On Rotation Matrices of given Axes and Angles and the Group Structure on SO(3)

K. Hiraoka, A. Nakasako and H. Kajimoto

Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852-8521, Japan (Received October 31, 2003)

Abstract

We treat rotation matrices of given axes and angles in the space $\mathbb{R}^3 = \text{Im}\mathbb{H}$ of pure imaginary quaternions. We give a product formula of rotation matrices of given axes vectors and so explain the group structure on $SO(3) \simeq \mathbb{R}P^3$ from the view point of axes and angles.

1 Introduction

We give the matrix expression $g(\theta; u) \in SO(3)$ of rotation in \mathbb{R}^3 of given axis $u \in \mathbb{R}^3$, |u| = 1 and angle θ by using the adjoint representation Ad: $S^3 = Sp(1) \longrightarrow SO(3)$, as the following form:

$$g(\theta; u) = g(\theta u) = \operatorname{Ad}\left(\exp\frac{\theta}{2}u\right)$$

where $u \in \mathbb{R}^3$ is identified with a quaternion in ImH and $\theta u \in \mathbb{R}^3$ is called the axis vector of the rotation. $g(\theta; u)$ is to rotate clockwise around the axis u with angle θ . The description is classically known as the Cayley-Klein parameter, and is equivalent to that given by the adjoint representation of SU(2). We next give the product formula:

$$g(\theta_1; u_1)g(\theta_2; u_2) = g(\theta_3; u_3)$$

and so look closely at the group structure in $SO(3) = \mathbb{R}P^3$ which is a closed ball of radius π in \mathbb{R}^3 whose antipodal points in the boundary are identified.

2 Description of Rotational Transformation by Quaternions

We identify the set Im \mathbb{H} of all pure imaginary quaternions with the real 3-dimensional space \mathbb{R}^3 by a linear isomorphism over \mathbb{R} :

Let $x = x_1i + x_2j + x_3k$, $y = y_1i + y_2j + y_3k \in \text{Im}\mathbb{H}$. Define an inner product in Im \mathbb{H} by

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Then identification (1) is an isomorphism of Euclidean spaces.

Let $S^3 = Sp(1) = \{\rho \in \mathbb{H} | |\rho| = 1\}$. For $\rho \in S^3$, we denote the adjoint representation of $S^3 = Sp(1)$ by F_{ρ} :

$$F_{\rho} = \operatorname{Ad}\rho : x \mapsto \rho x \rho^{-1}, \quad \operatorname{Im}\mathbb{H} \to \operatorname{Im}\mathbb{H}.$$
 (2)

For any $u \in \text{Im}\mathbb{H}$, |u| = 1, we have $u^2 = -1$. Hence the exponential is given by

$$e^{\theta u} = \cos \theta + u \sin \theta, \quad \theta \in \mathbb{R}.$$

The exponential map $\exp: \operatorname{Im}\mathbb{H} \to S^3$ is then surjective. We show that

- 1. The sequence: $1 \to \{\pm 1\} \to S^3 \xrightarrow{F} SO(3) \to 1$ is exact,
- 2. If $\rho = e^{\frac{\theta}{2}u} (u \in \text{Im}\mathbb{H}, |u| = 1)$ then F_{ρ} has u as axis and θ as angle.
- **2.1** $F(S^3) = SO(3)$ and Ker $F = \{\pm 1\}$

Ker $F = \{\pm 1\}$ is a consequence of center(\mathbb{H})= \mathbb{R} because $\mathbb{R} \cap S^3 = \{\pm 1\}$. The formula

$$\langle x, y \rangle = -\frac{1}{2}(xy + yx) \tag{3}$$

shows not changing an inner product by F_{ρ} , i.e.,

$$\langle F_{\rho}(x), F_{\rho}(y) \rangle = \langle x, y \rangle.$$

So $F(S^3) \subset O(3)$. The map $\rho \mapsto \det F_{\rho}$ is a continuous map from a connected S^3 to $\{\pm 1\}$, we have det $F_{\rho} = +1$ and so $F(S^3) \subset SO(3)$. Since dim $S^3 = \dim SO(3) = 3$ and F is a continuous homomorphism between connected groups with discrete kernel, we know that $F(S^3) = SO(3)$.

On Rotation Matrices of given Axes and Angles and the Group Structure on SO(3)

2.2 Axes and Angles

We show that F_{ρ} $(\rho = e^{\theta u/2})$ has u as axis and θ as clockwise angle of rotation. We use the formula

$$F_{\rho}(x) = x\cos\theta + (u \times x)\sin\theta + \langle u, x \rangle u(1 - \cos\theta)$$
(4)

where $u \times x$ is an outer product given by

$$x \times y = \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} i + \begin{vmatrix} x_3 & y_3 \\ x_1 & y_1 \end{vmatrix} j + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} k.$$
(5)

 F_{ρ} has u as axis because by (4),

$$F_{\rho}(u) = u \cos \theta + (u \times u) \sin \theta + \langle u, u \rangle u(1 - \cos \theta)$$

= $u \cos \theta + u(1 - \cos \theta)$
= u .

