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Plane Coutte-Poiseuille Flow of Power-Law Non-Newtonian Fluids

Ganbat DAVAA*, Toru SHIGECHI** and Satoru MOMOKI**

The fully developed laminar flow of a non-Newtonian fluid flowing between two parallel plates with

one moving plate was studied analytically. Applying the shear stress described by the power-law model, the

exact solutions for the momentum equation were obtained.

The effects of the velocity of a moving plate and the flow index of a non-Newtonian power-law fluid

on the velocity distribution and friction factor have been discussed.

1. Introduction

Problems involving fluid flow and heat trans-
fer with an axially moving core of solid body or
fluid in an annular geometry can be found in
many manufacturing processes, such as extru-
sion, drawing and hot rolling, etc. In such proc-
esses, a hot plate or cylindrical rod continuously
exchanges heat with the surrounding environ-
ment. For such cases, the fluid involved may be
Newtonian or non-Newtonian and the flow situa-
tions encountered can be either laminar or tur-
bulent.

In the previous report”, fully developed lami-
nar heat transfer of a Newtonian fluid flowing
between two parallel plates with one moving
plate was analyzed taking into account the vis-
cous dissipation of the flowing fluid.

In engineering applications such as manufac-
turing processes, many important fluids are non-
Newtonian in their flow characteristics.

In this paper, an exact solution of the momen-
tum equation is obtained for fully developed
laminar flow of a non-Newtonian fluid flowing
between two parallel plates with one moving
plate. The constitutive equation (ie. the shear
stress - shear rate relation) for a non-Newtonian
fluid is described by the power-law model most
frequently used in non-Newtonian fluid flow and
heat transfer. The effects of the relative velocity
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of a moving plate and the flow index of a power-
law fluid on the velocity distribution and fric-
tion factor have been discussed.

Nomenclature

C integration constant

P pressure

u axial velocity of fluid

u* dimensionless velocity = u/u,,

u,  average velocity of fluid

U  axial velocity of the moving plate
U* relative velocity of the moving plate
Y coordinate normal to the fixed plate
y* dimensionless coordinate = y/L

z axial coordinate

0 density

L  channel width

m  consistency index

n flow index

f friction factor

F dimensionless parameter

Re* generalized Reynolds number

Subscripts
0 fixed plate
L moving plate

2. Analysis
The physical model for the analysis is shown
in Fig.l. The assumptions and conditions used
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in the analysis are:

1. The flow is incompressible and steady-
laminar, and hydrodynamically fully devel-
oped.

2. The fluid is non-Newtonian and the shear
stress may be described by the power-law
model, and physical properties are con-
stant.

3. Either of two parallel plates is axially mov-
ing at a constant velocity.

The governing momentum equation together
with the assumptions described above is

dt d,

v il (1)
The boundary conditions are:

u=0at y=10

{u =U at y=1L
The shear stress on the left hand side of Eq.(1)
T, is given by the power-law model.

n—1

du
dy

(2)

du

a (3)

T=—m

For a Newtonian fluid, » =1 and m coincides
with the ordinary viscosity.

The friction factor, f, and generalized Reynolds
number, Re®*, are defined as

__L dp
f= pu,z,, _dz> (4)
Ret= Pum LY (5)
m

The average fluid velocity, u,,, is defined as
_ 1 f L
um - L 0 udy (6)

The following dimensionless parameters are in-

troduced:
y* =y/L (7)
u* = ulu, (8)
v = Ulu, (9)
L. = Ly../L . (10)

For the case with a moving plate, two kinds of
velocity profiles across the parallel plates’ passage
may be assumed as illustrated in Figs.1 and 2. The
velocity profile shown in Fig.1 has a maximum at
y = L,,, whereas it has no maximum point in
Fig.2. The two cases are respectively referred to as
Case I and Case I

Case I:The shear stress is calculated as

- . (9% Y
= m(dy) (0O<y<L,) (11)
t=m —%;L)" Ly <y<L) (12)

(a) 0=Sy<L,, 0<y*'s< LS,
The momentum equation and its boundary con-

ditions are reduced to

d dug \" _
pi dy,) =—F (13)
ur=0 at y* =0 (14)
where F is a parameter defined as
frRe* _ L' ¢ dpy_
2 _m-u:,< dz)_F (15)

