a quaternion in ImH and $\theta u \in \mathbb{R}^{3}$ is called the axis vector of the rotation．$g(\theta ; u)$ is to rotate clockwise around the axis u with angle θ ．The description is classically known as the Cayley－Klein parameter，and is equivalent to that given by the adjoint representation of $S U(2)$ ．We next give the product formula：

$$
g\left(\theta_{1} ; u_{1}\right) g\left(\theta_{2} ; u_{2}\right)=g\left(\theta_{3} ; u_{3}\right)
$$

and so look closely at the group structure in $S O(3)=\mathbb{R} P^{3}$ which is a closed ball of radius π in \mathbb{R}^{3} whose antipodal points in the boundary are identified．

2 Description of Rotational Transformation by Quaternions

We identify the set $\operatorname{Im} \mathbb{H}$ of all pure imaginary quaternions with the real 3-dimensional space \mathbb{R}^{3} by a linear isomorphism over \mathbb{R} :

$$
\begin{array}{ccc}
\mathbb{R}^{3} & \xrightarrow{\sim} & \operatorname{Im} \mathbb{H} \\
\Psi & & ש \\
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & \longmapsto & a i+b j+c k \tag{1}
\end{array}
$$

Let $x=x_{1} i+x_{2} j+x_{3} k, y=y_{1} i+y_{2} j+y_{3} k \in \operatorname{ImH}$. Define an inner product in $\operatorname{Im} \mathbb{H}$ by

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} .
$$

Then identification (1) is an isomorphism of Euclidean spaces.
Let $S^{3}=S p(1)=\{\rho \in \mathbb{H}| | \rho \mid=1\}$. For $\rho \in S^{3}$, we denote the adjoint representation of $S^{3}=S p(1)$ by F_{ρ} :

$$
\begin{equation*}
F_{\rho}=\operatorname{Ad} \rho: x \mapsto \rho x \rho^{-1}, \quad \operatorname{Im} \mathbb{H} \rightarrow \operatorname{Im} \mathbb{H} . \tag{2}
\end{equation*}
$$

For any $u \in \operatorname{Im} \mathbb{H},|u|=1$, we have $u^{2}=-1$. Hence the exponential is given by

$$
e^{\theta u}=\cos \theta+u \sin \theta, \quad \theta \in \mathbb{R}
$$

The exponential map exp : $\operatorname{ImH} \rightarrow S^{3}$ is then surjective. We show that

1. The sequence: $1 \rightarrow\{ \pm 1\} \rightarrow S^{3} \xrightarrow{F} S O(3) \rightarrow 1$ is exact,
2. If $\rho=e^{\frac{\theta}{2} u}(u \in \operatorname{Im} \mathbb{H},|u|=1)$ then F_{ρ} has u as axis and θ as angle.

2.1 $F\left(S^{3}\right)=S O(3)$ and Ker $F=\{ \pm 1\}$

Ker $F=\{ \pm 1\}$ is a consequence of center $(\mathbb{H})=\mathbb{R}$ because $\mathbb{R} \cap S^{3}=\{ \pm 1\}$. The formula

$$
\begin{equation*}
\langle x, y\rangle=-\frac{1}{2}(x y+y x) \tag{3}
\end{equation*}
$$

shows not changing an inner product by F_{ρ}, i.e.,

$$
\left\langle F_{\rho}(x), F_{\rho}(y)\right\rangle=\langle x, y\rangle
$$

So $F\left(S^{3}\right) \subset O(3)$. The map $\rho \mapsto \operatorname{det} F_{\rho}$ is a continous map from a connected S^{3} to $\{ \pm 1\}$, we have $\operatorname{det} F_{\rho}=+1$ and so $F\left(S^{3}\right) \subset S O(3)$. Since $\operatorname{dim} S^{3}=\operatorname{dim} S O(3)$ $=3$ and F is a continuous homomorphism between connected groups with discrete kernel, we know that $F\left(S^{3}\right)=S O(3)$.

