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Abstract 21 

Shimabara City in Nagasaki Prefecture, Japan, is located on a volcanic peninsula that has 22 

abundant groundwater. Almost all public water supply use groundwater in this region. For this reason, 23 

understanding groundwater characteristics is a pre-requisite for proper water supply management. Thus, 24 

we investigated the groundwater chemistry characteristics in Shimabara by use of self-organizing maps 25 

(SOM). The input to SOM was concentrations of eight major groundwater chemical components, namely 26 

Cl-, NO3
-, SO4

2-, HCO3
-, Na+, K+, Mg2+, and Ca2+ collected at 36 sampling locations. The locations 27 

constituted private and public water supply wells, springs, and a river sampled from April 2012 to May 28 

2015. Results showed that depending on chemistry, surface and groundwater could be classified into five 29 

main clusters displaying unique patterns. Further, the five clusters could be divided into two major water 30 

types namely, nitrate- and non-polluted water. According to stiff and Piper trilinear diagrams the nitrate 31 

polluted water represented Ca-(SO4
2-+NO3) (calcium sulfate nitrate) type, while non-polluted water was 32 

classified as Ca-HCO3 (calcium bicarbonate) type. This indicates that recharging rain water in the upstream 33 

areas is polluted by agricultural activities in the mid-slope areas of Shimabara. 34 
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Introduction 41 

 Groundwater is used for various purposes such as water supply, agriculture, and industry. During 42 

recent decades, groundwater has been polluted by increasing fertilizer application to meet the demand of 43 

food supply due to the population growth. Monitoring and protection of groundwater are essential to meet 44 

the demand for safe groundwater. To understand effects of hydrogeological processes and anthropogenic 45 

activities on regional groundwater it is important to study the chemical characteristics. The 46 

hydrogeochemistry of groundwater is influenced by many factors such as climate, mineralogy of aquifers, 47 

chemical composition of rainfall and surface water, topography, and anthropogenic activities. Thus, 48 

hydrogeochemical interpretation of groundwater quality from representative water samples can provide 49 

useful information on geochemical processes, hydrodynamics, origin, and interaction of the groundwater 50 

with aquifer materials.  51 

 Shimabara City is known as a region that to a great extent relies on groundwater for public water 52 

supply (Committee on nitrate reduction in Shimabara Peninsula 2011). However, the Shimabara 53 

groundwater has been increasingly polluted by nitrate since 1988. We analyzed the present situation of 54 

groundwater pollution by nitrate in Shimabara and showed that agricultural activities are the main polluter 55 

of the groundwater (Nakagawa et al. 2016). To better understand characteristics of the water chemistry, 56 

multivariate analysis such as principal component analysis (PCA), which can reduce data dimensionality 57 

and extract synthetic indexes with minimum information loss, is often used (e.g., Aiuppa et al. 2003; 58 

Cloutier et al. 2008; Banoeng-Yakubo et al. 2009; Sonkamble et al. 2012; Nadiri et al. 2013; Omonona et 59 

al. 2014; Singaraja et al. 2014; Ghesquière et al. 2015; Marghade et al. 2015; Matiatos 2016). Using 60 
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groundwater chemistry, we classified Shimabara water by use of principal component and cluster analysis 61 

(Nakagawa et al. 2016). The results showed that groundwater could be classified into 4 clusters where one 62 

cluster expressed nitrate pollution and the other clusters showed ion dissolution from the aquifer matrix. 63 

However, it is sometimes difficult to decipher PCA results due to bias resulting from complexity and 64 

nonlinearity of large data (Choi et al. 2014). Recently, multivariate analysis using Self-Organized Maps 65 

(SOM) has been applied to various research fields such as ecology (Céréghino et al. 2001; Bedoya et al. 66 

2009), geomorphology (Hentati et al. 2010), hydrology (Kalteh & Berndtsson 2007), meteorology 67 

(Nishiyama et al. 2007), and wastewater treatment (García & González 2004). SOM has also been used to 68 

classify water chemistry of rivers and groundwater (Hong & Rosen 2001; Jin et al. 2011; Choi et al. 2014; 69 

