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Effect of Viscous Dissipation on Fully Developed Heat Transfer

of Plane Coutte-Poiseuille Laminar Flow

By

Toru SHIGECHI*, Satoru MOMOKI*
and Davaa GANBAT**

Fully developed laminar heat transfer of a Newtonian fluid flowing between two parallel plates with

one moving plate was analyzed taking into account the viscous dissipation of the flowing fluid. Applying

the velocity profile obtained for the plane Coutte-Poiseuille laminar flow, the energy equation with the

viscous dissipation term was exactly solved for the boundary conditions of constant wall heat flux at one

wall with the other insulated. The numerical values of Nusselt numbers at the plate walls were presented

for the wide ranges of parameters: the relative velocity of a moving plate and Brinkman number.

1 . Introduction

Problems involving fluid flow and heat transfer

with an axially moving core of solid body or fluid in an

annular geometry can be found in many manufactur

ing processes, such as extrusion, drawing and hot

rolling, etc. In such processes, a hot plate or cylindri

cal rod continuously exchanges heat with the sur

rounding environment. For such cases, the fluid in

volved may be Newtonian or non-Newtonian and the

flow situations encountered can be either laminar or

turbulent.

In the previous studies(l)-(41, the analytical solutions

were presented on the problems of fully developed

turbulent and, developing and developed laminar

Newtonian fluid flow and heat transfer in a concentric

annulus with an axially moving core. In these studies

the viscous dissipation term in the energy equation

has been neglected.

In the previous report(S), the effect of viscous dissi

pation on fully developed Newtonian laminar heat

transfer was discussed for the case of concentric an

nuli with axially moving cores.

In this report, fully developed laminar heat transfer

of a Newtonian fluid flowing between two parallel

plates with one moving plate was analyzed taking into

account the viscous dissipation of the flowing fluid.

Applying the velocity profile obtained for the plane

Coutte-Poiseuille laminar flow, the energy equation

with the viscous dissipation term was exactly solved

for the boundary conditions of constant wall heat flux

at one wall with the other insulated. The numerical

values of Nusselt numbers at the plate walls were

presented for the wide ranges of parameters: the

relative velocity of a moving plate and Brinkman

number.

Nomenclature

Br Brinkman number

cp specific heat at constant pressure

k thermal conductivity

Nu Nusselt number

P pressure

q wall heat flux

T temperature

Tb bulk temperature

u axial velocity of fluid
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The exact solution of the fluid velocity, u, is

presented in the dimensionless form by

The boundary conditions are:

U/Urn=U*= 6 [(f) - (frJ
+ [ 3 (fr - 2 (f) JU*

(1)

(3)

(2)
at y= 0

at y=L{

U= 0

u=U

U* dimensionless velocity=u/um

Urn average velocity of fluid

U axial velocity of the moving plate

U* relative velocity of the moving plate=Ulum

y coordinate normal to the fixed plate wall

y* dimensionless coordinate=y IL

z axial coordinate

fl viscosity

p density

() dimensionless temperature

(}b dimensionless bulk temperature

Subscripts

b bulk

o fixed plate

L moving plate

A Case A

B Case B

where Urn is the average velocity defined as

U =1..- lL udy=_l_. [~dPJL 2 +1..-U (4)
rn L 0 12fl dz 2

The gradient of velocity, duldy, is obtained as

2. Analysis

The physical model for the analysis is shown in Fig.

1.

z fixed plate

2.2 Heat Transfer

The governing energy equation for fully developed

and constant wall heat flux conditions is written as

y fluid flow

• t------ti..... U L
(6)

moving plate U

Fig. 1 Schematic of parallel plates with one
moving plate

The following two types of the thermal boundary

conditions are specified:

[Case A(constant heat flux at the moving

plate with the fixed plate insulated) ]

The assumptions used in this analysis are :.

1. The flow is incompressible and steady-laminar,

and fully developed, hydrodynamically and ther

mally.

2. The fluid is Newtonian and physical properties

are constant.

3. Either of two parallel plates is axially moving at a

constant velocity.

4. The body forces and axial heat conduction are

neglected.

raT~o at y= 0
ay

aT
y=Lk-=qL atay

[Case B(constant heat flux at the fixed plate

with the moving plate insulated) ]

aT y= 0-k-=qo atay
(8)

kaT= 0 at y=Lay

2. 1 Fluid Flow

The governing momentum equation together with

the assumptions described above is

where the wall heat fluxes, qL and q 0' are taken as

positive into the fluid.

Tb is the bulk temperature defined as
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(9) The Nusselt number on the moving plate wall,

NUL, is defined as

dTb / dz on the r.h.s of Eq.(6) is evaluated, from an

energy balance for the parallel plates, as (16)

(18)

(10)

where j=L stands for Case A and j= 0 stands for

Case B.

