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Abstract: In the present study, we developed a sonoporation system, namely “direct sonoporation”,
for transfecting the peritoneum from a defined surface area to avoid systematic side effects.
Here, the transfection characteristics are explained because there is less information about direct
sonoporation. Naked pDNA and nanobubbles were administered to diffusion cell attached to
the visceral and parietal peritoneum from the liver and peritoneal wall surface, respectively.
Then, ultrasound was irradiated. Direct sonoporation showed a higher transfection efficacy at the
applied peritoneum site from the liver surface while other sites were not detected. Moreover, transgene
expression was observed in the peritoneal mesothelial cells (PMCs) at the applied peritoneum site.
No abnormality was observed in the inner part of the liver. Although transgene expression of the
visceral peritoneum was tenfold higher than that of the parietal peritoneum, transgene expression
was observed in the PMCs on both the applied peritoneum sites. These results suggest that direct
sonoporation is a site-specific transfection method of the PMCs on the applied peritoneum site
without transgene expression at other sites and show little toxicity in the inner tissues at the applied
site via cavitation energy. This information is valuable for the development of an intraperitoneal
sonoporation device for treatment of peritoneal diseases such as peritoneal fibrosis.
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1. Introduction

The peritoneum is composed of peritoneal mesothelial cells (PMCs) and a submesothelial layer as
stroma. The peritoneum is a membrane that covers peritoneal tissues (liver, stomach etc.) and plays
important roles such as protecting the intraperitoneal tissues, transporting low molecular compounds,
and regulating peritoneal inflammation [1]. Moreover, the peritoneum is used as a peritoneal dialysis
membrane for treatment of patients with end-stage renal failure. Long-term peritoneal dialysis causes
peritoneal inflammation and/or peritoneal fibrosis [2–4]. So far, effective therapeutic method for
peritoneal fibrosis have not been developed, and it is difficult to continue with peritoneal dialysis.
Therefore, it is necessary to develop a therapeutic method for treatment of peritoneal fibrosis.

Intraperitoneal gene delivery might be an effective therapeutic method for treatment of peritoneal
fibrosis. Several studies have developed an intraperitoneal injection-based gene delivery system using a
virus vector or a non-virus vector such as adenovirus, cationic liposomes, etc. [5–9]. With respect to the
non-virus transfection method, sonoporation can enable transfection into the ultrasound (US) irradiated
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site such as brain [10], liver [11], kidney [12] etc. because the cavitation energy creates transient pores on
the cellular membrane [13,14]. An intraperitoneal sonoporation system that uses nano/microbubbles to
achieve a high transfection efficacy to entire peritoneal tissues has been demonstrated [15,16]. Moreover,
we revealed that the transgene expression after sonoporation may be in the PMCs after intraperitoneal
administration. However, plasmid DNA (pDNA) can be distributed to an extensive area in the
peritoneal cavity. Therefore, the site of transgene expression cannot be regulated. Whereby, even if the
unexpected side-effects are accrued such as cancer, it is difficult to specify/remove transfection site.
Therefore, for treatment of peritoneal fibrosis, a therapeutic gene transfected from a defined area is
desired. The use of an intraperitoneal injection may have applications in the development of a medical
device such as a peritoneal endoscope with a US irradiation probe. Because the technique that direct
laparoscopic US irradiation to intraperitoneal tissues has been developed [17,18], the application of
direct sonoporation with a medical device could be implemented. On the other hand, fibrosis may
make US transmission difficult due to the thickening of the stroma. Thus, it is desire that transfection of
pDNA consisting the secretory therapeutic protein such as hepatocyte growth factor (HGF) and bone
marrow protein-7 (BMP-7) [19,20] gene to the appropriate site by sonoporation, and then therapeutic
protein were expressed to the entire peritoneal cavity from the applied site.