Nguyen et al. 2015). Thus, SOM is a powerful and effective tool for detection and interpretation of spatially 70 

varying phenomena. Especially, SOM has a better ability to handle the nonlinearities, noisy or irregular 71 

data, and multivariate data without mechanistic understanding of the system. SOM is also easily and quickly 72 

updated when adding new data (Hong & Rosen 2001, Kalteh et al. 2008). The similarity of extracted pattern 73 

classification can be visually compared using color gradients (Jin et al. 2011).  74 

In the previous study (Nakagawa et al. 2016), we used field observed data from August 2011 to 75 

November 2013. We continued to collect data and available data were extended to May 2015. Therefore, 76 

in this study, we confirmed our previous results by using a more informative method, SOM, together with 77 

an extended data base. Using SOM, visual representation of groundwater characteristics is easy and more 78 

detailed clustering with better analyses results are possible as compared to conventional PCA. To improve 79 

the understanding of groundwater characteristics in Shimabara we applied SOM combined with hierarchical 80 
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cluster analysis using water chemistry as input. According to the results obtained by SOM analysis, we 81 

discuss spatial trends of groundwater characteristics in Shimabara and the practical application of SOM for 82 

future water use.  83 

 84 

Study area and data used 85 

 Figure 1 shows the study area and sampling locations in Shimabara, Nagasaki Prefecture, Japan. 86 

Shimabara has an area of 82.8 km2 and is located in the northeastern part of Shimabara Peninsula. In the 87 

center of the peninsula the active volcano Unzen (Mt. Fugendake) is located. The geology of Shimabara 88 

area is thus formed by volcanic deposits composed of dacite, andecite, volcanic ash, and lapilli. Average 89 

annual precipitation is about 2100 mm (1967-2013). The mean annual temperature is 16.9 oC, and average 90 

monthly temperature ranges from 4.2 (January) to 29.0 oC (in August; Japan Meteorological Agency 2015). 91 

 92 

Figure 1 Study area and sampling locations in Shimabara, Nagasaki Prefecture, Japan (RW: Residential 93 

well, W: Public water supply well, O: Observation well, S: Spring, and R: River) 94 
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Figure 2 shows altitude and land use in Shimabara. According to the figure the land use can 95 

generally be divided into forest, agriculture, and urban areas. Areas above an altitude of 200 m are generally 96 

occupied by forest. According to the estimated regional groundwater flow, the forest areas, which compose 97 

36.5 % of Shimabara, may be recognized as groundwater recharge zones. Upland and paddy fields are 98 

concentrated to the northern parts of the area occupying 23.6 % and 7.5 % of Shimabara, respectively. 99 

Buildings are usually located at altitudes below 100 m along the coast and represent 14.9 % of Shimabara. 100 

Other land use is 17.5 %. 101 

 In total 353 water samples were collected from April 2012 to May 2015. Sampling was 102 

performed at 7 resident wells (RW), 21 public water supply wells (W), 2 observation wells (O), 5 springs 103 

(S), and 1 river (R) (Fig. 1). To ensure spatially representative groundwater conditions, sampling sites 104 

covering the whole area of Shimabara except for forest and other land use (Figs. 1 and 2) were used. 105 

Sampling was done four times annually with 2-4 months interval to ensure temporally varying groundwater 106 

conditions. Sampling at specific locations (RW-14, b, W-21, O-2, S-2, 3, 5, and R-2) was done with less 107 

frequency. The hydrogeochemical data used in this study consist of major dissolved ion concentration for 108 

Cl-, NO3
-, SO4

2-, HCO3
-, Na+, K+, Mg2+, and Ca2+. Mean and standard deviation of 36 sampling sites using 109 

averaged temporal ion concentrations for each sampling sites are summarized in Table 1. It is necessary to 110 

normalize the data prior to application of SOM to ensure that all parameters are given the same importance. 111 

SOM results are highly sensitive to data pre-processing method due to that the Euclidean distance between 112 

input data is used (e.g., Jin et al. 2011). To solve this problem, the range between minimum and maximum 113 

ion concentrations was standardized into [0, 1] (Nishiyama et al. 2007, Jin et al. 2011) as preprocessing in  114 
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 115 

Figure 2 Altitude and land use map of Shimabara; (a) Altitude and (b) Land use 116 