[Temperature Distributions for Case AJ

Introducing the dimensionless temperature, (j,

defined as

(II)

The energy equation and the boundary conditions

may be expressed in dimensionless form as

d
2
(j [{jl (dU*)2 } (dU*)2Jdy*2 =u*+BrA 0 dy* dy* u*- dy*

(12)

I~=O at y*= 0
dy*

B.C. (13)

.!!:f..= 1 at y*= 1
dy*

where y*==Y/L and BrA is Brinkman number for Case

A, defined as

where (jb is a dimensionless bulk temperature, defined

as
(17)

(8L -(jb) is calculated as

(jL -Ob= fal U*(OL -O)dy*

Substituting Eq.(3) and Eq.(l5) into Eq.(H~, NUL is ob-

tained as

70
13[1-!.!.U*+l-U*2J+27Br (1-l-U*)2 [1-~U*+.!U*2J39 39 A 3 9 9

(19)

From Eq.~9), the following two limiting Nusselt num

bers are obtained:

NUL
70 1 for U*= 0 (20)
13 [1 +HBrAJ

NUL
70 1 for BrA= 0 (21)
13 [1-!.!.U*+l-U* 2 J

39 39

[Temperature Distributions for Case BJ

Introducing the dimensionless temperature, (j,

defined as

(14)
The energy equation and the boundary conditions

may be expressed in dimensionless form as

BrA== [J1U~ ]
qLL

Solving Eq.~~ together with EqJ~, using Eq.(3), the

dimensionless temperature distribution for Case A is

obtained as

(j== T/[qo L/kJ

d
2
0 [{jl (dU*)2 } (dU*)2Jdy*2 =u*+BrB 0 dy* dy* u*- dy*

(22)

(23)

(j-OL = -+(1- ~ U*) + (1-fU*)y*3

- ~ (1- ~ U* )y* 4

I~~-I at y*= 0
dy*

B.C. (24)

!l!!...= 0 at y*= 1
dy*

where BrB is Brinkman number for Case B, defined as

Solving Eq.~~ together with Eq.~~ using Eq.(3), the

dimensionless temperature distribution for Case B is

obtained as

a5)

where 0L is the dimensionless wall temperature on the

moving plate.

Br == [J1U~ J
B qoL

(25)
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0-0 0= -y*+ (1- ; U*)y*3 -+(1- ~ U*)y*4

+ 9 BrB (1- ~ U*) 2 [ - 2y* 2 ~6)

than in Case B. This is due to that for Case A the

viscous dissipation effect becomes strong near the

moving wallowing to the velocity profile deformed by

the moving plate.

Table 1 Numerical values of NUL for Case A

The Nusselt number on the fixed plate wall, Nu 0 ,

is defined as

where 0 0 is the dimensionless wall temperature on the

fixed plate.

Nuo
[go/(To -Tb )] 2L

k

NUL

U*
BrA

0.0 0.01 0.05 0.1 0.5 1.0

-2.0 3.2308 2.5378 1. 3659 0.8660 0.2205 0.1141

-1. 0 4.1176 3.6998 2.6316 1. 9337 0.6195 0.3349

0.0 5.3846 5.2751 4.8780 4.4586 2.6415 1. 7500

1.0 7.2414 7.3427 7.7778 8.4000 23.3333 H9.0909

2.0 10.0000 10.1010 10.5263 11.1111 20.0000 -

where Ob is a dimensionless bulk temperature, defined

as Table 2 Numerical values of Nu 0 for Case B

(0 0 -(jb) is calculated as

Substituting Eq.(3) and Eq.~$ into Eq.~~, Nuo is ob

tained as

(28)

(29)

Nuo

U*
BrB

0.0 0.01 0.05 0.1 0.5 1.0

-2.0 7.0000 6.9421 6.7200 6.4ulE 4.9412 3.8182

-1. 0 6.2687 6.2389 6.1224 5.9829 5.0602 4.2424

0.0 5.3846 5.2751 4.8780 4.4586 2.6415 1.7500

1.0 4.5161 4.4211 4.0777 3.7168 2.1762 1.4334

2.0 3.7500 3.7175 3.5928 3.4483 2.6087 2.0000

From Eq.C3q, the following two limiting Nusselt num

bers are obtained :

Nuo
70 1 for U*= 0 (31)
13 [1 +HBrBJ

Nuo
70 1 for BrB= 0 (32)
13 [I +1.ij*+1.ij*2]

6 39

Nuo=

70 (30)

4. Conclusion

Fully developed laminar heat transfer of a Newto

nian fluid flowing between two parallel plates with

one moving plate was analyzed taking into account

the viscous dissipation for the thermal boundary con

ditions of constant wall heat flux at one wall with the

other insulated. The numerical values of Nusselt

numbers at the plate walls were presented for the

wide ranges of parameters: the relative velocity of a

moving plate and Brinkman number.

3. Results and Discussion

The numerical values of Nusselt numbers, NUL CEq.

~~) for Case A and Nuo (Eq.C3Q) for Case B, are

respectively given in Table 1 and Table 2 . It is seen

from these tables that Nusselt number, NUL, changes

sharply depending on the values of Brinkman number,

BrA, and the relative velocity of the moving plate,

ij*, for Case A. Whereas for Case B Nusselt number,

Nu 0' decreases gradually with an increasing Brink

man number, BrB: The effect of viscous dissipation on

Nusselt numbers appears more strongly in Case A
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