2.2 Axes and Angles

We show that $F_{\rho}\left(\rho=e^{\theta u / 2}\right)$ has u as axis and θ as clockwise angle of rotation. We use the formula

$$
\begin{equation*}
F_{\rho}(x)=x \cos \theta+(u \times x) \sin \theta+\langle u, x\rangle u(1-\cos \theta) \tag{4}
\end{equation*}
$$

where $u \times x$ is an outer product given by

$$
x \times y=\left|\begin{array}{ll}
x_{2} & y_{2} \tag{5}\\
x_{3} & y_{3}
\end{array}\right| i+\left|\begin{array}{ll}
x_{3} & y_{3} \\
x_{1} & y_{1}
\end{array}\right| j+\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| k .
$$

F_{ρ} has u as axis because by (4),

$$
\begin{aligned}
F_{\rho}(u) & =u \cos \theta+(u \times u) \sin \theta+\langle u, u\rangle u(1-\cos \theta) \\
& =u \cos \theta+u(1-\cos \theta) \\
& =u
\end{aligned}
$$

Changing basis from i, j, k to $u_{1}=u, u_{2}, u_{3}$ which is orthonormal basis of right hand system, we get F_{ρ} from (4) as,

$$
\left\{\begin{array}{l}
F_{\rho}\left(u_{1}\right)=u_{1} \\
F_{\rho}\left(u_{2}\right)=u_{2} \cos \theta+u_{3} \sin \theta \\
F_{\rho}\left(u_{3}\right)=-u_{2} \sin \theta+u_{3} \cos \theta
\end{array} .\right.
$$

Hence

$$
F_{\rho}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

with respect to basis u_{1}, u_{2}, u_{3}. It follows that F_{ρ} has θ as angle of rotation. Computing $F_{\rho}(i), F_{\rho}(j), F_{\rho}(k)$ with standard basis, we summarize as:

Theorem 1 The rotation $g(\theta ; u) \in S O(3)$ of $\mathbb{R}^{3}=\operatorname{Im} \mathbb{H}$ with axis $u \in \operatorname{ImH}$, $|u|=1$ and angle θ, is given by

$$
\begin{gathered}
g(\theta ; \boldsymbol{u})=\operatorname{Ad}\left(\exp \frac{\theta}{2} u\right) \\
=\left(\begin{array}{ccc}
\left(1-a^{2}\right) \cos \theta+a^{2} & a b-c \sin \theta-a b \cos \theta & c a+b \sin \theta-c a \cos \theta \\
a b+c \sin \theta-a b \cos \theta & \left(1-b^{2}\right) \cos \theta+b^{2} & b c-a \sin \theta-b c \cos \theta \\
c a-b \sin \theta-c a \cos \theta & b c+a \sin \theta-b c \cos \theta & \left(1-c^{2}\right) \cos \theta+c^{2}
\end{array}\right) .
\end{gathered}
$$

And every rotation $g \in S O(3)$ can be written as the form: $g=g(\theta ; u)$ for some axis u and angle θ.

3 Product of Rotations

Let $\rho=e^{\theta u / 2}=\cos \frac{\theta}{2}+u \sin \frac{\theta}{2}, \rho_{1}=e^{\theta_{1} u_{1} / 2}=\cos \frac{\theta_{1}}{2}+u_{1} \sin \frac{\theta_{1}}{2}$ and $\rho_{2}=e^{\theta_{2} u_{2} / 2}=$ $\cos \frac{\theta_{2}}{2}+u_{2} \sin \frac{\theta_{2}}{2}$. Consider the product of rotations:

$$
\begin{aligned}
g(\theta ; u) & =g\left(\theta_{2} ; u_{2}\right) g\left(\theta_{1} ; u_{1}\right), \quad \text { i.e., } \\
F_{\rho} & =F_{\rho_{2}} F_{\rho_{1}}=F_{\rho_{2} \rho_{1}} .
\end{aligned}
$$

Then since kernel of $\rho \mapsto F_{\rho}$ is $\{ \pm 1\}$,

$$
\rho=\varepsilon \rho_{2} \rho_{1} \quad(\varepsilon= \pm 1)
$$

From the formula

$$
\begin{equation*}
x y=-\langle x, y\rangle+x \times y, x, y \in \operatorname{Im} \mathbb{H} \tag{6}
\end{equation*}
$$

we get

$$
\begin{aligned}
\rho_{2} \rho_{1}= & \left(\cos \frac{\theta_{2}}{2}+u_{2} \sin \frac{\theta_{2}}{2}\right)\left(\cos \frac{\theta_{1}}{2}+u_{1} \sin \frac{\theta_{1}}{2}\right) \\
= & \cos \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}+u_{2} \sin \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}+u_{1} \cos \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}+u_{2} u_{1} \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2} \\
= & \cos \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}-\left\langle u_{2}, u_{1}\right\rangle \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2} \\
& \quad+u_{2} \sin \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}+u_{1} \cos \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}+\left(u_{2} \times u_{1}\right) \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\cos \frac{\theta}{2}+u \sin \frac{\theta}{2}=\varepsilon\{ & \left\{\cos \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}-\left\langle u_{2}, u_{1}\right\rangle \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}\right. \\
& \left.+u_{2} \sin \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}+u_{1} \cos \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}+\left(u_{2} \times u_{1}\right) \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}\right\}
\end{aligned}
$$

