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Free Vibration Analysis of Irregular-Shaped
Plates with Variable Thickness

By
Takeshi SAKIYAMA¥* and Mei HUANG**

An approximate method based on the Green function for analyzing the free vibration of irregular-
shaped plates is proposed. In this paper, the irregular-shaped plates are such plates as sectorial plates,
triangular plates, circular plates, elliptical plates, or the other polygonal plates which are not uniform
rectangular plates. It is shown that these irregular-shaped plates can be considered finally as circum-
scribed equivalent rectangular plates by adding some parts and the added parts are extremely thin or thick
according to the boundary conditions of the original plates. Therefore the free vibration analysis of any
irregular-shaped plate can be replaced by the free vibration analysis of the equivalent rectangular plate
with non-uniform thickness. For various types of irregular-shaped plates, the convergency and accuracy of

numerical solutions by the proposed method are investigated.

1 Introduction

By adding some parts, the irregular-shaped haped plates in this paper can be considered finally as kinds of
equivalent rectangular plates with non-uniform thickness. The additional parts of the equivalent rectangular
plates are extremely thin or thick according to the boundary conditions of the original plate. Therefore the free
vibration analysis of any irregular-shaped plate can be replaced by the free vibration analysis of the equivalent
rectangular plate with non-uniform thickness.

Mukhopadhyay [ 2 ] got a semi-analytical solution for free vibration of sector plate. Gorman [ 5 ] presented
an accurate analytical solution for the free vibration of right triangular plate with all possible combinations of
clamped and simply supported edge conditions by the method of superposition. Lam et al. [ 6 ] made the use
of two-dimensional orthogonal polynomials for the vibration analysis of circular and elliptical plates. Gean-
nakakes [ 3 ] analyzed the natural frequencies of arbitrarily shaped plates using the Rayleigh-Rits method
together with natural co-ordinate regions and normalized characteristic orthogonal polynomials.

In this paper an approximate method is proposed for analyzing the free vibration of various types of
irregular-shaped plates by applying the discrete general solutions of free vibration of rectangular plates based
on the Green function. The convergency and the accuracy of the numerical solutions for the natural frequency
parameters calculated by the proposed method are investigated and the lowest eight frequency parameters and

the lowest eight modes of free vibration are shown.

2 Discrete Green function of plate with variable thickness and point supports

The Green function of plate bending problem is given by the displacement function of the plate with a unit
concentrated load, so the Green function w(x, y, x,, ¥,) / Pof plates with variable thickness can be obtained from
th(‘-: fundamental differential equation of the plate with a concentrated load Pata point (x, y,) and point
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support at each discrete point (x,, y2).
By introducing the following non-dimensional expressions,
(X1, Xz]=

)[Qy, Qx] [XB, X4v XS] )[Mxy, My, Mx]

-_a
D()(l—vz
[X¢, X7, Xs1=[0,, 0, w/a],

D(l

the differential equation can be written as follows.

Z[Flna)?"'the aXe*'FsteX]"-Pﬁ(?? 708 (C— C,)51:+Z Z Z Prad (=18 (L) dp= (1)
e=1 =l c=0d=

where t=1~8, g=b/a,p=x/a,{=y/b, Do =Eh3/12(1 —v?)is the standard bending rigidity, 4,: standard
thickness of the plate, a, b, are the breadth and length of the rectangular plate, P=Pa/Do(1 —v2),[P1e Prea
P3.4]=[P)ett, Pycs, P3.41/Do(1 —v?2),3,is Kronecker’s delta, F,,, F2, and F3, are given in Appendix I

