Note on the $\bar{\partial}$-problem on the complex ellipsoid

Kenzō Adachi and Hikaru Hori*
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852, Japan

(Received Oct. 31, 1997)

abstract

Let D be a complex ellipsoid in \mathbf{C}^{n}. In this paper we study Hölder estimates for solutions of the $\bar{\partial}$-problem in D.

1. Introduction.

Let D be a complex ellipsoid in $\mathbf{C}^{\mathbf{n}}$. Then D can be written in the following form.

$$
D=\{z: r(z)<0\}, \quad r(z)=\sum_{i=1}^{n}\left|z_{i}\right|^{2 m_{i}}-1,
$$

where $m_{i}(i=1, \cdots, n)$ are positive integers. We denote by $C_{(0, q)}(\bar{D})$ the space of all $C^{1}(0, q)$-forms on \bar{D}. We also denote by $\Lambda_{\alpha,(0, q)}(D)$ the space of all ($0, q$)-forms in D whose coefficients are Lipschitz functions of order α. Let $M=\max \left\{2 m_{i}\right\}$. Let f be a $C^{1}(0,1)$-form in \bar{D} with $\bar{\partial} f=0$. Then Range[2] proved that there exists a Lipschitz function u of order $\alpha(\alpha<1 / M)$ in D such that $\bar{\partial} u=f$. On the other hand, Diederich-Fornaess-Wiegerinck $[1]$ obtained Lipschitz solutions of the $\bar{\partial}$-problem in real ellipsoids. In their paper they pointed out that Range's result is still valid in the case where $\alpha=1 / M$. In the present paper we shall prove the following:

Theorem. Let D be the complex ellipsoid defined as above. For $f \in$ $C_{(0, q)}^{1}(\bar{D}), 1 \leq q \leq n$, with $\bar{\partial} f=0$, there exists $u \in \Lambda_{1 / M,(0, q-1)}(D)$ such that $\bar{\partial} u=f$.

2. Some lemmas.

Define

$$
r_{j}(z)=\frac{\partial r}{\partial z_{j}}(z), \quad \Phi(\zeta, z)=\sum_{j=1}^{n} r_{j}(\zeta)\left(\zeta_{j}-z_{j}\right)
$$

[^0]Further we set

$$
\beta=|\zeta-z|^{2}, \quad W=\sum_{j=1}^{n} \frac{r_{j}(\zeta)}{\Phi(\zeta, z)} d \zeta_{j}, \quad B=\frac{\partial \beta}{\beta}=\sum_{j=1}^{n} \frac{\bar{\zeta}_{j}-\bar{z}_{j}}{|\zeta-z|^{2}} d \zeta_{j} .
$$

For $\hat{W}=\lambda W+(1-\lambda) B$, we define

$$
\Omega_{q}(\hat{W})=c_{n, q} \hat{W} \wedge\left(\bar{\partial}_{\zeta, \lambda} \hat{W}\right)^{n-q-1} \wedge\left(\bar{\partial}_{z} \hat{W}\right)^{q},
$$

where $c_{q, n}$ are numerical constants. Now we define for a continuous $(0, q)$-form $f(1 \leq q \leq n)$ on \bar{D}

$$
T_{q}^{W} f=\int_{\partial D \times I} f \wedge \Omega_{q-1}(\hat{W})-\int_{D} f \wedge \Omega_{q-1}(B) .
$$

Then $T_{q}^{W} f$ satisfies $\bar{\partial} T_{q}^{W} f=f$.
If we set $\Omega_{q-1}(\hat{W})=d \lambda \wedge \Omega^{(1)}+\Omega^{(0)}$, then after integrating with respect to $d \lambda$ we have

$$
\int_{\partial D \times I} f \wedge \Omega_{q-1}(\hat{W})=\int_{\partial D \times I} f \wedge d \lambda \wedge \Omega^{(1)}=\int_{\partial D} \Omega^{(2)},
$$

where $\Omega^{(2)}$ is written by using a symbol $P=\sum_{j=1}^{n} r_{j}(\zeta) d \zeta_{j}, Q=\sum_{k=1}^{n} d \bar{\zeta}_{k} \wedge$ $d \zeta_{k}$,

$$
\Omega^{(2)}=\sum_{j=1}^{n-q-1} b_{j, k} \frac{\partial_{\zeta} \beta \wedge P \wedge\left(\bar{\partial}_{\zeta} P\right)^{j} \wedge Q^{n-q-1-j} \wedge\left(\sum_{j=1}^{n} d \bar{z}_{j} \wedge d \zeta_{j}\right)^{q-1}}{\Phi^{j+1} \beta^{n-j-1}}
$$

Range[2] proved the following:
Lemma 1. Let $M=\max _{i}\left(2 m_{i}\right)$. Then it holds that for $(\zeta, z) \in \partial D \times D$,

$$
\begin{equation*}
|\Phi(\zeta, z)| \gtrsim|\operatorname{Im} \Phi(\zeta, z)|+|r(z)|+\sum_{i=1}^{n}\left|\zeta_{i}\right|^{2 m_{i}-2}\left|z_{i}-\zeta_{i}\right|^{2}+|z-\zeta|^{M} . \tag{2.1}
\end{equation*}
$$

Let $\zeta \in \partial D$. Then $r_{i}(\zeta) \neq 0$ for some i. We may assume without loss of generality that $i=n$. Then we can choose a small ball \tilde{U} with center ζ. We denote by U a ball with center ζ such that $U \subset \subset \tilde{U}$. By using the partition of unity argument it is sufficient to estimate $\int_{\partial D \cap U} f \wedge \Omega^{(2)}$. Now we have the following.