Comparing real and imaginary parts we get the product formula:

$$
\begin{align*}
\cos \frac{\theta}{2} & =\varepsilon\left(\cos \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}-\left\langle u_{2}, u_{1}\right\rangle \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}\right) \\
u \sin \frac{\theta}{2} & =\varepsilon\left(u_{2} \sin \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}+u_{1} \cos \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}+\left(u_{2} \times u_{1}\right) \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}\right) \tag{7}
\end{align*}
$$

The axis u and angle θ of product rotation is determined by this formula.
Consider the easy case $u_{1}=u_{2}=u^{\prime}$. Then rotations in 3 -space is in a plane. Since $\left\langle u^{\prime}, u^{\prime}\right\rangle=1, u^{\prime} \times u^{\prime}=0$,

$$
\begin{aligned}
\cos \frac{\theta}{2} & =\varepsilon\left(\cos \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}-\sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}\right)=\varepsilon \cos \frac{\theta_{2}+\theta_{1}}{2} \\
u \sin \frac{\theta}{2} & =\varepsilon u^{\prime}\left(\sin \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}+\cos \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2}\right)=\varepsilon u^{\prime} \sin \frac{\theta_{2}+\theta_{1}}{2} .
\end{aligned}
$$

It is addition formula of sine and cosine.

4 Group Structure on $S O(3) \simeq \mathbb{R} P^{3}$

We have several relations among $g(\theta ; u)$'s:

$$
\begin{gathered}
g(0 ; u)=g(\theta ; 0)=I \\
g(\theta+2 \pi ; u)=g(\theta ; u), \quad g(\theta ; u)^{-1}=g(-\theta ; u)=g(\theta ;-u),
\end{gathered}
$$

for any $u \in \mathbb{R}^{3},|u|=1, \theta \in \mathbb{R}$ and hence,

$$
g(\theta+\pi ; u)=g(\theta-\pi ; u)=g(\pi-\theta ;-u)
$$

Therefore we can strengthen theorem 1 in part: every rotation $g \in S O(3)$ is of the form: $g=g(\theta ; u)$ with $0 \leq \theta \leq \pi$. For any $v \in \operatorname{Im} \mathbb{H}, v \neq 0$, let $v=\theta u, \theta=|v|$, $u=v /|v|$ be its polar decomposition. Define $g(v) \in S O(3)$ by

$$
g(v)=g(\theta ; u)=\operatorname{Ad}\left(\exp \frac{v}{2}\right)
$$

and call $v \in \operatorname{Im} \mathbb{H}$ the axis vector of $g(v) \in S O(3)$. An axis vector indicates the axis and angle of a rotation by its direction and length. We then have a surjection

$$
g: \operatorname{Im} \mathbb{H} \xrightarrow{\exp } S^{3} \xrightarrow{F} S O(3) .
$$

We know $g\left(D^{3}\right)=S O(3)$ where $D^{3}=\{v \in \operatorname{Im} \mathbb{H}| | v \mid \leq \pi\}$. Since $g(\pi ; u)=g(\pi ;-u)$, $g \mid D^{3}$ induces a homeomorphism of topological spaces:

$$
g: D^{3} /(v \sim-v,|v|=\pi) \xrightarrow{\sim} S^{3} /(x \sim-x) \xrightarrow{\sim} S O(3) .
$$

$\mathbb{R} P^{3}=S^{3} /(x \sim-x)$ is the 3-dimensional real projective space. Since $D^{3} /(v \sim$ $-v,|v|=\pi)=\operatorname{ImH} / \sim$ where $v \sim w \Leftrightarrow g(v)=g(w)$, we here look on $\mathbb{R} P^{3}$ as
the set of all the axes vectors modulo some equivalence. The rotation group $S O(3)$ induces a group structure on this $\mathbb{R} P^{3}$ as:

Theorem 2 Let $\mathbb{R} P^{3}=D^{3} /(v \sim-v,|v|=\pi)=$ the set of all the axes vectors of rotations modulo equivalence. Then the above g induces a group structure on $\mathbb{R} P^{3}=S O(3)$. In the group,

1. the unit element is zero vector.
2. the inverse of v is $-v$.
3. the product of 2 axes vectors is computed by the product formula (7) modulo equivalence.