Considering use of the medical device in the future, we have developed an in-situ gene transfection
method by tissue surface administration of naked pDNA via the peritoneal tissues using a diffusion
cell [21]. Tissue surface administration can transfer the gene to the defined area via the attached
diffusion cell. Thus, we proposed that “direct sonoporation”, transfecting to the PMCs on the
defined peritoneal surface area by the combination of sonoporation and tissue surface administration.
As bubbles, microbubbles may be unstable compared with nanobubbles [22] and cationic bubbles
may induce the cytotoxicity due to their cationic charge [11,23]. In addition, cationic bubbles/pDNA
complex is considered that remaining complex could be transferred to the blood circulation and
transfected in the undesired site. Because these reasons, we chose neutral nanobubbles for direct
sonoporation. Direct sonoporation is expected to have few systematic side effects as it avoids transfer
to the blood vesicle from the peritoneal cavity because transgene expression is in only applied site.
However, the distribution of transgene expression and toxicity at the inner part of the peritoneal
tissue may be occurred because cavitation energy of sonoporation can promote altering membrane
permeability and/or opening of cell-cell junction [24–26]. Moreover, the transfection characteristics
could be altered based on the applied tissue. Therefore, it is necessary to study the transgene expression
characteristics not only in the systemic tissues but also its spatial distribution in the peritoneum after
application of direct sonoporation for the development of a transfection system using a medical device
in the peritoneum. Moreover, the transgene expression and toxicity inside the peritoneal tissues also
needs to be investigated. However, there is little information available regarding direct sonoporation
to the peritoneum surface area.

The purpose of the present study is to clarify the transfection characteristics such as transgene
expression and toxicity after direct sonoporation to a defined area in the peritoneum of mice. The spatial
transgene expression characteristics and the injury to inner part of the liver can be easily evaluated.
Therefore, the visceral peritoneum on the liver surface was selected as the site for application of
direct sonoporation to investigate the systematic distribution, the depth of transgene expression,
and hepatic toxicity after its application. Moreover, the transgene expression characteristics were also
evaluated at different sites of the peritoneum to compare its results with those obtained using the
parietal peritoneum.

2. Materials and Methods

2.1. pDNA

The firefly luciferase gene expression vector driven by a cytomegalovirus (CMV) promoter,
pCMV-luciferase, was constructed as previously mentioned [27]. The pZsGreen1-N1 encoding the green
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fluorescent protein ZsGreen1 was purchased from Takara Bio Inc. (Shiga, Japan). The pCMV-luciferase
and pZsGreen1-N1 were amplified in Escherichia coli strain DH5α. After isolation, pDNA was purified
using an Endofree Plasmid Giga Kit (QIAGEN GmbH, Hilden, Germany). The pDNA was dissolved
in Milli-Q water was stored at −20 ◦C prior to experiments.

2.2. Preparation of Nanobubbles

Liposomes were prepared and the US contrast gas was encapsulated into the liposomes according to
a previous study [13,15]. Briefly, distearoylphosphatidylcholine (DSPC) and Methoxypolyethyleneglycol
2000-distearoylphosphatidylethanolamine (PEG-DSPE) were dissolved in methanol, separately. Then the
mixture of lipids (DSPC:PEG-DSPE = 94:6 (m/m)) was dried by evaporation and vacuum desiccated.
the lipid film was dispersed in phosphate-buffered saline at 65 ◦C. The liposomes were sonicated for
3 min using a tip sonicator. After that, the liposomes were sterilized with a 0.45-mm filter. nanobubbles
(2 mL of 1 mg/mL in 5 mL vial dispersion) were prepared from the liposomes. As the condition of
the BLs production, the liposome enclosed with a 7.5 mL perfluoropropane gas was sonicated in a
bath-type sonicator 1510 J-DTH (42 kHz, 90W, 5 min; Branson Ultrasonics, Tokyo, Japan). The particle
size was measured using Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). The z-average
particle size was 314.3 ± 8.392 nm (n = 3). The particle size distribution and stability of nanobubbles
was confirmed same as in our previous study [15].