3 Discrete solution of fundamental differential equation

With a rectangular plate divided vertically into m Coy
equal-length parts and horizontally into n equal-length nib
parts as shown in Figure 1 , the plate can be considered
as a group of discrete points which are the intersection j S\pd)
of the (m+ 1 )-vertical and (n+ 1 )-horizontal dividing
lines. By integrating the equation (1) and applying the
numerical intergration method, the dicrete solution of g N
eqution (1) concerned with arbitrary discrete point (s, 7) B RDORRE: mn

is obtained as follows Figure 1 :Discrete points on plate

i
Xpii= Zo{awu (Q)) 10T apiine (M) s+ @1piins (My) so + @pijea (8,) s+ @1piins (02) o+ @1pisins (w) ’00}
k:
j
+ Zo {azpijd (Q.) 0.t azpijir (My) 0c+ @zpies (M) 00+ @piies (By) 00+ @opises (01) 00+ @zpises (w) o:}
fr
_ 3 m n
+pi P+ X Z Z dpised Prea ()
f=1 ¢c=0d=0

where(Q,)) =X1, (Q) =X, (M) =X;, M, =X,, (M) =X5,(8,) =X, (0,) =X7, W) =Xs» @npijun, Gspica and
dpig are given in Appendix I

The equation(2) gives the discrete solution[1]of the fundamental differential equation(1)of the plate bending
problem, and the discrete Green function of plate is obtained from X5 ;=G (%;, y; %, ¥,) [Pa/D (1 —v?2)lwhich is
the displacement at a point (x; ;) of a plate with a concentrated load P at a point(x, ,).

4 Characteristic equation of free vibration of rectangular plate with variable thickness

By applying the Green function w(xo, yo, %, ¥) /P which is the displacement at a point (xy, yo)of a plate with
a concentrated load P at point (x, y)and point support at each discrete point (x, ¥;), the displacement amplitude
w(xo, yo)at a point(xg, yo)of the rectangular plate during the free vibration is given as follows

#(xo, yo>=f0” /0 pho 2 (x, 9w, y)(w(xos yo. % v)/Pldxdy 3)

where g is the mass density of the plate material.
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By using the non-dimensional expressions,

qt=Pohoo?at HGL O zg(;,ox) b y) W('/vC)=u;(2 2),

Dy(1—v?) ho

_w&o, Yoo %,9) Do (1 —v?)
G, Lo.7.0= p T

P is the standard mass desity

and by using the numerical integration method, equation (3)is discretely expressed as

, I P by Hi Gus Wi k= 1/(u2®) @

"'M 3

k Wkt

From equation (4) homogeneous linear equations in(m+ 1) X (#+ 1 )unknowns Wy, Wo s Won Wier Wi -
Wis s Wmor Wm1 -, W,, are obtained as follows

Z (Bmi Bnj Hi Griii—k 82 8;))W;=0, (=0,1,, m¢=0,1,-, n) (5)

"M§

The characteristic equation of the free vibration of a rectangular plate with variable thickness is obtained from

the equation (5) as follow.

Ko Ka Ko ' Kom
Ko Kiu Kiz - Kinm
Kzo Kzl Kzz sz =0 (6)

Kmo Kml sz Kmm

where
Bno Hjy Gigjo— ko5 Bn Hji Giopt Bnz Hpz Gigja Bnn Hin Gigjn
Bwo Hjo Ginjo Bm Hjy Giji—kd; Bu2 Hpz Gijo Ban Hin Girjn
Kij=Bm B Hjo Gizjo Bm Hji Gija Buz Hpp Ginjp—kdy; - Bun Hin Gizjn
Bxo Hy Gino Bat Hji Gisjn B2 Hp Ginj2 “* Buan Hin Ginjn— k0

5 Equivalent rectangular plate of irregular-shaped plate
Irregular-shaped plates such as sectorial

plates, triangular plates, elliptical plates, or

the other polygonal plate are quite different

from uniform rectangular plates, but they

can be translated into equivalent rectangular

plates with non-uniform thickness (showed ho

in Figure 2 ) by adding some parts. The ad-

ditional parts are extremely thin or thick ac- thick part point _support

cording to the boundary condition of the . ) )
Figure 2 :Irregular-shaped plate and its equivalent

original plate. In this paper, simply support- rectangular plate

ed, fixed and free edges are denoted by the
symbols S, C, F, respectly and showed by
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solid line — , thick solid line ==, and dotted line — — —.

6 Numerical results

The convergency and accuracy of numerical solutions have been investigated for the free vibration problems of
some irregular plates with variable thickness and variable edge conditions. The convergent values of numerical
solutions of frequency parameter for these plates have been obtained by using Richardson’ s extrapolation formula
for two cases of combinations of divisionl numbers m and n.