5 Proof of Formulas

We give proofs of some facts and formulas. Refer to [2].
The exponential map exp : $\operatorname{ImH} \rightarrow S^{3}$ is surjective.
Proof. Let $\rho=a+b u \in S^{3}, a, b \in \mathbb{R}, u \in \operatorname{ImH},|u|=1$. From $|\rho|^{2}=a^{2}+b^{2}=1$, we get $a=\cos \theta, b=\sin \theta$ for some θ. So $\exp (\theta u)=e^{\theta u}=\cos \theta+u \sin \theta=\rho$.

$$
\text { (3) } x y=-\langle x, y\rangle+x \times y, \quad \text { (6) }\langle x, y\rangle=-\frac{1}{2}(x y+y x)
$$

Proof. Let $x=x_{1} i+x_{2} j+x_{3} k, y=y_{1} i+y_{2} j+y_{3} k \in \operatorname{ImH}$,

$$
\begin{aligned}
x y & =\left(x_{1} i+x_{2} j+x_{3} k\right)\left(y_{1} i+y_{2} j+y_{3} k\right) \\
& =-\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)+\left(x_{2} y_{3}-y_{2} x_{3}\right) i+\left(x_{3} y_{1}-y_{3} x_{1}\right) j+\left(x_{1} y_{2}-y_{1} x_{2}\right) k \\
& =-\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)+\left|\begin{array}{ll}
x_{2} & y_{2} \\
x_{3} & y_{3}
\end{array}\right| i+\left|\begin{array}{ll}
x_{3} & y_{3} \\
x_{1} & y_{1}
\end{array}\right| j+\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| k .
\end{aligned}
$$

For

$$
\begin{aligned}
\langle x, y\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}, \\
x \times y & =\left|\begin{array}{ll}
x_{2} & y_{2} \\
x_{3} & y_{3}
\end{array}\right| i+\left|\begin{array}{ll}
x_{3} & y_{3} \\
x_{1} & y_{1}
\end{array}\right| j+\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| k,
\end{aligned}
$$

we have

$$
x y=-\langle x, y\rangle+x \times y
$$

It follows that immediately,

$$
\begin{align*}
& \langle x, y\rangle=-\frac{1}{2}(x y+y x) \\
& x \times y=\frac{1}{2}(x y-y x) . \tag{8}
\end{align*}
$$

This completes the proof．

$$
\text { (4) } F_{\rho}(x)=x \cos \theta+(u \times x) \sin \theta+(1-\cos \theta)\langle u, x\rangle u
$$

Proof．Let $\rho=e^{\theta u / 2}=\cos \frac{1}{2} \theta+u \sin \frac{1}{2} \theta \in S p(1), x \in \operatorname{ImH}$ ．

$$
\begin{aligned}
F_{\rho}(x) & =\rho x \rho^{-1} \\
& =\left(\cos \frac{1}{2} \theta+u \sin \frac{1}{2} \theta\right) x\left(\cos \frac{1}{2} \theta-u \sin \frac{1}{2} \theta\right) \\
& =x \cos ^{2} \frac{1}{2} \theta-u x u \sin ^{2} \frac{1}{2} \theta+u x \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta-x u \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta \\
& =x \cos ^{2} \frac{1}{2} \theta-u x u \sin ^{2} \frac{1}{2} \theta+(u \times x) 2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta .
\end{aligned}
$$

Here $u x u=x-2\langle u, x\rangle$ because by（6），

$$
u x u=\{-\langle u, x\rangle+(u \times x)\} u=-\langle u, x\rangle u+(u \times x) u .
$$

And by（8），

$$
u x u=-\langle u, x\rangle u+\frac{1}{2}(u x u+x) \Rightarrow u x u=x-2\langle u, x\rangle u .
$$

Therefore

$$
\begin{aligned}
F_{\rho}(x) & =x \cos ^{2} \frac{1}{2} \theta+(2\langle u, x\rangle u-x) \sin ^{2} \frac{1}{2} \theta+(u \times x) \sin \theta \\
& =x \cos \theta+(u \times x) \sin \theta-2 \sin ^{2} \frac{1}{2} \theta\langle u, x\rangle u \\
& =x \cos \theta+(u \times x) \sin \theta+(1-\cos \theta)\langle u, x\rangle u .
\end{aligned}
$$

This completes the proof．
Acknowledgment．The authors thanks T．Sugawara for many helpful discussions and advices．

References

［1］T．Yamanouchi and M．Sugiura，Introduction to Continuous Group Theory 連続群論入門，（Baihukan 培風館，1956）．
［2］H．D．Ebbinghaus，et al．（Eds），Zahlen，Springer－Verlag（邦訳『数（下）』成木勇夫 訳，シュプリンガー・フェアラーク東京，1993）
［3］I．Yokota，Group and Topology 群と位相，（Syoukabou 裳華房，1971）．