 117 

this study. 118 

 119 

Methodology 120 

 The SOM is a modified artificial neural network characterized by unsupervised training that can 121 

project high-dimensional information onto a low-dimensional array (e.g., Vesanto et al. 2000). Many 122 

researchers have chosen a two-dimensional array (e.g., Jiang et al. 2014). The result is a readily 123 

understandable and visual pattern classification. The objective here of the SOM application was to obtain 124 

physically explainable reference vectors using input vectors. Thus, the input vectors were composed of in 125 

total 353 hydrogeochemical data points (approximately quarterly sampling at the 36 sampling locations) 126 

with 8 variables (major dissolved ion concentrations; Cl-, NO3
-, SO4

2-, HCO3
-, Na+, K+, Mg2+, and Ca2+). 127 

Reference vectors were obtained after iterative updates through a training phase that was composed by three 128 
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Table 1 Mean and standard deviations of 36 sampling sites using averaged temporal ion concentrations 129 

for each sampling site used in the SOM 130 

Major ion (mg L-1) Mean SD 

Cl- 12.4 1.4 

NO3
- 38.4 5.0 

SO4
2- 21.9 3.2 

HCO3
- 55.7 6.6 

Na+ 12.1 2.4 

K+ 6.4 1.2 

Mg2+ 8.7 1.1 

Ca2+ 22.4 2.9 

 131 

main procedures: competition between nodes, selection of a winner node, and updating of the reference 132 

vectors (e.g., Vesanto et al. 2000). Selection of proper initialization and data transformation methods is 133 

important factors when designing a relevant SOM methodology. In SOM applications, in general a larger 134 

map size gives a higher resolution for pattern recognition. The optimum number of SOM nodes is 135 

determined applying the heuristic rule 𝑚 = 5√𝑛, where m denotes the number of SOM nodes and n 136 

represents the number of input data (García & González 2004; Hentati et al. 2010; Jin et al. 2011). Herein, 137 

this heuristic rule was used to determine the total number of nodes in the SOM. The ratio of the number of 138 

rows and columns is determined by the square root of the ratio between the two largest eigenvalues of the 139 

correlation matrix of input data. The eigenvalues are obtained from principal component analysis. In a 140 

previous study fusing the sampled data from August 2011 to November 2013, two principal components 141 

(Factor 1 and Factor 2) explained 86.5 % of the total variance (Nakagawa et al. 2016).  142 

 After organizing the SOM structure with the above rule, a linear initialization technique made 143 
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each node set with a reference vector. A linear initialization technique increases the speed of training phase 144 

and proper abstracting pattern for limited data (Jeong et al. 2010). Further, when only limited data are 145 

available, the linear initialization is more suitable for the pattern classification as compared to random 146 

initialization because of small data sets and boundary effects (Nguyen et al. 2015). The linear initialization 147 

used eigenvalues and eigenvectors of input data to set initial reference vectors on the structured SOM. This 148 

means that the initial reference vectors already include prior information about the input data, resulting in 149 

a quicker and more efficient training phase (Vesanto et al. 2000). In this study, each reference vector was 150 

updated through the SOM training process using a batch mode with neighborhood function taking a 151 

Gaussian form. Although, some issues on the implementation of the batch SOM are discussed at some detail 152 

in Jiang et al. (2014), the results of the SOM analysis supported previous clustering results (Nakagawa et 153 

al. 2016; shown below). The reference vectors obtained at the end of the training process were fine-tuned 154 

using cluster analysis. 155 

 There are various clustering algorithms available in the literature (e.g., García & González 2004; 156 

Jin et al. 2011). In this study, partitioned algorithms and hierarchical algorithms, which are k-means and 157 

Ward’s algorithms respectively, were applied for appropriate clustering of reference vectors. For partitioned 158 

clustering methods, the k-means algorithm is most frequently used for SOM (e.g., Jin et al. 2011). The 159 

Davies-Bouldin Index (DBI) applying k-means algorithm determines the optimal number of clusters 160 

(García & González 2004; Jin et al. 2011). The DBI values, based on similarity within a cluster and 161 

dissimilarity between clusters, were calculated from a minimum of two clusters to the total number of nodes. 162 

Therefore, the smaller DBI value appears as the dissimilarity to each cluster becomes larger. In other words, 163 
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a minimum DBI represents the optimal number of clusters for the trained SOM. The Ward’s linkage method, 164 

which is the one of the hierarchical techniques, is the most commonly used clustering (Faggiano et al. 2010; 165 

Hentai et al. 2010; Jin et al. 2011). In this study, the final fine-tuning cluster analysis was carried out using 166 