6.1 Sectorial plates with uniform thickness

Numerical solutions for the lowest eight natural frequency parametersiof fixed 90° sectorial plates for inside to
outside radii ratios R;/R, =0.0 and 0. 25 are shown in Table 1 . The convergent values of numerical solutions were
obtained by using Richardson’s extrapolation formula for the two cases of division numbers m(=#n) of 12 and
16. The good convergency and satisfiable accuracy of the numerical solutions by the present method are noted
when comparison of results is made with those of Ref. [ 2 ] by Mukhopadhyay and Ref. [ 3 ] by Geannakakes. In
Figure 6 is shown the geometry of a typital sectorial plate. The nodal lines of eight modes of free vibration of the

two plates are shown in Figure 7

Table1l Natural frequency parameter 2 for 90° sector plates; v =0. 3

R,‘/Ro =0.0 . R,-/Ro =0.25
mode m Extra- m Extra-
12 16 polation Ref.[2] Ref.[3] 12 16 polation Ref[2] Ref.[3]

1 7.691 7.454 7.148 7.108 7.151 8.030 7.716 7.313 7.384 7.425
2 10. 541 10.147 9.640 9.544 9.593 10.580 10.178 9. 661 9.582 9.609
3 11.502 11.009 10.377 10. 392 10. 486 12.700 11.922 10.922 11.303 11.384
4 13.548 12.768 11.765 11.935 11.981 13.556 12.791 11.808 11.941 11.987
5 14.887 14.126 13.147 13.026 13.135 15.026 14.271 13.300 13.218 13.282
6 15.587 14.768 13.714 - 13.764 16.674 15.533 14.066 - 14.317
7 16. 600 15.500 14.087 - 14.316 17.813 16.613 15.071 - 15. 479
8 18.074 17.048 15.729 - 15.710 18. 289 17.103 15.578 - 15.742
g nodal patterns

BB B
o.st&&@

nodal patterns

RBD R B
BB D B

Fig.7 Nodal patterns for fixed
90° sectorial plates

Fig.6 fixed 90°sectorial plates

6.2 Triangular plates with uniform thickness _

Numerical solutions for the lowest eight natural frequency parameters 4 of the triangular plates of aspect ratio
b/a=1 and 2 of three types of boundary conditions are obtained for the two cases of divisional numbers m(=n)
of 12 and 16 for the whole part of the plate. Table 2~4 involves the theoretical values of kim and Dickinson
[ 4]. The numerical solutions by the present method have the good convergency and satisfiable accuracy. In
Figure 8 is shown the geometry of a typicél right triangular plate of three types of boundary conditions. The nodal
lines of eight modes of free vibration of these plates are respectively shown in Figure 9, Figure 10 and Figure 11.
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Table 2 Natural frequency parameter 4 for S-F-S right triangular plates;

v=0.3
bla=1 bla=2
mode m Extra- m Extra-

12 16 polation Ref.[4] 12 16 polation Ref.(4]
1 3.085 3.110 3.142 3.205 2.181 2.201 2.227 2.268
2 5.824 5.857 5.900 6.025 3.883 3.902 3.926 4.004
3 7.605 7.645 7.695 7.835 5.454 5. 449 5.442 5.554
4 9.052 9.026 8.992 9.206 6.286 6.288 6.291 6.408
5 10.191 10.128 10. 047 10. 361 7.157 7.118 7.067 7.186
6 12.320 12.227 12.108 12.435 8.267 8.201 8.118 8.302
7 12.558 12.335 12.048 - 9.071 8.902 8.685 -
8 13.417 13.242 13.018 - 9. 883 9.702 9.470 =

Table 3 Natural frequency parameter 2 for simply supported right
triangular plates ; v=0.3

bla=1 bla= 2
mode m Extra- m Extra-

12 16 polation Retl41—3 16 polation Refl4)