2.3. Animals

Six-week-old male ddY mice (28–34 g) were purchased from Kiwa Laboratory Animals Co. Ltd.
(Wakayama, Japan) and were housed in a cage in an air-conditioned room and maintained on a
standard laboratory diet (CE-2, CLEA, Co., Ltd., Tokyo, Japan) and water. All animal experiments
were carried out in accordance with the guidelines for animal experimentation of Nagasaki University
(approval number: 1308051086-6 (2016)).

2.4. Direct Sonoporation Method into the Peritoneum from the Peritoneal Tissue Surface

Figure 1 shows a schematic representation of the direct sonoporation system into peritoneum
from the peritoneal tissue surface. Mice were anesthetized using an intraperitoneal injection that
contained three types of mixed anesthetic agents (0.5 mg/kg of medetomidine, 4.0 mg/kg of midazolam,
and 5.0 mg/kg of butorphanol) [28]. To apply it to the liver, the central abdomen was dissected
by approximately 2 cm and a glass-made cylindrical diffusion cell (diameter: 9 mm, effective area:
63.6 mm2) was attached to the surface of the left lateral lobe of the liver with a surgical adhesive
(Aron Alpha, Sankyo Co., Ltd., Tokyo, Japan). To apply it to the peritoneal wall, the central abdomen
was dissected and turned over the peritoneal wall such that the parietal peritoneum was exposed.
Then, the diffusion cell was attached to the surface of the left peritoneal wall. The mixture consisting of
pDNA in saline and nanobubbles was directly added to the diffusion cell. At 5 min after administration,
US (frequency, 2.04 MHz; duty, 50%; burst rate,10 Hz; intensity, 4.0 W/cm2) was irradiated into the
mixture toward the liver surface using a Sonopore-4000 (Nepa Gene, Chiba, Japan) with a KP-L6
L-sharp 6 mm transducer (Nepa Gene, Chiba, Japan) according to a previous study [29]. After 10 min,
the pDNA solution was removed from the diffusion cell, and the surface area of liver attached with the
diffusion cell was washed with 500 µL of saline five times. Then, the diffusion cell was removed from
the tissue surface and the abdomen was sutured. Mice were kept lying supine for 1 h and then freed in
the cage.
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Figure 1. Scheme of the direct sonoporation to the defined area of the peritoneum from the peritoneal
tissues. A glass-made cylindrical diffusion cell (in diameter: 9 mm) was attached to the peritoneal tissue
surface by using surgical adhesive. A mixture consisting of pDNA and nanobubbles was directly added
to the diffusion cell. Five min after administration, US (frequency, 2.04 MHz; duty, 50%; burst rate,10 Hz;
intensity, 4.0 W/cm2) was irradiated using a Sonopore-4000 with a probe (diameter: 6 mm). Thus, direct
sonoporation might be a site-specific transfection method into the peritoneal mesothelial cells (PMCs)
on the applied peritoneum from the peritoneal tissue. In addition, under the PMCs, direct sonoporation
showed little transgene expression and toxicity.

2.5. Luciferase Assay

To determine transgene expression, the luciferase activity was measured as described
previously [30]. Luciferase activity was indicated as relative light units (RLU) per g tissue. The average
weight of applied site and non-applied site of liver was 350.9 ± 59.7 mg and 1078.5 ± 154.2 mg,
respectively. The average weight of applied site and non-applied site of peritoneal wall was
194.3 ± 52.5 mg and 198.8 ± 37.7 mg, respectively.

2.6. Multicolor Deep Imaging Analysis

Multicolor deep imaging was performed as described previously [15]. Tissue clearing and
stain the peritoneal surface cells were performed by ScaleSQ (0) method [31] and intraperitoneal
injection of 1,10-Dioctadecyl-3,3,30,30-tetramethylindocarbocyanine perchlorate (DiI) [15], respectively.
Nuclei were stained by following as previously [30]. Clearing and staining tissue was observed by
inverted confocal microscope (LSM 710 with spectral imaging equipment, Carl Zeiss Microimaging
GmbH, Jena, Germany). The acquisition software was ZEN 2012. Objective lenses were a
20× dry lens (EC Plan-Neofluar, numerical aperture (NA): 0.5; working distance 17(WD): 2.0 mm) and
40× oil-immersion lens (EC Plan-Neofluar, NA: 1.30 WD: 0.21 mm).