Since the velocity gradient is zero at the location

of maximum velocity,

du: — * — I *

o 0 at y*=1L%, (16)
The integration of Eq.(13) together with Eq.(16)
gives

du; — L ® % L

Integrating Eq.(17) together with Eq.(14), we
have

1 1+n 1+n
up = TP [ Lisd — Lpe—y" | (18)

(b) Ly.,=<ysL U =y*=1)
The momentum equation and its boundary con-
ditions are reduced to

a ( dup\ _
g dy,) =F (19)
ur=U* at y* =1 (20)

Since the velocity gradient is zero at the loca-
tion of maximum velocity,

Qi =0 at y = L, (21)
Fixed plate

Non-Newtonian 9&-_ >0
L Fluid Flow dy
—————— b dub
dy <°
Moving plate [ Y

Fig.1 Schematic of parallel plates with one mov-
ing plate for the case of velocity profiles as-
sumed in this analysis (Case I)
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The integration of Eq.(19) together with Eq.(21)

gives
du}
dy*

Integrating Eq.(22) together with Eq.(20), we

1 1
= ~Fn (y"—Ly.)» (22)

have

n
1+n

1 1+n
up = U+ Fw [(1=L,) s

(23)
~ ("~ Lie) ™|
The values of F and L, remain unknown.
They are determined below.
From the continuity of velocities at the loca-
tion of maximum velocity:
uy =u; at y* =L}, (24)
we have the first relationship between F and
Ly...
U*
2 L -a-L5.0%}
14+n |Fmas maz
From the mass balance between two plates:

1 Livaz 1
[way = [Turay+ [ uwpay =1 (26)
we have the second relationship between F and
L. .

F =

(25)

1-(1—Lx, ) U*
n - 14-2n - 1425
ol (1
Combining Eq.(25) and Eq.(27), we have the fol-

lowing relationship among U*, L}, and n.
U = [L,’;,;l,:_"—(l—L,",‘m)I:”]/
. l:n _ n . 1:2» . . H;.Zn
L0 g (L™ + (- L) ]
(28)

F= (27)

Case II: The shear stress is calculated as
du \*
- _ au
T m<dy) O=y=L) (29)

The momentum equation and its boundary con-
ditions are reduced to

d du* \»

= - 30

i dy,) F (30)
u*=0 at y*=20

31

[u'=U*aty*=l (3D)

Integrating Eq.(30), we have

* 1 1

U _ p (C—yt)w (32)

dy*

The integration of Eq.(32) gives
«_ 1 L[ 1+n « ')_lﬂil (33)
WS qga O ey 8

where C is an integral constant. Applying the

boundary conditions of Eq.(31) to Eq(33), we
have

. n 1 ]+n_ . 1+n
U—1+nFn[cn (c 1)n] (34)

From the mass balance between two plates:

[ Tt (e s o -

(35)
Integrating Eq.(35), we have

et [ oot o] -

(36)
thus, F is obtained as

PRl g {e-n -]

(37)
Combining Eq.(34) and Eq.(37), we have the fol-
lowing relationship among C, n, and U*.

U = [cli"—(c—l)lﬁ"]/

Rt |
(38)

The numerical values of L}, for the Case I and

C for the Case II are calculated and given, re-

spectively, in Tables 1 and 2. U} is a critical

value that shows the border between Case I and

Case 11, and given, from Eq.(28) with L*,.=1 as
1+2n

Vs = 1+n (39)