1 7.471 7.358  7.214  7.193| 5.898 5598  5.212  5.394

2 10.978  10.588  10.086  10.174| 8.065  7.699  7.228  7.233

3 12.431  12.093  11.657  11.608| 10.770  9.940  8.874  8.858

4 15.001  14.196  13.046 13.314| 9.860  9.4%0  9.015  9.262

5 16.212  15.300 14.128  14.490 | 13.846  12.424  10.59  10.611

6 17.955  17.095  15.990  16.182| 12.378 11.688  10.800  11.318

7 19.917  18.241  16.086 —1 15.638  14.181  12.307 -

8 20.736  19.081  16.953 —| 17.33  15.160  12.363 -
Table4 Natural frequency parameter 4 for fixed right triangular plates;

v=0.3
bla=1 bla=2
mode m Extra- m Extra-

12 16 polation Ref[4] 2 6 polation Refl4]

1 10.666  10.307  9.845  9.916| 8.090  7.845  7.529  7.485

2 14.630  13.844 12.833  12.861 | 10.374  9.882  9.250  9.296

3 15.591  15.148  14.579  14.298 | 12.248  11.641  10.862  10.908

4 19.424  17.742  15.580  15.954 | 13.116  12.226  11.083  11.305

5 20.068  18.644  16.814  17.061 | 14.921  13.811  12.384  12.627

6 21.126  19.741  17.960  18.761| 16.329  14.799  12.832  13.298

7 25.241  22.163  18.205 —1 17.080 15.785  14.119 -

8 25.494  22.879  19.516 —| 18.086  16.868  14.160 -

231

nodal patterns
bl ™ 2 3 4
nodal patterns
be 5 os : 7 3
1 E_ E\’C\L 1\» %
2 | D .
)\\} \/‘\ \ >\‘
Fig.9 Nodal patterns for S-F-S
right triangular plates
b/a nodal patterns
1 2 4
SEANN B 1o
IND AR
b/a : no:;l patterns -
1
NN b; N
NN
Fig.10 Nodal patterns for simply
supported right triangular
plates
b/e - nodal patterns <
N DN N A
b/a - nodal patterns :
B N N NN
1NN
Fig.11 Nodal patterns for fixed

right triangular plates
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6.3 Circular and elliptical plates with uniform thickness

Numerical solutions for the lowest eight natural frequency parameters 4 of a circular plate and an elliptical plate
of ratio b/a=0. 5 are obtained for the two cases of divisional numbers m(=n) of 12 and 16 for the whole part of
the plate. Table 5 involves the other theoretical values by Lam et al.[ 6 Jand Geannakakes[ 2 ]J. The numerical
solutions by the present method have the good convergency and satisfiable accuracy. In Figure 12 is shown the
geometry of a typical elliptical plate. The nodal lines of eight modes of free vibration of the two plates are shown

in Figure 13.
Table 5 Natural frequency parameterifor circlar and elliptical plate; v=0.3
bla= 1 b/a=0.5
mode m Extra- m Extra-

2 16 polation Ref.[2] Ref.[3] 12 16 polation Ref.[2] Ref.[3]
1 6.919  6.879  6.828  6.545 6.545 | 11.367 11.237 11.071  10.734  10.714
2 10.176  10.025  9.8309  9.442  9.441| 13.369  13.395 13.427  12.869  12.869
3 10.176  10.025  9.8309  9.442 9.441 | 16.582  16.225 15,766  15.321  15.323
4 13.888  13.229  12.382  12.093  12.092 | 18.749  18.219  17.538  17.115  17.114
5 12.800  12.778  12.750  12.093  12.096 | 20.339  19.549  18.126  17.974  17.993
6 14.453  13.975  13.360  12.914  12.917 | 20.655  20.190  19.998  19.214  19.229
7 16.352  15.901  15.320 —  14.637| 25.968  23.617  20.595 - 20.885
8 16.352 15.901  15.320 —  14.637| 23.111  22.750  22.286 —  21.545

bla nodal patterns

O O © O

O DO O <o

b/a nodal patterns

' 0 ® @

5l ap & D D

l._v
g

— a

Fig.12 Circular and elliptical plates Fig.13 Nodal patterns for circular and
elliptical plates