To identification of transgene-positive cell, we conducted the 3 dimensional
(3D)-immunohistochemistry by CUBIC method [32]. To observe the mesothelial cells, we used a
1:450 dilution of anti-mesothelin antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) as
primary antibody and a 1:750 dilution of Alexa Fluor®647-conjugated goat anti-rabbit IgG antibody
(Abcam, Cambridge, MA, USA) as secondly antibody.
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2.7. Histological Evaluation

The liver tissues were stained with hematoxylin and eosin (H&E). The stained samples were
observed as described previously [33]. In a hydrodynamics-based procedure as a positive control,
a high volume of pDNA solution (1.6 mL per mouse) was injected into the tail vein within 5 s [34].

2.8. Assessment of Serum Alanine Aminotransferase (ALT) Level

To assess hepatic toxicity caused by direct sonoporation, serum alanine ALT activity was
determined as described previously [15].

2.9. Statistical Analysis

Statistical comparisons were performed using the Student’s t-test for two groups and Tukey’s or
Dunnett’s test for multiple groups. A value of p < 0.05 was considered significant.

3. Results

3.1. Effects of Direct Sonoporation to the Visceral Peritoneum from the Liver Surface

To obtain effective gene transfection at the applied site of the liver, effects of the transgene
conditions such as the applied volume, dose of the nanobubbles, pDNA, and duration of US irradiation
were evaluated (Figure 2a). Because our previous studies have shown that the activity of nanobubbles
under the US irradiation is disappeared until about 3 min [15,35], in this study, we evaluated effect of
US duration time within 3 min. Transgene expression was not affected by the administration volume
(300–600 µL) and the dose of the nanobubbles (50–250 µg). With respect to the dose of pDNA, transgene
expression at the applied site increased up to 30 µg and remained constant thereafter. Moreover,
transgene expression at the applied visceral peritoneum site increased depending on the duration
of the US irradiation. The transgene expression for 3 min of US irradiation was significantly higher
than that for 1 min of US irradiation. Then, the transfection efficacy and applied site-specificity in
the visceral peritoneum by the direct sonoporation was also evaluated. Transgene expression at the
applied site increased approximately by 100-fold using nanobubbles with US irradiation (Figure 2b).
With respect to site-specificity, transgene expression at the applied site was significantly higher than
the other sites and tissues (Figure 2c).

Figure 2. Cont.
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Figure 2. Effect of direct sonoporation to the visceral peritoneum from the liver surface. (a) Effects of
the transfection conditions (applied volume, dose of nanobubbles, dose of pDNA, and duration of US
irradiation). Administration of the mixture of CMV-Luciferase (the firefly luciferase gene expression
vector driven by a cytomegalovirus (CMV) promoter) and nanobubbles followed by ultrasound
(US) irradiation. Data is represented as mean + SE of 5–6 experiments. Statistical comparison was
performed by Tukey’s multiple comparison test (* p < 0.05). (b–c): Transfection efficacy (b) and
site-specificity (c) by direct sonoporation under the optimized conditions. Three-hundred microliters
of the mixture of pCMV-Luciferase (30 µg) and nanobubbles (50 µg) was administrated to the applied
site of the liver surface, then US were irradiated (4.0 W/cm2) for 3 min. Data is represented as
mean + SD of 3–4 experiments. Statistical comparison was performed by Tukey’s multiple comparison
test (b) and Dunnett’s multiple comparison test (c). (* p < 0.05, ** p < 0.01, *** p < 0.001)

3.2. Characterization of Transfection Expression by Direct Sonoporation to the Visceral Peritoneum from the
Liver Surface

