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Abstract

We treat rotation matrices of given axes and angles in the space IR3 = ImlHI
of pure imaginary quaternions. We give a product formula of rotation matrices
of given axes vectors and so explain the group structure on 50(3) '::::: IRp3 from
the view point of axes and angles.

1 Introduction

We give the matrix expression g(8; u) E 50(3) of rotation in IR.3 of given axis
u E IR.3, lui = 1 and angle 8 by using the adjoint representation Ad: 53 = 5p(1) -----+

50(3), as the following form:

g(O; u) = g(Ou) = Ad (exp ~u)

where U E IR.3 is identified with a quaternion in ImIHI and 8u E IR.3 is called the
axis vector of the rotation. g(8; u) is to rotate clockwise around the axis u with
angle 8. The description is classically known as the Cayley-Klein parameter, and is
equivalent to that given by the adjoint representation of 5U(2). We next give the
product formula:

g(81 ; udg(82 ; U2) = g(83 ; '/1,3)

and so look closely at the group structure in 50(3) = IR.p3 which is a closed ball of
radius 7r in IR.3 whose antipodal points in the boundary are identified.
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2 Description of Rotational Transformation
by Quaternions

We identify the set ImIHI of all pure imaginary quaternions with the real 3-dimensional
space JR3 by a linear isomorphism over JR:

JR3

W

ImIHI
w

( a~ ) f-----7 ai + bj + ck
(1)

Let x = xli + X2j + X3k, Y = yli + Y2j + Y3k E ImIHI. Define an inner product in
ImIHI by

(x, y) = XIYI + X2Y2 + X3Y3'

Then identification (1) is an isomorphism of Euclidean spaces.
Let 8 3 = Sp( 1) = {p E IHII Ipi = I}. For p E S3, we denote the adjoint

representation of S3 = Sp(l) by Fp :

Fp = Adp : x 1-----+ pXp-l, ImIHI --+ ImIHI.

For any u E ImIHI, lui = 1, we have u2 = -1. Hence the exponential is given by

e8v = cos () + u sin (), () E JR.

The exponential map exp : ImIHI --+ S3 is then surjective. We show that

1. The sequence: 1 --+ {±1} --+ S3 ~ SO(3) --+ 1 is exact,

2. If p = e~V(u E ImIHI, lui = 1) then Fp has u as axis and () as angle.

2.1 F(83 ) = 80(3) and Ker F == {±1}

(2)

Ker F = {±1} is a consequence of center(IHI)=JR because JR n S3
formula

1
(x,y) = -2(xy + yx)

shows not changing an inner product by Fp , i.e.,

{±1}. The

(3)

So F(S3) C 0(3). The map p 1-----+ det Fp is a continous map from a connected 8 3

to {±1}, we have det Fp = +1 and so F(S3) C SO(3). Since dim 8 3 = dim SO(3)
= 3 and F is a continuous homomorphism between connected groups with discrete
kernel, we know that F(S3) = SO(3).
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2.2 Axes and Angles

We show that Fp (p = e8u
/

2
) has u as axis and e as clockwise angle of rotation. We

use the formula

Fp (x) = x cos e+ (u x x) sin e+ (u, x)u(1 - cos e)

where u x x is an outer product given by

x x y = I~: ~: Ii + I~: ~: Ij + I~: ~: Ik.

Fp has u as axis because by (4),

u cos e+ (u xu) sin e+ (u, u)u( 1 - cos e)
u cos e+ u(1 - cos e)
u.

(4)

(5)

/ --------~ J
/

/
/

/
/

J/
i U2

Changing basis from i, j, k to Ul = U, U2, U3 which is orthonormal basis of right hand
system, we get Fp from (4) as,

Hence

Fp = (~ co~ e - s~n e ) ,
o sin e cos e

with respect to basis Ul, U2, U3. It follows that F p has e as angle of rotation. Com
puting Fp(i), Fp(j), Fp(k) with standard basis, we summarize as:
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Theorem 1 The rotation g(8; u) E 80(3) of ~3 = ImlHI with axis u E ImlHI
J

lui = 1 and angle 8 J is given by

g(B;u) = Ad (exp~u)

(

(1-a2)cos8+a2 ab-esin8-abcos8 ea+bsin8-eaCOS8)
ab + e sin 8 - ab cos 8 (1 - b2) cos 8 + b2 be - a sin 8 - be cos 8 .
ea - bsin 8 - ea cos 8 be + a sin 8 - be cos 8 (1 - e2) cos 8 + e2

And every rotation 9 E 80(3) can be written as the form: 9 = g(8; u) for some
axis u and angle 8.

3 Product of Rotations

Let P = e Ou/ 2 = cos ~ + u sin ~, PI = eOlul/2 = cos °d + Ul sin 021 and P2 = eOzuz/2 =

cos o~ + U2 sin o~. Consider the product of rotations:

g(8; u)
Fp

g(82; u2)g(81 ; ud, I.e.,

FpzFpl = F pZP1 '

Then since kernel of P f---+ Fp is {±1} ,

P = SP2Pl (s = ±1).