6.4 Sectorial plates with variable thickness

Numerical solutions for the lowest eight natural frequency parameters 4 of fully clamped sectorial plates for
inside to outside radii ratios R;/R, =0. 0 and 0. 25 with a sinusoidal thickness variation in the 7, {- directions given
by k(. 0)=h, (1 —asinan) (1 —asina{) are shown in Table 6 and Table 7 for two cases of a=0.3 and 0.5. The
convergent values of numerical solution were obtained for the two cases of divisional numbers m (=n)of 12 and
16 for the whole part of the plate. No comparabel results are available in the literature. The nodal lines of eight
modes of free vibration of the plates are shown in Figure 14 and 15.

nodal patterns
*[ 1 2 3 4
Table 6 Natural frequency parameter 4 for R;/Ry=0.0 0.3 D & & %
'sectorial plates with variable thickness; v=0.3 los D & & %
a=0.3 a=0.5
mode m Extra- m Extra- nodal patterns
12 16 polation 12 16 polation « 5 6 " »
1 6.100 5.923 5.695| 4.976 4.852 4.692
2 8.286  7.992  7.615| 6.676  6.457  6.177 0.3 & & % %
3 9.064 8.687 8.203 7.296 6.979 6.572
4 10.559  10.008 8.203 8.475 8.062 7.530
5 11.712 11.103  10.319| 9.401 8.886 8.225 0.5 & @ % %
6 12.286  11.600 10.719| 9.830 9.275 8.561
7 12.962  12.112  11.020 [ 10.375 9.733 8.909
8 14. 286 13.343 12.130 11.393 10. 690 9.787 Fig.l4 Nodal patterns for R,-/R=0.0

sectorial plates with variable
thickness
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nodal patterns

1 2 3 4
Table 7 Natural frequency parameter 4 for R;/Ry=0. 25 sec- 03 D @ & %
torial plates with variable thickness; v=0.3
a.5 %
a=0.3 2=0.5 D % &
mode m Extra- m Extra- nodal patterns
12 16 polation 12 16 polation @ s 6 v .
6.344  6.084  5.749| 5.128  4.941  4.702
8.297  8.005  7.630) 6.684  6.470  6.195 03 & % @ %_\

9.753 9.205 8.500 7.748 7.306 6.738

10.535  10.025  9.369| 8.495  8.095  7.582
11.803  11.211  10.499 | 9.472  8.954  8.287 o & % @ %}
12.963  12.114  11.022| 10.380  9.740  8.918

13.804 12.672 11.218 10.743 9.819 8.632 . _
14.740  13.468 11.833| 11.782 10.838  9.625 Fig.15 Nodal patterns for Ri/R, =0.

25 sectorial plates with varia-
ble thickness

@»

00 =3 U1 Wb —

6.5 Triangular plates with variable thickness

Numerical solutions for the lowest eight natural frequency parameters 2 of the right triangular plates of three
kinds of boundary conditions with a linear thickness variation in the 7—direction given by 2(», {) =h(1 +a7) are
shown in Table 8 ~10 for two cases of «=0.1 and 0. 8. The convergent values of numerical solution were obtained
for the two cases of divisional numbers m (=n)of 12 and 16 for the whole part of the plate. The nodal lines of eight

modes of free vibration of the plates with «=0.1, 0.8 are shown in Figure 16~18.

nodal patterns
i 1 2 3 4
Table 8 Natural frequency parameter 1 for S-F-S triangular N b_ O,
plates with variable thickness; v=0.3 . [ . [
0.8 \\ > A b_\-. Q‘\
a=0.1 a=0.8
mode m Extra- m Extra- nodal patterns
12 16 polation 12 16 polation a@ 5 P S N
1 3.120 3.146 3.179 3.368 3.398 3.437
2 5.930 5,963 6.006 6.596 6.631 6.677 1 N
3 7.728  7.762  7.807| 8.493  8.514  8.541 ch. E:t- l}iz ESL
4 9.208 9.185 9.156 | 10.174  10.158  10.137
5 10.381  10.318  10.236 | 11.534  11.478  11.405 0.8 b I&‘ &\ h
6 12.532  12.450  12.343| 13.804 13.695  13.554
7 12.776  12.550  12.258 | 14.034  13.820  13.545
8 13.634 13.439 13.188 15.056 14.852 14.588 Fig.16 Nodal patterns for S-F-S right
triangular plates with variable
thickness