Lemma 2. For $z, \zeta \in U$, we define $x_{2 j-1}(\zeta)=\operatorname{Re}\left(\zeta_{j}-z_{j}\right), x_{2 j}(\zeta)=$ $\operatorname{Im}\left(\zeta_{j}-z_{j}\right), j=1, \cdots, n-1, y(\zeta)=\operatorname{Im} \Phi(\zeta, z), t(\zeta)=r(\zeta)+|r(z)|$, then $t, y, x_{1}, \cdots, x_{2 n-2}$ constitute coordinates system in U.

Proof. In view of the equality

$$
\frac{\partial y}{\partial x_{2 j}}(z)=-\frac{1}{2} \frac{\partial r}{\partial x_{2 j-1}}(z), \quad \frac{\partial y}{\partial x_{2 j-1}}(z)=\frac{1}{2} \frac{\partial r}{\partial x_{2 j}}(z)
$$

we have

$$
\frac{\partial\left(x_{1}, \cdots, x_{2 n-2}, y, t\right)}{\partial\left(x_{1}, \cdots, x_{2 n}\right)}=-2\left|\frac{\partial r}{\partial \zeta_{n}}\right|^{2} \neq 0
$$

This completes the proof of Lemma 2.
We need the following(cf. [1]):
Lemma 3. Let R be a positive constant and j a non-negative integer. For $A>0, q \geq 1$ and $z=x+i y$ it holds that

$$
\int_{|z|<R} \frac{|z+w|^{j} d x d y}{\left(A+|z+w|^{j}|z|^{2}\right)^{q}}= \begin{cases}O\left(A^{1-q}\right) & (q>1) \\ O(\log A) & (q=1) .\end{cases}
$$

Proof. We divide the domain of integration into three parts.

$$
\begin{aligned}
\{z:|z|<R\}= & \left\{z:|z|<R,|z|<\frac{1}{2}|w|\right\} \\
& \cup\left\{z:|z|<R,|z| \geq \frac{1}{2}|w|,|z+w|<\frac{1}{2}|w|\right\} \\
& \cup\left\{z:|z|<R,|z| \geq \frac{1}{2}|w|,|z+w| \geq \frac{1}{2}|w|\right\} .
\end{aligned}
$$

We only estimate

$$
I_{1}=\int_{|z|<R,|z|<\frac{1}{2}|w|} \frac{|z+w|^{j}}{\left(A+|z+w|^{j}|z|^{2}\right)^{q}} d x d y
$$

Using polar coordinates we have

$$
I_{1} \lesssim \int_{|z|<R} \frac{\left(\frac{3}{2}|w|\right)^{j}}{\left(A+\left(\frac{1}{2}|w|\right)^{j}|z|^{2}\right)^{q}} d x d y=2 \pi \int_{0}^{R} \frac{\left(\frac{3}{2}|w|\right)^{j}}{\left(A+\left(\frac{1}{2}|w|\right)^{j} r^{2}\right)^{q}} d r
$$

Thus we have

$$
I_{1}= \begin{cases}O\left(A^{1-q}\right) & (q>1) \\ O(\log A) & (q=1)\end{cases}
$$

Using similar methods, we can prove the other cases. This completes the proof of Lemma 3.

In order to prove our theorem we use the following Hardy-Littlewood argument.

Lemma 4. Let D be a bounded domain in \mathbf{R}^{n} with smooth boundary. Then there exists a positive constant C with the following property: If g is a C^{1} function in D such that for some $K>0$ and $0<\alpha<1$

$$
\|d g(x)\| \leq K|\operatorname{dist}(x, \partial D)|^{-\alpha}(x \in D)
$$

then it holds that

$$
|g(x)-g(y)| \leq C K|x-y|^{1-\alpha}(x, y \in D)
$$

3. Proof of the theorem.

We set

$$
g=\int_{\partial D} f \wedge \Omega^{(2)}
$$

Then we have

$$
d g=\int_{\partial D} f \wedge d \Omega^{(2)}
$$

Thus it is sufficient to estimate the following two integrals:

$$
I_{1}=\int_{\partial D}\left|\frac{\partial_{\zeta} \beta \wedge P \wedge\left(\bar{\partial}_{\zeta} P\right)^{j}}{\Phi^{j+2} \beta^{n-j-1}}\right|, \quad I_{2}=\int_{\partial D}\left|\frac{P \wedge\left(\bar{\partial}_{\zeta} P\right)^{j}}{\Phi^{j+1} \beta^{n-j-1}}\right|
$$