From the formula
xy = - (x, y) + x x y, x, Y E ImlHI,

we get

P'PI ( cos ; + u, sin ; )(cos i + u[sin i)
82 81 . 82 81 82 . 81 . 82 . 81

cos - cos - + U2 sm - cos - + Ul cos - sm - + U2Ul sm - sm -
2 2 2 2 22 22
82 81 . 82 . 81

cos 2 cos 2 - (U2,u1)sm2sm2

. 82 81 82 . 81 . 82 . 81
+u2sm-cos- +Ulcos-sm- + (U2 x ul)sm-sm-.

2 2 2 2 2 2

Hence,

(6)

8 . 8
cos 2" + usm 2"

Comparing real and imaginary parts we get the product formula:
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(7)

The axis u and angle eof product rotation is determined by this formula.
Consider the easy case Ul = U2 = u'. Then rotations in 3-space is in a plane.

Since (u' u', = 1 u' x u' = 0,I' ,

e
cos 

2

. e
USlll2"

It is addition formula of sine and cosine.

4 Group Structure on 80(3) f'..; lRp3

We have several relations among g(e; u) 's:

g(O; u) = g(e; 0) = I,

g(e + 27r; u) = g(e; u), g(e; U)-l = g( -e; u) = g(e; -u),

for any u E IR3
, lui = 1, eE IR and hence,

g(e + 7r; u) = g(e - 7r; u) = g(7r - e; -u).

Therefore we can strengthen theorem 1 in part: every rotation g E SO(3) is of the
form: g = g(e; u) with 0 ::; e ::; 7r. For any v E ImJHI, v I- 0, let v = eu, e = lvi,
u = v/lvl be its polar decomposition. Define g(v) E SO(3) by

g(v) = g(e;u) = Ad (exp~)

and call v E ImJHI the axis vector of g(v) E SO (3). An axis vector indicates the axis
and angle of a rotation by its direction and length. We then have a surjection

g: ImJHI~ S3 ~ SO(3).

We know g(D3
) = 80(3) where D3 = {v E ImIHIllvl ::; 7[}. Sinceg(7[; u) = g(7[; -u),

glD3 induces a homeomorphism of topological spaces:

IRp3 = S3/(x rv -x) is the 3-dimensional real projective space. Since D3/(v
-v, Ivl = 7r) = ImJHI/ rv where v rv W {:} g(v) = g(w), we here look on IRp3 as



6 H. Kajimoto and A. Nakasako

the set of all the axes vectors modulo some equivalence. The rotation group 80(3)
induces a group structure on this lRp3 as:

Theorem 2 Let lRp3 = D3j(v rv -v, Ivl = 71") = the set of all the axes vectors
of rotations modulo equivalence. Then the above g induces a group strtlcture on
lRp3 = 80(3). In the group,

1. the unit element is zero vector.

2. the inverse of v is -v.

3. the product of 2 axes vectors is computed by the product formula (7) modulo
equivalence.

5 Proof of Formulas

We give proofs of some facts and formulas. Refer to [2].

The exponential map exp : ImIHI -t 8 3 is surjective.

Proof. Let p = a + bu E 8 3
, a, b E lR, u E ImIHI, lui = 1. From Ipl2 = a2+ b2 = 1,

we get a = cos B, b = sin B for some B. So exp(Bu) = eOu = cos B+ u sin B = p. 0

(3) xy = - (x, y) + x x Y,
1

(6) (x,y) = -"2(xy + yx)

xY (xli + X2j + X3 k )(yli + Y2j + Y3 k )

-(XIYI + X2Y2 + X3Y3) + (X2Y3 - Y2 x3)i + (X3YI - Y3 x dj + (XIY2 - YIX2)k

-(XIYI + X2Y2 + X3Y3) + I X2 Y21 i + I x3 Y31 j + I Xl YI I k.
I X3 Y3 Xl YI X2 Y2

For

we have

(X,y)

xxy

XIYI + X2Y2 + X3Y3,

I
X2 Y21 i + I X3 Y31 j + I Xl YI I k,
X3 Y3 I Xl YI X2 Y2

XY = - (X, y) + X X y.

It follows that immediately,

(X,y)

xxy

1
--(xy + yx)

2
1
-(xy - yx)2 . (8)
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This completes the proof. 0

(4) Fp(x) = xcos8 + (u x x) sin8 + (1- cos8)(u,x)u

Proof. Let p = e(}u/2 = cos ~8 + usin ~8 E Sp(l), x E ImIHI.

Fp(x) pXp-l

(cos ~e + u sin ~e) x (cos ~e - u sin ~e)
1 111 1 1

Xcos2 28 - uxu sin2 28 + ux sin 28 cos 28 - xu sin 2 8 cos 28

1 1 1 1
xcos2 -8 - uxusin2 -8 + (u x x)2sin -8cos -8.

2 2 2 2

Here uxu = x - 2(u, x) because by (6),

uxu = {-(u,x) + (u x x)}u = -(u,x)u+ (u x x)u.

And by (8),

1
uxu = -(u, x)u + 2(uXU + x) =? uxu = X - 2(u, x)u.

Therefore

1 . 1 .
x: cos2 28 + (2(u, x)u - x) sm2 28 + (u x x) sm8

1
x: cos 8 + (u x x)sin8 - 2sin2 28(u,x)u

x: cos 8 + (u x x) sin8 + (1 - cos 8)(u, x)u.

This completes the proof. 0
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