Ward’s method. The above calculation processes were carried out using a modified version of SOM Toolbox 167 

2.0 (Vesanto et al. 2000). The output SOM clusters were plotted on Piper trilinear and stiff diagrams to 168 

explain main features of each cluster. Furthermore, the SOM clusters were mapped spatially to clarify 169 

influence from land use.  170 

 171 

Results and discussion 172 

 Based on the methodology described above, the number of SOM nodes was determined equal to 173 

91. The number of rows and columns was 7 and 13, respectively. Thus, this SOM design was used for the 174 

cluster analysis of standardized water chemistry data from the 36 locations in Shimabara.  175 

 Figure 3 shows the obtained component planes for the 91 reference vectors (nodes) of the eight 176 

ion component concentrations (standardized to a range between 0 and 1). Each component plane shows the 177 

standardized value of each parameter (concentration) of the 91 reference vectors (nodes) using a color 178 

gradient. Comparison between the component planes shows relationships (or correlation) among the 179 

parameters. For example, a similar color gradient can be observed for Cl- (Fig. 3 (a)) and NO3
- (Fig. 3 (b)). 180 

The same trend can be seen for Na+ (Fig. 3 (e)) and Mg2+ (Fig. 3 (g)) in their respective component planes.  181 

This means that there is high positive correlation between these variables. A great advantage of SOM is 182 

that relationships between nodes on the component plane are clearly visualized. For example, the node 183 
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 184 

Figure 3 Component plane for (a) Cl-, (b) NO3
-, (c) SO4

2-, (d) HCO3
-, (e) Na+, (f) K+, (g)Mg2+ and (h) Ca2+ 185 

 186 

located at the uppermost left end shows lower normalized concentrations for all ions (Cl-:0.00, NO3
-:0.00, 187 

SO4
2-:0.00, HCO3

-:0.11, Na+:0.00, K+:0.00, Mg2+:0.00, and Ca2+:0.00). The node located at the uppermost 188 

right end shows moderately higher normalized concentrations for HCO3
-, Mg2+, and Ca2+ (Cl-:0.13, 189 

NO3
-:0.09, SO4

2-:0.15, HCO3
-:0.46, Na+:0.09, K+:0.18, Mg2+:0.33, Ca2+:0.40). The node located at the 190 

lowermost left shows relatively higher normalized ion concentrations except for HCO3
- (Cl-:0.85, NO3

-:0.83, 191 

SO4
2-:0.78, HCO3

-:0.04, Na+:0.30, K+:1.00, Mg2+:0.43, Ca2+:0.90). On the other hand, the node located at 192 

the lowermost right shows higher normalized ion concentrations except for Cl- and NO3
- (Cl-:0.29, 193 

NO3
-:0.17, SO4

2-:0.95, HCO3
-:0.95, Na+:1.00, K+:0.65, Mg2+:0.98, Ca2+:1.00). 194 

To confirm quantitative relationships as mentioned above, correlation coefficients between reference 195 

vectors for each parameter were calculated (Table 2). There is a high correlation (r = 0.99) between Cl- and 196 

NO3
-. There is also a high correlation between Na+ and Mg2+ (r = 0.92). Similarly, the color gradient for the 197 
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Table 2 Correlation between reference vectors for each parameter 198 

 NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ 

Cl- 0.99* 0.82* -0.51* 0.47* 0.86* 0.46* 0.78* 

NO3
-  0.75* -0.60* 0.38* 0.82* 0.36* 0.71* 

SO4
2-   -0.03 0.84* 0.92* 0.79* 0.94* 

HCO3
-    0.43* -0.11 0.52* 0.11 

Na+     0.71* 0.92* 0.82* 

K+      0.72* 0.94* 

Mg2+       0.88* 

* Correlations significant at p = 0.01 199 

 200 

relationship between SO4
2- and Ca2+ indicates a high correlation coefficient (r = 0.94). The relation between 201 

each ion indicates factors affecting groundwater chemistry. For example, a high co-variation (R2 = 0.72) 202 

between higher concentrations of NO3
- and Cl- was observed, indicating that they originate from common 203 

sources such as human and animal waste (e.g., Diédhiou et al. 2012). Moreover, the same result can be 204 

observed between SO4
2- and Ca2 (r = 0.79). The high correlation implies that the dissolution of gypsum 205 

may be one of the key factors controlling the geochemical evolution of groundwater (Liu et al. 2015). 206 