Changing basis from i, j, k to $u_1 = u, u_2, u_3$ which is orthonormal basis of right hand system, we get F_{ρ} from (4) as,

$$\begin{cases} F_{\rho}(u_1) = u_1 \\ F_{\rho}(u_2) = u_2 \cos \theta + u_3 \sin \theta \\ F_{\rho}(u_3) = -u_2 \sin \theta + u_3 \cos \theta \end{cases}.$$

Hence

$$F_{\rho} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix},$$

with respect to basis u_1, u_2, u_3 . It follows that F_{ρ} has θ as angle of rotation. Computing $F_{\rho}(i), F_{\rho}(j), F_{\rho}(k)$ with standard basis, we summarize as:

3

Theorem 1 The rotation $g(\theta; u) \in SO(3)$ of $\mathbb{R}^3 = \text{Im}\mathbb{H}$ with axis $u \in \text{Im}\mathbb{H}$, |u| = 1 and angle θ , is given by

$$g(\theta; \boldsymbol{u}) = \operatorname{Ad}\left(\exp\frac{\theta}{2}u\right)$$

 $= \begin{pmatrix} (1-a^2)\cos\theta + a^2 & ab - c\sin\theta - ab\cos\theta & ca + b\sin\theta - ca\cos\theta\\ ab + c\sin\theta - ab\cos\theta & (1-b^2)\cos\theta + b^2 & bc - a\sin\theta - bc\cos\theta\\ ca - b\sin\theta - ca\cos\theta & bc + a\sin\theta - bc\cos\theta & (1-c^2)\cos\theta + c^2 \end{pmatrix}.$

And every rotation $g \in SO(3)$ can be written as the form: $g = g(\theta; u)$ for some axis u and angle θ .

3 Product of Rotations

Let $\rho = e^{\theta u/2} = \cos \frac{\theta}{2} + u \sin \frac{\theta}{2}$, $\rho_1 = e^{\theta_1 u_1/2} = \cos \frac{\theta_1}{2} + u_1 \sin \frac{\theta_1}{2}$ and $\rho_2 = e^{\theta_2 u_2/2} = \cos \frac{\theta_2}{2} + u_2 \sin \frac{\theta_2}{2}$. Consider the product of rotations:

$$\begin{array}{lll} g(\theta; u) &=& g(\theta_2; u_2) g(\theta_1; u_1), & \text{ i.e.,} \\ F_{\rho} &=& F_{\rho_2} F_{\rho_1} = F_{\rho_2 \rho_1}. \end{array}$$

Then since kernel of $\rho \mapsto F_{\rho}$ is $\{\pm 1\}$,

$$\rho = \varepsilon \rho_2 \rho_1 \quad (\varepsilon = \pm 1).$$

From the formula

$$xy = -\langle x, y \rangle + x \times y, \ x, y \in \text{Im}\mathbb{H}, \tag{6}$$

we get

$$\rho_{2}\rho_{1} = \left(\cos\frac{\theta_{2}}{2} + u_{2}\sin\frac{\theta_{2}}{2}\right) \left(\cos\frac{\theta_{1}}{2} + u_{1}\sin\frac{\theta_{1}}{2}\right) \\
= \cos\frac{\theta_{2}}{2}\cos\frac{\theta_{1}}{2} + u_{2}\sin\frac{\theta_{2}}{2}\cos\frac{\theta_{1}}{2} + u_{1}\cos\frac{\theta_{2}}{2}\sin\frac{\theta_{1}}{2} + u_{2}u_{1}\sin\frac{\theta_{2}}{2}\sin\frac{\theta_{1}}{2} \\
= \cos\frac{\theta_{2}}{2}\cos\frac{\theta_{1}}{2} - \langle u_{2}, u_{1} \rangle \sin\frac{\theta_{2}}{2}\sin\frac{\theta_{1}}{2} \\
+ u_{2}\sin\frac{\theta_{2}}{2}\cos\frac{\theta_{1}}{2} + u_{1}\cos\frac{\theta_{2}}{2}\sin\frac{\theta_{1}}{2} + (u_{2} \times u_{1})\sin\frac{\theta_{2}}{2}\sin\frac{\theta_{1}}{2}.$$