Sonoporation can open the cell–cell junction of endothelial cell or blood–brain barrier by cavitation
energy [26]. Therefore, it is possible that direct sonoporation open the cell-cell junction of mesothelial
cells, then gene was transferred to the submesothelial layer. Therefore, we evaluate the depth of
transgene expression from tissue surface to confirm whether transgene expression is over the PMCs
layer. The spatial distribution of the transgene expression was evaluated using multi-color deep
imaging analysis. Transgene expression was observed only at the applied site. Moreover, the transgene
expression was defined in the surface cells of the liver stained by DiI (Figure 3). To understand the
distribution of the transgene expression further, the transgene-positive cells were evaluated using
3D-immunohistochemistory (Figure 4). The anti-mesothelin antibody was used to stain the PMCs.
Currently, transgene expression was observed at the region containing the PMCs layer by direct
sonoporation to the visceral peritoneum from the liver surface.
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Figure 3. Evaluation of spatial distribution of transgene expression by direct sonoporation to the visceral
peritoneum from the liver surface. Three-hundred microliters of a mixture containing pZsGreen1-N1
(30 µg) and nanobubbles (50 µg) was administrated to the applied site of the liver surface and US were
irradiated (4.0 W/cm2) for 3 min. A view of the 3D observation at the non-applied site (a) and the applied
site (b) after pZsGreen1-N1 transfection. Blue, green, and red signal show nuclei, transgene expression
of pZsGreen1-N1 and DiI-stained surface cells. Objective lens used was 20x dry lens.

Figure 4. Identification of transgene-positive cell after pZsGreen1-N1 (green) transfection by direct
sonoporation to the visceral peritoneum from the liver surface. Blue, green, and red signal show nuclei,
transgene expression of pZsGreen1-N1 and Alexa-647® (anti-mesothelin antibody). Observation was
done using the 40× oil-immersion lens as 2D image (a), 3D image (b) and X-Z and Y-Z plane image (c).
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3.3. Assessment of Hepatic Toxicity Caused by Direct Sonoporation to the Visceral Peritoneum from the Liver Surface

To assess the toxicity caused by direct sonoporation to the visceral peritoneum from the liver
surface, change in the histopathology of the applied site and the non-applied site was observed and
evaluated using serum ALT activity and H&E staining. According to the serum ALT activity, the data
obtained from the direct sonoporation group was not significantly different compared to the control
group (Figure 5a). After 24 h of transfection by direct sonoporation, serum ALT activity was almost
similar to the control. Furthermore, direct sonoporation did not change the morphological appearance
in both the peritoneum and parenchymal cells in the liver compared to the sham (open surgery) group
(Figure 5b). Thus, hepatic toxicity was not observed using both the toxic marker and histological assay.

Figure 5. Assessment of liver impairments after direct sonoporation to the visceral peritoneum from
the liver surface. (a) Serum alanine aminotransferase (ALT) activities after transfection. ALT activities
were determined at 3, 6, and 24 h after each treatment. Each value is represented as mean ± SD of
4 experiments. *** p < 0.01 vs sham (open surgery) on Tukey’s multiple test. (b) H&E staining of the
liver. These evaluations were performed at 6 h after treatment and at 24 h after transfection. Scale bar
represents 100 µm.

3.4. Characterization of Transfection Expression by Direct Sonoporation to The Parietal Peritoneum from the
Peritoneal Wall Surface