 Figure 4 shows the variation of DBI with a magnified front between 2 and 14 clusters. The 207 

minimum DBI is shown for five clusters meaning that this number should be used as an optimal value.  208 

After determining the number of clusters, the hierarchical clustering algorithm by Ward was 209 

carried out for the five clusters to fine-tune pattern classification. Figure 5 shows the hierarchical cluster  210 
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 211 

Figure 4 Variation of DBI values with the optimal number of clusters marked by the circle on the figure 212 

 213 

 214 

Figure 5 Dendrogram with node number classified into clusters 215 

 216 

dendrogram. The 91 nodes of the SOM were classified into five different clusters. Figure 6 shows the 217 

pattern classification map for these five clusters. The number for each node represents the raw data 218 

classified into each node. Simultaneous analysis of the component planes (Fig. 3) and the pattern 219 

classification result (Fig. 6) indicates what kind of data the respective clusters include. For example, cluster- 220 

3 (lower left part of Fig. 6) is associated with high contents of Cl- and NO3
-. This pattern is observed in the 221 

same part of the respective component planes for each parameter as shown in Fig. 3. On the other hand, 222 
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 223 

Figure 6 Pattern classification map of the five clusters by the SOM. The numbers on squares off the map 224 

represent the number of data classified into each node 225 

 226 

groundwater samples in nodes with extremely low concentration of all ions, are located at the upper left 227 

part of each component plane (associated with cluster-1) as shown in Fig. 3. 228 

 More quantitative information than the visualized pattern classification can be extracted and 229 

interpreted from the obtained reference vectors. Stiff diagrams for the respective clusters were represented 230 

by mean and upper and lower limits of one standard deviation using reference vectors of each cluster to 231 

characterize the clustered data. For example, stiff diagram for cluster-1 is represented by reference vectors 232 

of 18 nodes classified into the cluster. Figure 7 shows stiff diagrams for the five clusters with eight 233 

parameters containing mean values and standard deviations. Cluster-1 (Fig. 7 (a)) shows low values for all 234 

ions as compared to other clusters. The visible pattern of cluster-2 (Fig. 7 (b)) and cluster-3 (Fig. 7 (c)) is 235 

not similar as shown in the figure. However, they are characterized by high concentration of NO3
-. Cluster-236 

2 represents lower concentrations than that of cluster-3 for all ions except HCO3
-. The pattern with the 237 
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 238 

Figure 7 Stiff diagrams for the respective clusters with mean value and upper and lower limits of one 239 

standard deviation by obtained reference vectors; (a) Cluster-1, (b) Cluster-2, (c) Cluster-3, (d) 240 

Cluster-4, (e) Cluster-5 and (f) Legend 241 

 242 

highest Ca2+ in cations and HCO3
- in anions is associated with cluster-4 (Fig. 7 (d)). In this cluster, the 243 

concentration of Na+, K+, and Mg2+ is slightly lower than that for Ca2+. For anions, the concentration of 244 

HCO3
- is significantly higher than other anions. This pattern is also shown in cluster-5 (Fig. 7 (e)). It is 245 

clear that all ion concentration except for Cl- and NO3
- of cluster-5 are higher than that of cluster-4.  246 

 The classified five clusters can generally be divided into two water quality types. Cluster-2 and 247 

-3 can be characterized as polluted water due to the high concentration of NO3
-. The other group includes 248 

cluster-1, -4, and -5 representing non-polluted water (pristine water type). 249 

 Table 3 shows mean ion concentrations calculated from raw data and classified into the respective 250 

cluster. The NO3
- for cluster-3 indicates higher mean value than 50 mg L-1 which is the maximum 251 

contamination level recommended by World Health Organization (WHO 2011) for drinking water. The 252 

NO3
- for cluster-2 meets WHO standard. However, it is exceeding 13 mg L-1 which is the maximum nitrate  253 
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Table 3 Mean ion concentrations calculated from raw data and classified into clusters 254 

 Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ 

 (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) 