Hence,

$$\cos\frac{\theta}{2} + u\sin\frac{\theta}{2} = \varepsilon \left\{ \cos\frac{\theta_2}{2}\cos\frac{\theta_1}{2} - \langle u_2, u_1 \rangle \sin\frac{\theta_2}{2}\sin\frac{\theta_1}{2} + u_2\sin\frac{\theta_2}{2}\cos\frac{\theta_1}{2} + u_1\cos\frac{\theta_2}{2}\sin\frac{\theta_1}{2} + (u_2 \times u_1)\sin\frac{\theta_2}{2}\sin\frac{\theta_1}{2} \right\}$$

Comparing real and imaginary parts we get the product formula:

$$\cos\frac{\theta}{2} = \varepsilon \left(\cos\frac{\theta_2}{2}\cos\frac{\theta_1}{2} - \langle u_2, u_1 \rangle \sin\frac{\theta_2}{2}\sin\frac{\theta_1}{2}\right)$$

$$u\sin\frac{\theta}{2} = \varepsilon \left(u_2\sin\frac{\theta_2}{2}\cos\frac{\theta_1}{2} + u_1\cos\frac{\theta_2}{2}\sin\frac{\theta_1}{2} + (u_2 \times u_1)\sin\frac{\theta_2}{2}\sin\frac{\theta_1}{2}\right)$$
(7)

The axis u and angle θ of product rotation is determined by this formula.

Consider the easy case $u_1 = u_2 = u'$. Then rotations in 3-space is in a plane. Since $\langle u', u' \rangle = 1, u' \times u' = 0$,

$$\cos\frac{\theta}{2} = \varepsilon \left(\cos\frac{\theta_2}{2}\cos\frac{\theta_1}{2} - \sin\frac{\theta_2}{2}\sin\frac{\theta_1}{2}\right) = \varepsilon \cos\frac{\theta_2 + \theta_1}{2}$$
$$u \sin\frac{\theta}{2} = \varepsilon u' \left(\sin\frac{\theta_2}{2}\cos\frac{\theta_1}{2} + \cos\frac{\theta_2}{2}\sin\frac{\theta_1}{2}\right) = \varepsilon u' \sin\frac{\theta_2 + \theta_1}{2}.$$

It is addition formula of sine and cosine.

4 Group Structure on $SO(3) \simeq \mathbb{R}P^3$

We have several relations among $g(\theta; u)$'s:

$$g(0; u) = g(\theta; 0) = I,$$

$$g(\theta+2\pi;u) = g(\theta;u), \quad g(\theta;u)^{-1} = g(-\theta;u) = g(\theta;-u),$$

for any $u \in \mathbb{R}^3$, |u| = 1, $\theta \in \mathbb{R}$ and hence,

$$g(\theta + \pi; u) = g(\theta - \pi; u) = g(\pi - \theta; -u).$$

Therefore we can strengthen theorem 1 in part: every rotation $g \in SO(3)$ is of the form: $g = g(\theta; u)$ with $0 \le \theta \le \pi$. For any $v \in \text{Im}\mathbb{H}$, $v \ne 0$, let $v = \theta u$, $\theta = |v|$, u = v/|v| be its polar decomposition. Define $g(v) \in SO(3)$ by

$$g(v) = g(\theta; u) = \operatorname{Ad}\left(\exp\frac{v}{2}\right)$$

and call $v \in \text{Im}\mathbb{H}$ the axis vector of $g(v) \in SO(3)$. An axis vector indicates the axis and angle of a rotation by its direction and length. We then have a surjection

$$g: \operatorname{Im}\mathbb{H} \xrightarrow{\exp} S^3 \xrightarrow{F} SO(3).$$

We know $g(D^3) = SO(3)$ where $D^3 = \{v \in \text{Im}\mathbb{H} | |v| \le \pi\}$. Since $g(\pi; u) = g(\pi; -u)$, $g|D^3$ induces a homeomorphism of topological spaces:

$$g: D^3/(v \sim -v, |v| = \pi) \xrightarrow{\sim} S^3/(x \sim -x) \xrightarrow{\sim} SO(3)$$

 $\mathbb{R}P^3 = S^3/(x \sim -x)$ is the 3-dimensional real projective space. Since $D^3/(v \sim -v)$, $|v| = \pi$ = Im \mathbb{H}/\sim where $v \sim w \Leftrightarrow g(v) = g(w)$, we here look on $\mathbb{R}P^3$ as

the set of all the axes vectors modulo some equivalence. The rotation group SO(3) induces a group structure on this $\mathbb{R}P^3$ as:

Theorem 2 Let $\mathbb{R}P^3 = D^3/(v \sim -v, |v| = \pi) =$ the set of all the axes vectors of rotations modulo equivalence. Then the above g induces a group structure on $\mathbb{R}P^3 = SO(3)$. In the group,

- 1. the unit element is zero vector.
- 2. the inverse of v is -v.
- 3. the product of 2 axes vectors is computed by the product formula (7) modulo equivalence.