nodal patterns

Table9 Natural frequency parameter 2 for simply supported

4
triangular plates with variable thickness; »=0.3 N DN R
N B BB

a=0.1 a=0.8 0.8

mode m Extra- m Extra-

12 16 polation 12 16 polation
1 7.710 7.541  7.324| 8.407 8,242  8.030 « nodal patterns
2 11.315  10.879  10.319| 12.372  11.942  11.389 5 6 7 s
3 12.679  12.283  11.773| 13.799  13.400  12.888
4 15.382  14.534  13.444 | 16.856  15.909  14.692 1 Eﬁ &; Q %b
5 16.599  15.648  14.426 | 18.121  17.173  15.954
6 18.262  17.380  16.247 | 19.844  18.897  17.679
7 20.326  18.558  16.285| 22.182  20.238  17.740 0.8 &; &3 Q. EYA
8 21.327  19.473  17.089| 23.339  21.447  19.014

Fig.17 Nodal patterns for simply sup-
ported right triangular plates
with variable thickness
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Tablel0 Natural frequency parameter 4 for fixed triangular

DN D =N
lates with variable thickness; v=0.3
plates with variable thickness; v 0.8 B B B &

a=0.1 «=0.8
mode m Extra- m Extra- nodal patterns
12 16 polation 12 16 polation e 5 6 7 .

1 10.009 ~ 10.527  10.009| 11.632  11.321  10.922

2 14.830 . 14.045 - 13.036 | 15.980  15.222  14.235 L % & Q &

3 15,589  15.184  14.664 | 16.758  16.168  14.664| -

4 19.693  18.018  15.866 | 21.036  19.458  17.429 »

5 20.313  18.894  17.070| 21.728  20.392  18.675 0.8 % & é\ b

6 21.257  19.950  18.270 | 21.947  20.970  19.714

7 25.552  22.476  18.520 | 26.780  24.098  20.394 -

8 25.797 23.202 19. 865 27.700 25.026 21.587 Fig.l 8 Nodal patterns for fixed right
triangular plates with variable
thickness

6. 6 Circular plates with variable thickness

Numerical solutions for the lowest eight natural frequency parameters 2 of fixed circular plates and elliptical
plates. of ratio b/a=0.5 with a sinusoidal thickness variation in the 7, {-directons given by A(y, {)=ho(1-
asitntn) (1 —asin x{) are shown in Table 11 and 12 for two cases of a=0.3 and 0.5. The convergent values of
numerical solution were obtained for the two cases of divisional numbers m (=) of 12 and 16 for the whole part
of the plate. The nodal lines of eight modes of free vibration of the plates and shown in Figure 19 and 20.

nodal patterns
* 1 2 3 4
Tablell Natural frequency parameter 4 for circular plates 0.3 O e @ 69
with variable thickness; v=0.3 s O CD D
a=0.3 a=0.5
mode m Extra- m Extra- a nodal patterns
12 16 polation 12 16 polation ‘ 5 6 ? he
1 4713 4.699  4.681 3.356  3.346 3.332
2 6.838  6.749  6.634| 4.790  4.726  4.642 0.3 ® @ @ @
3 6.838  6.749  6.634| 4.790  4.726  4.643
4 8.744  8.691  8.624| 6.218 613  6.03 3R © B €D
5 9.271 8.878 - 8.372|  6.453  6.193  5.857
6 9.532 9.231 8.844| 6.530  6.322  6.055 . ]
7 11.163  10.844  10.434 7.931 7.680 7.358 Fig.19 Nodal patterns for circular
8 11.163  10.844 = 10.434 7.931 7.680  7.358 plates with variable thickness
Tablel2 Natural fre ipti ‘ nodal patterns
quency parameterifor elliptical plates a
. . . : 1 2 3 4
with variable thickness; 8/a=0.5, v=0.3
3l O DO D &
a=0.3 a=0.5 T T =
mode m Extra- m Extra- 05| <
12 16 polation 12 16 polation nodal patterns
1 7.722 7.647 7.550 | 5.459  5.405 5.335 ps 5 s . .
2 9.191 9.191 9.190| 6.582  6.553  6.515
3 11.297  11.089  10.821 8.039  7.877  7.668 o3l D @ D@
4 12.479  12.136  11.694 | 8.595  8.359  8.056
5 13.974  13.288  12.407 9.865 9.383 8.762 o5l AD & @ <D
6 13.850  13.703 ~ 13.515| 9.778  9.621 9.419 :
7 17.480  15.987  14.067 | 12.141  11.202  9.995 ) o
8 15.909  15.628  15.266 | 11.363  11.100 _ 10.761 Fig.20 Nodal patterns for elliptic

plates with variable thickness
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7 CONCLUTIONS