Cluster-1 5.1 9.9 3.2 37.7 6.5 3.4 3.2 8.7 

Cluster-2 14.3 42.1 22.5 39.0 11.2 6.2 8.1 20.5 

Cluster-3 21.3 78.8 37.7 27.5 14.4 8.6 11.2 31.5 

Cluster-4 6.4 9.9 10.5 108.5 11.1 4.9 10.6 21.0 

Cluster-5 6.8 6.2 41.3 175.4 25.1 7.9 17.6 33.5 

 255 

concentration unaffected by human activities (Eckhardt & Stackelberg 1995). It confirms that the two 256 

clusters include polluted water as mentioned above. Cluster-1, -4, and -5 display much lower mean NO3
- 257 

concentration. An NO3
- concentration exceeding the maximum concentration level recommended by WHO 258 

has also been reported in other studies (e.g., Diédhiou et al. 2012; Hansen et al. 2012; Liu et al. 2015; 259 

Dragon et al. 2016; Matiatos 2016). In these investigations, maximum NO3
- concentration ranged from 91 260 

to 855 mg L-1.  261 

 Figure 8 shows Piper trilinear diagrams for all reference vectors (91) and respective cluster. With 262 

respect to cations, most vectors of all clusters are located in zone B in the lower left delta-shaped region, 263 

indicating a non-typical water. However, a part of the reference vectors for cluster-3 is located in zone A, 264 

indicating a calcium-type water. For anions, reference vectors are mostly located in zone B, E, and F in the 265 

lower right delta-shaped region, suggesting that the reference vectors of cluster-1, -4, and -5 are 266 

bicarbonate-type water and the reference vectors of cluster-2 and -3 are sulfate and nitrate-type water or 267 

non-typical water. Thus, in the Piper trilinear diagram, two main water types are revealed. These are 268 

calcium-magnesium bicarbonate type (zone I) including cluster-1, 4, and 5 (non-polluted water type) and 269 

calcium-magnesium chloride-sulfate-nitrate type (zone III) including cluster-2 and -3 (polluted water type). 270 
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 271 

Figure 8 Trilinear diagram for clusters obtained by reference vectors 272 

 273 

Based on the stiff and Piper trilinear diagrams, the polluted water type is represented as Ca- (SO4
2-+NO3) 274 

(calcium sulfate nitrate type), while the non-polluted water type is classified as Ca-HCO3 (calcium 275 

bicarbonate type). Similar results were reported by Shin et al. (2013). According to the study, water samples 276 

collected from the upper reaches of Korean rivers were of Ca-HCO3 type, whereas water samples collected 277 

from lower reaches and with relative high nitrate concentration were classified as Na-Cl-NO3 type. This 278 

indicates that water samples are affected by anthropogenic factors such as fertilizer, manure, and septic 279 

waste. 280 

 Figure 9 shows the spatial distribution of the five clusters in Shimabara. All sampling locations 281 

belonging to cluster-2 and -3, representing the polluted water type, are located in the northern part of 282 

Shimabara encompassing a concentration of agricultural fields. In order to investigate the interaction 283 

between groundwater and river water, one sample was taken from the river (R-2) and included into the 284 
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 285 

Figure 9 Spatial distribution of clusters 286 

 287 

SOM analysis. The results showed that R-2 also is classified into cluster-3 as O-1 and 2. This revealed that 288 

they are connected and exchange water with each other. Samples with high nitrate concentrations often 289 

correspond agricultural land use (Babiker et al. 2004; Esmaeili et al. 2014). It confirms that agricultural 290 

activities are related to high nitrate concentrations in groundwater. Ishihara et al. (2002) reported that fecal 291 

coliforms were detected in the northern part of Shimabara. This means that the groundwater in this area is 292 

affected by livestock waste. It is observed that most sampling locations for cluster-1 are distributed in the 293 

mountainside forest area upstream the heavily polluted areas. This shows that groundwater is recharged in 294 

the area and typically is of pristine water type. The average NO3- concentration of cluster-1 is slightly lower 295 

than that of cluster-4 according to Table 3. Sampling points such as W-12 and 13 located in the agricultural 296 

area are thus affected by agricultural activities belonging to cluster-1. This suggests that cluster-1 shows a 297 

transition of water chemistry from pristine to polluted water type. The sampling locations for cluster-4 and 298 