5 Proof of Formulas

We give proofs of some facts and formulas. Refer to [2].

The exponential map $\exp: \operatorname{Im}\mathbb{H} \to S^3$ is surjective.

Proof. Let $\rho = a + bu \in S^3$, $a, b \in \mathbb{R}$, $u \in \text{Im}\mathbb{H}$, |u| = 1. From $|\rho|^2 = a^2 + b^2 = 1$, we get $a = \cos \theta$, $b = \sin \theta$ for some θ . So $\exp(\theta u) = e^{\theta u} = \cos \theta + u \sin \theta = \rho$. \Box

(3)
$$xy = -\langle x, y \rangle + x \times y$$
, (6) $\langle x, y \rangle = -\frac{1}{2}(xy + yx)$

Proof. Let $x = x_1i + x_2j + x_3k, y = y_1i + y_2j + y_3k \in \text{Im}\mathbb{H}$,

$$\begin{aligned} xy &= (x_1i + x_2j + x_3k)(y_1i + y_2j + y_3k) \\ &= -(x_1y_1 + x_2y_2 + x_3y_3) + (x_2y_3 - y_2x_3)i + (x_3y_1 - y_3x_1)j + (x_1y_2 - y_1x_2)k \\ &= -(x_1y_1 + x_2y_2 + x_3y_3) + \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} i + \begin{vmatrix} x_3 & y_3 \\ x_1 & y_1 \end{vmatrix} j + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} k. \end{aligned}$$

For

$$\begin{array}{rcl} \langle x,y\rangle &=& x_1y_1 + x_2y_2 + x_3y_3, \\ x \times y &=& \left| \begin{array}{cc} x_2 & y_2 \\ x_3 & y_3 \end{array} \right| i + \left| \begin{array}{cc} x_3 & y_3 \\ x_1 & y_1 \end{array} \right| j + \left| \begin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array} \right| k, \\ \end{array}$$

we have

$$xy = -\langle x, y \rangle + x \times y.$$

It follows that immediately,

$$\langle x, y \rangle = -\frac{1}{2}(xy + yx)$$

$$x \times y = \frac{1}{2}(xy - yx).$$

$$(8)$$

This completes the proof. \Box

(4)
$$F_{\rho}(x) = x \cos \theta + (u \times x) \sin \theta + (1 - \cos \theta) \langle u, x \rangle u$$

Proof. Let $\rho = e^{\theta u/2} = \cos \frac{1}{2}\theta + u \sin \frac{1}{2}\theta \in Sp(1), x \in \text{Im}\mathbb{H}.$

$$F_{\rho}(x) = \rho x \rho^{-1}$$

$$= \left(\cos \frac{1}{2} \theta + u \sin \frac{1}{2} \theta \right) x \left(\cos \frac{1}{2} \theta - u \sin \frac{1}{2} \theta \right)$$

$$= x \cos^{2} \frac{1}{2} \theta - u x u \sin^{2} \frac{1}{2} \theta + u x \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta - x u \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta$$

$$= x \cos^{2} \frac{1}{2} \theta - u x u \sin^{2} \frac{1}{2} \theta + (u \times x) 2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta.$$

Here $uxu = x - 2\langle u, x \rangle$ because by (6),

$$uxu = \{-\langle u, x \rangle + (u \times x)\}u = -\langle u, x \rangle u + (u \times x)u$$

And by (8),

$$uxu = -\langle u, x \rangle u + \frac{1}{2}(uxu + x) \Rightarrow uxu = x - 2\langle u, x \rangle u.$$

Therefore

$$F_{\rho}(x) = x \cos^{2} \frac{1}{2}\theta + (2\langle u, x \rangle u - x) \sin^{2} \frac{1}{2}\theta + (u \times x) \sin \theta$$

$$= x \cos \theta + (u \times x) \sin \theta - 2 \sin^{2} \frac{1}{2}\theta \langle u, x \rangle u$$

$$= x \cos \theta + (u \times x) \sin \theta + (1 - \cos \theta) \langle u, x \rangle u.$$

This completes the proof. \Box

Acknowledgment. The authors thanks T. Sugawara for many helpful discussions and advices.

References

- [1] T. Yamanouchi and M. Sugiura, Introduction to Continuous Group Theory 連 続群論入門, (Baihukan 培風館, 1956).
- [2] H.D.Ebbinghaus, et al. (Eds), Zahlen, Springer-Verlag (邦訳『数(下)』成木 勇夫 訳, シュプリンガー・フェアラーク東京, 1993)
- [3] I. Yokota, Group and Topology 群と位相, (Syoukabou 裳華房, 1971).

7