Under the concept that the irregular-shaped plates such as sectoral plates, triangular plates, elliptical plates, or
the other polygonal plates can by considered finally as kinds of rectangular plates with non-uniform thickness, an
approximate method was proposed for analyzing the bending problem of various types of irregular-shaped plates
by using the discrete general solutions for the equivalent rectangular plate with non-uniform thickness.

As a result of numerical work, it was shown that the numerical solutions by the proposed method had the good

convergency and satisfiable accuracy for various types of irregular-shaped plates.
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Appendix I
Fu=Fipa=Fiu=Fu=Fiag=Fi=Fg=1,
Fr12=Faps=Fo3=Fos1=Fase =11, Fis6=V,
Fog=vp, Fypp=F=—p, Fyy=F=—1,
Fys=—]F3nn=—kFsy= 1, Fyn=—pk, Fxs=,
other F1=F32,=F3,=0, I=p(1 —v2)(ho/h)3,
J=2up(1 +v)(ho/R)3, k=(1/10)(E/G) (ho/a)?(hy/h)

Appendix I
Q11i0il = B13i0i2 = B14i033 = B16ivid = A17:055 = A1givi6 = 1 »
Q1503 =V Q22051 = Q23052 = Q250553 = Q26054 — B270555 = A2805j6 — t,
@40;3=V, @a30002= 0

8

i j
Ahpigir = 2, { D BisApeL@ner 0o — ek ( 1 —5ki)]+lz BiiBpel@ne o tur — @neins (1 —85) ]
= =0

e=1 k=0

i
+ 2 X BisBit Cpent Gheriur (1 — i 51,'))}

k=0 1=0

where h=1,2, p=1,2, -8, i=1,2, ~-m, j=1,2, -, n,v=1,2, =, 6, u=0,1, -, i(h=
1), 0,1, -, j(h=2)
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8 , i i
@pii= D, { X BaApel@ero — (1 =) 1+ Zo BiiBpel @eo1—@eir(1 —85) ]
=1 %=0 =

i
+ X X BBt Cport Gerr( 1 — 0 55))}‘7’1:1 Uig Uiy
k=0 1=0

i j
. BirApeLGren 0 ca—ArenicaC 1 —08) 1+ 2 BitBpel e 0 1ca—Freitca( 1 —35) ]
e=1 k=0 =0

i

8
Upia= X, {

+

j
X BirBit Coent Gpentca( 1 — i 51,'))} =7 if Uik Wiy Ugps
k=0 =0

01

where

{ 0 :not existing point support
u. =
“ 11 :existing point support

Ap1 =11 Ap2 =0, Ap3=7p2, Aps=7p3» Aps =0, Aps=7ps Fv1ps: Ap1=7p6, Aps =T7p7>
Bpl=0’ By =prp1, Bos=prpss» Bpa=0, Bys=prp2, Bpe =trp6» Bp7=l‘(”7pl+rp5)v Bys =78,
Coru=tpsthurpr), Coom=trp2tburss, Cosu=J7p6> Coan=Iurpsr Cosu=Iu7ps» Coom=—17p7
Coru="Tp8r Cosu=0, [rml=[Fpl™ ', Tu=8i» T12=1Bs Tu=—Byj Tu=Bi Tu==1b;

Tn=—tBy Tua=pBj Tau=Pir Tu=—1jByj Tew=Bu Tar=why Tss=—I;j By

Ts6=VBin» Ts1=#Bjj» Tes= —JiyPii» Tec=Bijr Te1=Biv» Tnn=—ttkyj Bij» T16=1By» T18= Biis

Te2=—hi By Ts1=PBij» Tes=Bj other 7p=10, B;=8i B;