To verify whether direct sonoporation can be used to transfect the parietal peritoneum,
direct sonoporation was applied to the parietal peritoneum from the peritoneal wall surface.
Transgene expression at the applied site increased by direct sonoporation, i.e., application to the
visceral peritoneum from the liver surface (Figure 6a). Moreover, to assess site-specificity, the transgene
efficiency at the applied site, the non-applied site of the peritoneal wall, and the other tissues (heart, lung,
kidney, spleen, and stomach) was evaluated. Transgene expression at the applied site was significantly
higher than that in both the non-applied site and the other tissues (Figure 6b). Except for the applied site,
transgene expression level was much lower than the detection limit. Moreover, the spatial distribution
of the transgene expression by the direct sonoporation to parietal peritoneum from the peritoneal
wall surface was evaluated. As a result, the transgene expression was observed only at the applied
site. Moreover, the transgene expression was defined based on the surface area on the peritoneal wall
stained by DiI (Figure 6c,d).
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Figure 6. Characterization of the transgene expression by direct sonoporation of the parietal
peritoneum from the peritoneal wall surface. a: transfection efficacy of the nanobubbles with
US irradiation b: site-specificity. Thirty micrograms of pCMV-Luciferase and nanobubbles (50 µg)
were administrated to applied site of the peritoneal wall surface, i.e., (a) total volume of 300 µL.
Then, US was irradiated 4.0 W/cm2 for 3 min. Six hours after transfection, the luciferase activity was
measured. Data is represented as mean + SD of four experiments. Statistical comparison was performed
by Tukey’s multiple comparison test (a) and Dunnett’s multiple comparison test (b) (*** p < 0.001).
(c,d) the distribution of transgene expression on the parietal peritoneum by 3D observation. The depth
of the transgene expression at the non-applied site (c) and the applied site (d) after pZsGreen1-N1
transfection. Blue, green, and red signal show nuclei, transgene expression of ZsGreen1-N1 and
DiI-stained surface cells. The objective lens used was the 20× dry lens.

4. Discussion

During sonoporation, the cavitation energy of sonoporation generated by nanobubbles with US
irradiation is commonly affected by several conditions such as the administration volume, duration of
US, and dose of nanobubbles [36,37]. To obtain stable transgene efficacy and site-specificity at the
defined area in the intraperitoneal tissues, the effect of direct sonoporation was explained. As shown
in Figure 2a, the transgene expression was not affected by the administration volume and dose of
nanobubbles. On the contrary, transgene expression increased depending on the dose of pDNA i.e.,
from 5 to 30 µg and the duration of US irradiation from 1 to 3 min. The result of duration of the US
irradiation is compatible with the results of our previous report regarding intraperitoneal injection
in mice [15]. In the following experiments, a mixture of 300 µL of pDNA (30 µg) and nanobubbles
(50 µg) was administered to mice, and the mice were subsequently irradiated with US for 3 min.
Next, the transfection efficacy and site-specificity at the applied site of the liver under the optical
conditions were assessed. Intraperitoneally injection based sonoporation by nano/microbubbles with
transdermal US irradiation transfected to the entire intraperitoneal tissues [15,16]. Moreover, in case
of pDNA and nano/microbubble complex such as cationic bubblelipoplex [29], remaining complex
after sonoporation could be transferred to the blood circulation and transfected in the undesired site.
In contrast, direct sonoporation is expected to be appropriate site-selective gene transfection method
because sonoporation was conduct from a defined area and pDNA was removed after sonoporation.
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The transfection efficacy at the applied site increased by direct sonoporation to the visceral peritoneum
from the liver surface while transgene expression at the non-applied site (Figure 2b) and transgene
expressions at other sites in the tissues were not detected (Figure 2c). Measurement of luciferase activity
may be slightly less sensitivity of quantitation than radioactivity. However, luciferase assay showed
lower sample-to-sample variability and longer half-life than radioactivity [38]. On the other hand,
in the previous study, we confirmed that Luciferase activity as transgene expression and radioactivity
as pDNA distribution is corresponded [29]. Moreover, we checked measurement data of luciferase
activity is within detection range. Thus, measurement of luciferase activity can be enough as evaluation
of transgene efficacy. These results indicate direct sonoporation can achieve site-specific transgene
expression at the applied site. Nanobubbles with US irradiation can affect the spatial distribution of
transgene expression in the peritoneal tissues [15]. To clarify the distribution of transgene expression by
direct sonoporation, which is studied little so far, the transgene expression was observed by multi-color
deep imaging analysis. To observe the depth from the peritoneal tissue surface, surface cells were
stained using an intraperitoneal injection of DiI. The transgene expression of direct sonoporation
at the applied visceral peritoneum site of the liver was observed into stained with DiI (Figure 3).
Our previous study has shown sonoporation toward the entire peritoneal tissues transfected into the
DiI-stained peritoneal tissue surface. Therefore, transgene expression may be in the PMCs on the
applied visceral peritoneum site. However, Data obtained using the DiI staining technique may not
be enough to identify a transgene positive-cell. Therefore, in the present study, we challenged the
3D-immunohistochemistry observation by staining the PMCs. To identify transgene positive-cells,
PMCs were stained with anti-mesothelin antibodies. As a result, transgene expression was observed
only in the region stained by the anti-mesothelin antibodies (Figure 4). These observations provide
evidence that direct sonoporation into the visceral peritoneum from the liver surface can transfect the
PMCs at the applied visceral peritoneum site specifically without causing transgene expression at
other sites of the visceral peritoneum and inner tissues of the peritoneum.