Fixed plate

Non-Newtonian

| Fluid Flow u du
dy

——

U

Moving plate —

Fig.2 Velocity profile assumed in this analysis
(Case II)
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Teble 1 Dimensionless location at the maximum velocity, L}..
CASE I: L%, ]
n L
-2.0 -1.5 -0.5 0.0 0.5 1.0 1.5 us
0.1 0.4776 | 04812 | 0.4857 | 0.4916 | 0.5000 | 0.5143 | 0.5681 - 1.0909
0.2 0.4621 | 0.4681 | 04756 | 04856 | 0.5000 | 0.5244 | 0.5987 - 1.1667
0.3 0.4509 | 0.4585 | 0.4681 | 04811 | 0.5000 | 0.5319 | 0.6178 - 1.2308
0.4 0.4424 | 0.4511 | 04624 | 04777 | 0.5000 | 0.5376 | 0.6311 - 1.2857
0.5 0.4358 | 0.4454 | 0.4578 | 0.4749 | 0.5000 | 0.5422 | 0.6409 - 1.3333
0.6 0.4305 | 0.4407 | 04542 | 04726 | 0.5000 | 0.5458 | 0.6484 - 1.3750
0.7 0.4261 | 0.4369 | 0.4511 | 04708 [ 0.5000 | 0.5489 | 0.6544 - 1.4118
0.8 0.4224 | 0.4337 | 04485 | 0.4692 | 0.5000 | 0.5515 | 0.6592 - 1.4444
0.9 0.4193 | 0.4309 | 0.4463 | 04678 | 0.5000 | 0.55637 | 0.6633 - 1.4737
1.0 0.4167 | 0.4286 | 0.4444 | 0.4667 | 0.5000 | 0.5556 | 0.6667 | 1.0000 | 1.5000
1.1 04144 | 04265 | 04428 | 0.4656 | 0.5000 | 05572 | 0.6696 | 0.9719 | 1.5238
1.2 0.4123 | 0.4247 | 04413 | 0.4647 | 0.5000 | 05587 | 0.6721 | 0.9521 1.56455
1.3 0.4106 | 04231 | 04401 | 0.4639 | 0.5000 | 0.5599 | 0.6743 | 0.9378 | 1.5652
14 0.4090 | 0.4217 | 04389 | 0.4632 | 0.5000 | 0.5611 | 0.6762 | 0.9270 | 1.5833
1.5 0.4076 | 04205 | 04379 | 0.4626 | 05000 | 0.5621 | 0.6780 | 0.9187 | 1.6000
1.6 0.4063 | 04193 | 0.4370 | 0.4620 | 0.5000 | 0.5630 | 0.6795 | 0.9121 1.6154
1.7 0.4051 | 04183 | 0.4361 | 0.4615 | 05000 | 0.5639 | 0.6809 | 0.9068 | 1.6296
1.8 0.4041 | 04174 | 04354 | 0.4610 | 0.5000 | 0.5646 | 0.6822 | 0.9024 | 1.6429
1.9 0.4031 | 04165 | 0.4347 | 0.4606 | 0.5000 | 0.5653 | 0.6833 | 0.8987 | 1.6552
2.0 0.4022 | 0.4157 | 0.4340 | 0.4601 | 0.5000 | 0.5660 | 0.6843 | 0.8956 | 1.6667
Teble 2 Integration constant C for Case II
[ CASE II: C ]
n L
1.5 1.6 1.7 1.8 1.9 1.99

0.1 5.0905 | 6.8662 | 9.7352 | 15.3693 | 32.1050 |332.1608

0.2 2.7738 | 3.6681 | 5.1075 7.9285 | 16.2996 [166.3301

0.3 2.0082 | 2.6071 | 3.5685 5.4504 | 11.0322 |111.0533

0.4 1.6306 | 2.0805 | 2.8016 42130 | 8.3993 | 83.4150

0.5 1.4082 | 1.7676 | 2.3437 3.4720 | 6.8201 | 66.8321

0.6 1.2637 | 1.5617 | 2.0402 2.9790 | 5.7679 | 55.7768

0.7 1.1638 | 1.4169 | 1.8250 2.6279 | 5.0168 | 47.8803

0.8 1.0920 | 1.3104 | 1.6650 2.3654 | 4.4538 | 41.9579

0.9 1.0391 1.2295 | 1.5418 2.1620 | 4.0163 | 37.3516

1.0 1.0000 | 1.1667 | 1.4444 2.0000 | 3.6667 | 33.6667

3. Results and Discussion -1.5, 0, 1.0 and 1.5. The case of U* = 0 corre-

Figure 3 shows the effects of the relative ve-
locity of the moving plate U* on the velocity
profiles across the parallel plates for the cases
of » =0.2, 05, 1.0 and 15. The case of n =1
corresponds to that of a Newtonian fluid. It is
seen clearly in the figures that the profiles of
the fluid velocity are deformed by the moving
plate with a relative velocity U*.