We set $x=\left(t, y, x_{1}, \cdots, x_{2 n-2}\right)$ and $x^{\prime}=\left(x_{2 j+1}, \cdots, x_{2 n-2}\right)$. Then we have by using (2.1)

$$
\begin{aligned}
I_{1} & \lesssim \int_{|x|<c} \frac{\left|\zeta_{1}\right|^{2 m_{1}-2} \cdots\left|\zeta_{j}\right|^{2 m_{j}-2} d y d x_{1} \cdots d x_{2 n-2}}{\left(|y|+t+\sum_{i=1}^{n}\left|\zeta_{i}\right|^{2 m_{i}-2}\left|z_{i}-\zeta_{i}\right|^{2}+|z-\zeta|^{M}\right)^{j+2}|\zeta-z|^{2 n-2 j-3}} \\
& \lesssim \int_{|x|<c} \frac{\left|\zeta_{1}\right|^{2 m_{1}-2} \cdots\left|\zeta_{j}\right|^{2 m_{j}-2} d y d x_{1} \cdots d x_{2 n-2}}{\left(|y|+t+\sum_{i=1}^{j}\left|\zeta_{i}\right|^{2 m_{i}-2}\left|z_{i}-\zeta_{i}\right|^{2}+\left|x^{\prime}\right|^{M}\right)^{j+2}\left|x^{\prime}\right|^{2 n-2 j-3}} \\
& \lesssim \int_{|x|<c} \frac{\left|\zeta_{1}\right|^{2 m_{1}-2} \cdots\left|\zeta_{j}\right|^{2 m_{j}-2} d x_{1} \cdots d x_{2 n-2}}{\left(t+\sum_{i=1}^{j}\left|\zeta_{i}\right|^{2 m_{i}-2}\left|z_{i}-\zeta_{i}\right|^{2}+\left|x^{\prime}\right|^{M}\right)^{j+1}\left|x^{\prime}\right|^{2 n-2 j-3}} .
\end{aligned}
$$

We set $\zeta_{i}-z_{i}=w_{i}$. Using Lemma 3 we have

$$
\begin{aligned}
I_{1} & \lesssim \int_{|x|<c} \frac{\left|z_{1}+w_{1}\right|^{2 m_{1}-2} \cdots\left|z_{j}+w_{j}\right|^{2 m_{j}-2} d x_{1} \cdots d x_{2 n-2}}{\left(t+\sum_{i=1}^{j}\left|z_{i}+w_{i}\right|^{2 m_{i}-2}\left|w_{i}\right|^{2}+\left|x^{\prime}\right|^{m}\right)^{j+1}\left|x^{\prime}\right|^{2 n-2 j-3}} \\
& \lesssim \int_{|x|<c} \frac{\left|z_{2}+w_{2}\right|^{2 m_{2}-2} \cdots\left|z_{j}+w_{j}\right|^{2 m_{j}-2} d x_{3} \cdots d x_{2 n-2}}{\left(t+\sum_{i=2}^{j}\left|z_{i}+w_{i}\right|^{2 m_{i}-2}\left|w_{i}\right|^{2}+\left|x^{\prime}\right|^{M}\right)^{j+1}\left|x^{\prime}\right|^{2 n-2 j-3}} \\
& \lesssim \int_{\left|x^{\prime}\right|<c} \frac{d x_{2 j+1} \cdots d x_{2 n-2}}{\left(t+\left|x^{\prime}\right|^{M}\right)\left|x^{\prime}\right|^{2 n-2 j-3}} \\
& \lesssim \int_{0}^{c} \frac{d r}{\left(t+r^{M}\right)} .
\end{aligned}
$$

We set $t^{-1 / M} r=u$. Then we have

$$
I_{1} \lesssim \int_{0}^{\infty} \frac{t^{1 / M-1}}{1+u^{M}} d u \lesssim(\operatorname{dist}(z, \partial D))^{1 / M-1}
$$

Next we estimate I_{2}. Following the estimate of I_{1}, we obtain

$$
\begin{aligned}
I_{2} & \lesssim \int_{\left|x^{\prime}\right|<c} \frac{\left|\log \left(t+\left|x^{\prime}\right|^{M}\right)\right| d x_{2 j+1} \cdots d x_{2 n-2}}{\left(t+\left|x^{\prime}\right|\right)^{2 n-2 j-2}} \lesssim \int_{0}^{c} \frac{\left|\log \left(t+r^{M}\right)\right|}{r+t} d r \\
& \lesssim \int_{0}^{c} \frac{|\log t|}{r+t} d r \lesssim(\log t)^{2}
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] Diederich, Fornaess and Wiegerinck, Sharp Hölder estimates for $\bar{\partial}$ on ellipsoids, Manuscripta Math., 56(1986), 399-417.
[2] R. M. Range, On Hölder estimates for $\bar{\partial} u=f$ on weakly pseudoconvex domains, Proc. Int. Conf. Cortona, Italy, 1977.
[3] R. M. Range, Holomorphic functions and integral representaions in several complex variables, Springer, 1986.

[^0]: *Iki High School