Our previous studies have reported that there is little damage at the peritoneal tissues transfected
by the sonoporation [15]. However, it is unclear about the injury to the inner tissues via cavitation
energy caused by direct sonoporation to the peritoneum. Therefore, we evaluated injury by H&E
staining and ALT activity following direct sonoporation to the visceral peritoneum on the liver surface.
In Figure 5a, ALT activity of the hydrodynamic injection was significantly higher than any other
group at every sampling point as a positive control (Figure 5a). In contrast, ALT activity after direct
sonoporation group were not significantly different from the control group. Moreover, we evaluated a
morphological change by H&E staining (Figure 5b). In the PMCs, submesothelial layer, and hepatic
intrinsic region, the morphological change was not observed after the direct sonoporation as well as
normal state. We evaluated the morphological change of 3 difference mice, the abnormality change
was not observed after direct sonoporation. These results may indicate that direct sonoporation to the
visceral peritoneum from tissue surface can show little toxicity in the inner tissues.

Considering the clinical use of the medical device, examination of the appropriate tissue for
direct sonoporation is needed. Because not only are the tissue intrinsic cells present under the
peritoneum but also the structure of the PMCs layer may be different between the visceral and the
parietal peritoneum [39]. Thus, transfection characteristics could be altered based on the applied tissue.
For example, hepatic parenchymal cells reside under the visceral peritoneum from the liver surface
while muscle fiber reside under the parietal peritoneum from the peritoneal wall. Therefore, in the
present study, we evaluated the transfection characteristics by direct sonoporation to the parietal
peritoneum from the peritoneal wall surface. As a result, transfection efficacy of direct sonoporation was
significantly higher than that of the pDNA-solo group, nanobubbles-solo group, and US irradiation-solo
group at the applied site without transfection to other intraperitoneal tissues (Figure 6a,b). The transgene
expression in the parietal peritoneum from the peritoneal wall surface was approximately tenfold
lower than that of the visceral peritoneum from the liver surface. In addition, multi-color deep imaging
analysis showed that transgene expression was observed only on the peritoneal wall surface cells as
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the PMCs (Figure 6c,d). These results suggest that direct sonoporation to the parietal peritoneum
from the peritoneal wall surface enable site-specific transfection to the PMCs on the applied parietal
peritoneum site. On the contrary, the reason for the difference in the transfection efficacy between the
parietal and visceral peritoneum is unclear. However, the difference in the stiffness of the tissues might
have caused this phenomenon. Moreover, the transfection efficacy for fiber-based tissues (e.g. muscle,
stomach) by physical stimuli were lower than the other tissues [40,41]. Although there is a difference in
the transfection efficacy, these results suggest that direct sonoporation via the peritoneal tissue surface
transfected sufficient gene to both the visceral and parietal peritoneum.

5. Conclusions

We evaluated the application of direct sonoporation to the peritoneum from the defined surface
area on peritoneal tissues in mice. Direct sonoporation achieved applied site-specific transgene
expression locally at the defined area of the peritoneum. In addition, the multi-color deep imaging
analysis revealed that the transgene expression can be in the PMCs. Importantly, the transgene
expression and toxicity in the inner part of the peritoneum tissue cannot be observed. On the contrary,
direct sonoporation could be applicable to both the visceral and parietal peritoneum, although we
found that there was a little difference with respect to the efficacy of transgene expression. Our findings
are valuable for the development of intraperitoneal sonoporation for the treatment of peritoneal
refractory diseases such as fibrosis.
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