Figure 4 shows the effects of the flow index
n of the power-law fluid on the velocity profiles
across the parallel plates for the cases of U* =

sponds to that of both plates fixed. It is seen in
the figures that for U* < 0 the velocity profile is
parabolic having a larger maximum value with
increasing values of n. The velocity profiles are
strongly affected by the flow index n. For U*
> 0 the velocity profiles become linear as the ef-
fect of the axial pressure gradient in the fluid
diminishes and the fluid flow is governed only
by the shear flow induced by the moving plate.
In this case, the effect of n is rather weak.

The predicted friction factors in terms of ,
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fRe* are shown in Fig.5. The effect of n is to
increase the value of fRe* with an increase in
n.

Figure 6 shows the effect of n on fRe*, nor-

1000

]
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malized by the value of fRe* y- - for the case
of U* = 0.For U* > 0, the ratio fRe*/fRe* ¢+ =)
be-

comes stronger in the region of larger values of

is always less than unity. The effect of U*
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Fig. 5 Friction factor Fig. 6 Friction factor ratio
Teble 3 Numerical values of fRe*
fRe*
n v
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.1 3.1241 3.0919| 3.0540] 3.0073] 2.9455| 2.8495| 25503 | 0.2480

0.2 44048| 4.3075| 4.1959| 4.0629| 3.8946| 3.6527| 3.1007 | 0.5378

0.3 6.0699| 5.8503| 5.6146| 5.3416| 5.0090] 4.5605| 3.7205 | 0.8858

0.4 8.2406| 7.8496| 7.4181 6.9300| 6.3553| 5.6218| 4.4333 1.3037

0.5 11.1321} 10.4591 9.7291| 89218] 8.0000| 6.8795| 5.2599 1.8042

0.6 149754 | 13.8747| 12.7006| 11.4294| 10.0191| 8.3793| 6.2228 | 2.4003

0.7 20.0886| 18.3505| 16.5268! 14.5924| 12.5041| 10.1735] 7.3471 3.1057

0.8 26.8932| 24.2185| 21.4569| 18.6856| 15.5663| 12.3238| 8.6615 | 3.9336

0.9 35.9491| 31.9124| 27.8108| 23.6291| 19.3423| 14.9035| 10.1995 | 4.8958

1.0 48.0000| 42.0000| 36.0000| 30.0000| 24.0000( 18.0000| 12.0000 | 6.0000

1.1 64.0339| 55.2245| 46.5538| 38.0477| 29.7460| 21.7181| 14.1085 | 7.2492

1.2 85.3638| 72.5590| 60.1535| 48.2129| 36.8349| 26.1833| 16.5782 | 8.6596

1.3 113.7338| 95.2770| 77.6759| 61.0515| 45.5801| 31.5462| 19.4712 | 10.2619

14 151.4617/125.0460(100.2492| 77.2647| 56.3679| 37.9873| 22.8602 | 12.0926

1.5 201.6265|164.0486|129.3253| 97.7373| 69.6744| 45.7234| 26.8305 | 14.1928

1.6 268.3184|215.1240(166.7728|123.5849| 86.0861| 55.0145| 31.4818 | 16.6084

1.7 356.9710|282.0658|214.9959(156.2151|106.3257| 66.1727| 36.9308 | 19.3912

1.8 474.8019|369.7145|277.0880{197.4031|131.2839| 79.5726| 43.3143 | 22.6007

1.9 631.3978|484.4938!357.0297|249.3883|162.0580| 95.6637| 50.7923 | 26.3046

2.0 839.4918|634.7873|459.9420(314.9947| 200.000 |114.9855| 59.56522 | 30.5810
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n (n > 1.0). The numerical values of fRe* are
given in Table 3.

4. Conclusion
The plane Coutte-Poiseuille flow of power-law
non-Newtonian fluid was analysed.
The present study showed that for equal con-
ditions:
1. The velocity profiles are strongly affected by
the flow index, n, for the case of U* < 0.
In this case, the velocity profile is parabolic
having a larger maximum value with in-
creasing values of n. For the case of U* >
0, the effect of » on the velocity is small
and the profile becomes linear.
2. The friction factor in terms of fRe* de-
creases with increasing values of U*.
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