-5, characterized by high ion concentrations, are located in the urban area at a lower altitude (below 100 299 
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m). This suggests that dissolution of ions from the aquifer matrix during groundwater flow from the 300 

mountainside to the urbanized area may increase ion concentrations. Mayuyama avalanche debris deposits 301 

are distributed in the east area of Mt. Mayuyama (Ozeki et al. 2005). This area corresponds to sampling 302 

locations for cluster-5. The pattern of cluster-5 has high concentration for all ions as shown in Fig. 7. This 303 

is due to the effect of volcanic deposit on the groundwater chemistry in the area. 304 

 305 

Summary and conclusion 306 

 In this study, water chemistry data from 36 sampling locations, obtained from April 2012 to May 307 

2015, were classified using SOM in combination with hierarchical cluster analysis to clarify groundwater 308 

characteristics in Shimabara, Japan. The SOM provided readily understandable results for classifying the 309 

water chemistry data into distinguishable hydrogeochemical types. The Piper trilinear and stiff diagrams 310 

for the reference vectors were plotted to display fundamental characteristics of each cluster. In addition, the 311 

spatial distribution of the respective clusters explained the spatial variability of the hydrogeochemical 312 

characteristics determined by the SOM. Based on the SOM results, the water chemistry data could be 313 

divided into five clusters that revealed two representative water types characterized by nitrate pollution 314 

(cluster-2 and -3) and non-polluted (cluster-1, -4, and -5) water. The spatial distribution of cluster-2 and -3 315 

shows that agricultural activities are causing groundwater pollution in the northern part of Shimabara. The 316 

stiff and Piper trilinear diagrams based on the reference vectors for each cluster showed that non-polluted 317 

water and polluted water are characterized by Ca-HCO3 type and Ca-(SO4
2-+NO3) type, respectively. This 318 

indicates that nitrate pollution is a product from agricultural activities and classified into cluster-2 and -3.  319 
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 The SOM analysis showed that mountainside recharged pristine groundwater is classified into 320 

cluster-1. Some groundwater of cluster-1 is also located close to the mid-slope hills. This means that non-321 

polluted water can be used from this agricultural area. For other purposes, water quality evaluation methods 322 

such as the Wilcox classification diagram (Wilcox 1955), can be used to evaluate if water in cluster-2 or -3 323 

can be used for, e.g., irrigation. The clusters from the SOM analysis are useful for further groundwater 324 

remediation alternatives.  325 

The application and results of the SOM support our previous conclusion (Nakagawa et al. 2016) 326 

regarding the spatial distribution of nitrate pollution in the study area and its causes. Data that display a 327 

scattered distribution in the piper trilinear diagram can be difficult to analyze by PCA. However, in this 328 

case, SOM can be an alternative method (Choi et al. 2014). In this study, both PCA and SOM successfully 329 

classified groundwater chemistry in the study area. However, SOM gives more robust and explainable 330 

results that can be used to characterize groundwater chemistry. More detailed characteristics along this line 331 

will be described in a new paper (Amano et al. submitted). 332 
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 446 

Figure captions 447 

Figure 1 Study area and sampling locations in Shimabara, Nagasaki Prefecture, Japan (RW: Residential 448 

well, W: Public water supply well, O: Observation well, S: Spring and R: River) 449 

Figure 2 Altitude and land use map of Shimabara; (a) Altitude and (b) Land use  450 

Figure 3 Component plane for (a) Cl-, (b) NO3
-, (c) SO4

2-, (d) HCO3
-, (e) Na+, (f) K+, (g)Mg2+ and (h) Ca2+ 451 

Figure 4 Variation of DBI values with the optimal number of clusters marked by the circle on the figure 452 

Figure 5 Dendrogram with node number classified into clusters 453 

Figure 6 Pattern classification map of the five clusters by the SOM. The numbers on squares off the map 454 

represent the number of data classified into each node 455 

Figure 7 Stiff diagrams for the respective clusters with mean value and upper and lower limits of one 456 

standard deviation by obtained reference vectors; (a) Cluster-1, (b) Cluster-2, (c) Cluster-3, (d) 457 

Cluster-4, (e) Cluster-5 and (f) Legend 458 

Figure 8 Trilinear diagram for clusters obtained by reference vectors 459 
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Figure 9 Spatial distribution of clusters 460 

 461 

Table captions 462 

Table 1 Mean and standard deviations of 36 sampling sites using averaged ion concentrations for each 463 

sampling sites used in SOM  464 

Table 2 Correlation between reference vectors for each quality parameter 465 

Table 3 Mean ion concentrations calculated from raw data and classified into clusters 466 
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