下向き水平等温面からの自然対流CFD解析 (第3報:上面断熱・下面等温の場合)

津田 和則*・茂地 徹**・桃木 悟*

CFD analysis on natural convection from an isothermal horizontal plate facing downward

(Part : The case with insulated upward-facing surface)

by

Kazunori TSUDA*, Toru SHIGECHI** and Satoru MOMOKI*

In the third report are presented the numerical simulations by CFD under a downward-facing isothermal surface with an insulated upward-facing surface. The effects of the heat transfer from an upward-facing surface on the fluid flow and heat transfer under the downward-facing surface are discussed. It is shown that the velocity and temperature fields are hardly affected by the heat transfer from an upward-facing surface.

Key words : natural convection, downward-facing horizontal plate, CFD, downward-facing isothermal surface

1.まえがき

第1報⁽¹⁾では、Aihara らの実験結果⁽²⁾との比較 のため、Aihara らの実験系に近い境界条件と計算領 域を設定して数値解析を実施した。その結果、汎用 CFD コード⁽³⁾を用いた本数値解析手法は、Aihara らの実験で得られた速度場、温度場および伝熱特性 (ヌッセルト数)を定量的に正確に再現できること を示した。

本報では、水平等温平板の上面で引き起こされる 浮力流れが下面まわりの速度場と温度場にどのよ うな影響を与えるかどうかを検証するため、水平平 板を上面断熱・下面等温の熱的条件で数値解析を行 い、第1報⁽¹⁾の結果と比較しながら、その影響につ いて検討した結果について報告する。

主要記号

L : ストリップ長さ[m] *Nu* : ヌッセルト数

$Nu_{\rm x}$:局所ヌッセルト数
Ra	:レイレイ数
θ	:温度
Θ	:無次元温度
ψ	:流れ関数
и	: x 方向速度[m/s]
v	:y 方向速度[m/s]
添字	
W	: 加熱面
x	:周囲

2.数值解析

数値解析のモデルは第1報⁽¹⁾と同じであるが、図 1 に示すように水平平板の上面を断熱とし、下面を 温度一定としている。基礎式、境界条件、物性値の 評価方法、数値解析に使用した CFD コードおよびヌ ッセルト数の評価方法は、第1報⁽¹⁾と同じであるか ら省略する。

*生産科学研究科 (Graduate School of Science and Technology)

平成 18 年 6 月 23 日受理

^{**}機械システム工学科 (Department of Mechanical Systems Engineering)

3.解析結果

第1報⁽¹⁾で示した解析結果を(a)両面等温の場合、 本報での解析結果を(b)下面等温・上面断熱の場合に 区別して比較した結果を、図 2.1~図 4.2 に示す。 図 2.1 は速度ベクトル図、図 2.2 は等流れ線図、図 3.1 は温度コンター図、図 3.2 は無次元等温線図、 図 4.1 は下面側の x 方向の速度プロフィル、図 4.2 は下面側の無次元温度プロフィル、である。図 5 に 下面の局所ヌッセルト数を示す。

図1 2次元数値解析モデル

4.考察

4.1 速度場及び温度場

図 2.1 の速度ベクトルと図 2.2 の等流れ線図で、 (a)両面等温の場合と(b)下面等温・上面断熱の場合 をそれぞれ比較すると、下面側の速度ベクトル、流 線および反転領域の境界は、上面の影響をほとんど 受けず、両者に大きな差異はみられないことがわか る。上面側の速度ベクトルと流線は、(b)下面等温・ 上面断熱の場合には(a)両面等温の場合と様相が異 なってくる。特に(b)の下面等温・上面断熱の場合 には中央部で渦が形成され、流れは全く異なってい る。温度場は、図 3.1 と図 3.2 に示されるように、 下面側では(a)両面等温の場合と(b)下面等温・上面 断熱の場合とでは、両者にほとんど差はない。上面 側において、(b)下面等温・上面断熱の場合には、 断熱のため上面付近の空気の温度上昇は小さい。さ らに、図 3.2 の無次元等温線図から、温度境界層 の位置(=0.02)に関してもほとんど差が無いこ とが分る。

図 4.1 と図 4.2 からわかるように、下面側の速度 プロフィルと温度プロフィルも、よく一致している。

4.2 熱伝達係数

図5は下面表面の局所ヌッセルト数*Nux*を示した ものである。第1報のAihara らの実験結果を本解析 結果と比較した。両面等温の場合と下面等温・上面 断熱の場合の解析結果および実験結果はよく一致し ていることがわかる。

5.結論

本報で数値解析結果により、次のことが明らとな った。

両面等温の場合と下面等温・上面断熱の場合の数 値解析結果を比較すると、上面側の速度ベクトルと 流線はかなり異なるものの、下面側には特に変化が みられないことがわかる。

このことから、Aihara らが実験で用いた水平等温 平板の場合、上面と側面での等温加熱に起因する流 れは、下面側の流動と伝熱にほとんど影響を及ぼさ ず、Aihara らの下向き面に関する速度場・温度場の 実測値は、上面断熱で下面等温加熱による下向き面 まわりの速度場・温度場を表現していると考えるこ とができる。

なお、Aihara らの実験では、平板が薄肉であるこ とおよび媒体が空気で粘性が小さいこともあり、上 面と側面の加熱に起因する流れは下面側の流体を引 っ張り上げるというところまでには至っていないと 推量される。本報告の結論をさらに一般化するため には、平板が厚い場合や媒体が空気以外の場合につ いて検証を進める必要がある。

参考文献

1)津田·茂地·桃木,長崎大工研報,65-35(2005)

2) T. Aihara, Y. Yamada and S. Endo, International Journal of Heat and Mass Transfer, **15**(1972), 2353-2549 3) (株)シーディー・アダプコ・ジャパン: STAR-CD

V.3.2 理論マニュアル, (2005).

(a) 両面等温の場合

(m/s)

(b) 下面等温·上面断熱の場合

図 2.1 速度ベクトル図

(a) 両面等温の場合

(b) 下面等温・上面断熱の場合

図 2.2 等流れ線図

(a) 両面等温の場合

(b) 下面等温·上面断熱の場合

図 3.1 温度コンター図 図 3.2 無次元等温線図

(a) 両面等温の場合

(b) 下面等温·上面断熱の場合

(a) 両面等温の場合

(b) 下面等温・上面断熱の場合

図 4.2 無次元温度プロフィル(下面)

図5局所ヌッセルト数(下面)