チューブラー遠心送風機の入口偏流による干渉騒音の予測 林 秀千人*・淵 上 真一郎** 児 玉 好 雄*・三 村 雄次郎

Prediction of Interference Noise with Impeller and Inlet Distortion Flow of Tubular Centrifugal Fan

by

Hidechito HAYASHI^{*}, Shinichiro FUCHIGAMI^{**} Yoshio KODAMA^{*} and Yujiro MIMURA^{***}

The Characteristics of the periodic fluctuation of the tubular centrifugal fan were calculated by the discrete vortex method. By using the results, the interference noise caused by the interaction between the blade of impeller and the inlet distortion flow was predicted. It was pointed out that the fluctuations of the relative velocity at the inlet of impeller and the circulation around the blade have almost the same influence on the interference noise. The noise source is gathered near the leading edge of the blade. So the coefficient is introduced to use the averaged value of pressure fluctuation over the blade instead of the distributed noise source. The coefficient of averaging and the chord-wise correlation length do not varied with the degree of the distortion of the inlet flow. The interference noise levels by the prediction give good agreement with those by experiments. The inlet distortion flow has to be decreased under 1 percent to reduce the interference noise level to the turbulent noise level.

1.緒 言

遠心送風機のスクロールケーシングの代わりに,円 筒形のケーシングの中に遠心羽根車を組み込んだもの をチューブラー遠心送風機と呼ぶ.この送風機は,軸 流送風機と同様に管路に直接組み込むことができ,さ らに遠心羽根車を用いているので比較的容易に高圧力 が得られるため,欧米ではよく用いられる.

また,チューブラー遠心送風機は遠心送風機と同様 に騒音特性の面では有利であると考えられる.著者ら はこれまでにチューブラー遠心送風機と通常の遠心送 風機との比較をおこない,流体力学的特性は若干劣る ものの,騒音レベルや比騒音レベルは低くなり,騒音 面で有利な送風機であることを明らかにした⁽¹⁾.さら に,遠心送風機の騒音の主たる原因となるスクロール 舌部が存在しないために,さらに干渉騒音を大幅に下 げることが可能であり、かなり低騒音の送風機になる と期待できる.しかし、実機においては現在は顕著な 離散周波数騒音が発生して、騒音の低減化をはばんで いる.この点について、著者らは実験によりチューブ ラー遠心送風機に流入する流れに偏流が存在し、それ が動翼と干渉して離散周波数騒音を発生することを明 らかにした⁽²⁾.

そこで、本研究ではチューブラー遠心送風機の入口 偏流と動翼の干渉により発生する干渉騒音を離散渦法 を用いて予測するとともに、発生の状況を明らかにし た.

2. 主な記号

- **b**₁ : 羽根車スパン長さ
- D1 : 羽根車内径

平成12年4月21日受理

^{*}機械システム工学科 (Department of Mechanical Systems Engineering)

^{**}大学院博士課程海洋資源学専攻(Graduate Student, Marine Resources)

^{***}松下精工(Matsusita Seiko Co,. Ltd.)

:羽根車外径 D_2 D_{casing}:ケーシング径 :周波数 Hz f Ν : 翼枚数 N_b :翼面上の渦点数 Nrotate: 羽根車回転数 rpm N_w :後流渦の点数 ($|Z_w| \le D_{casing}/2$) Nw∞:後流渦の全点数 : 翼表面の面ベクトルを表わす複素数 :圧力 Ρ :最小可聴音圧 Pa P_0 :正圧面側の圧力 $P_{\rm p}$ P_{s} :負圧面側の圧力 :羽根車出口での全圧 $P_{\rm T}$:流量 m³/min Q :二次元の湧き出し流量 m²/s a :時間 t U :羽根車の周速度 V:絶対速度 Vin : 羽根車入口での絶対速度 W :相対速度 Ζ :位置を表わす複素数 :翼面渦点の座標 $Z_{\rm h}$: 湧き出しの座標 Z_q = (0, y_q) $Z_{\rm q}$:スパン方向の座標 z :翼面分布渦の強さ γh :後流微小渦の強さ ĩw :羽根車の回転角速度 (1) ∆t :微小時間間隔 :複素ポテンシャル ø 添え字

- :共役複素数または時間平均
- r :基準点

Fig. 1 Flow model of discrete vortex method

△:変動の振幅

3. 入口偏流による干渉騒音発生の解析

3.1 離散渦法による流れの解析

チューブラー遠心送風機では円筒形のケーシングの 中に遠心羽根車がある.この場合の流れの解析モデル を図1に示す.解析は二次元で行なった.羽根車の回 転軸0から $Z_q(0, y_q)$ だけずれた位置に湧き出しqを置 き,入口偏流をモデル化した.羽根は厚みを無視した 薄翼と仮定し,そこに N_b 個の渦点を分布させた.羽 根の後縁からは後流せん断層を表わす微少渦が放出さ れる.ケーシングは羽根車と同心円にあり,ここに多 数の吸い込みを配置することでモデル化できる.しか し,羽根車との距離が離れているため羽根車の流れに 及ぼす影響が小さく,無限遠に置いた場合と影響がほ とんど相違がなかった.そのため,以下では無限遠の 吸い込みとした.

また,図2に示す実機の速度変動の分布から,翼後 流のせん断層は羽根車出口からケーシングに衝突する までは規則的な変動が現れているが,ケーシングに衝 突した後は流れが下流へ曲がり三次元的に混合が促進 されるので,規則性はほとんど見られなくなる.本解 析は二次元の流れの取り扱いをしているので後流せん 断層を表わす後流微小渦はケーシングに到達するまで とし,その後の微小渦による影響はないものとした. ただし,渦の保存は各翼についてすべての放出される 渦について保たれるとした.

各翼は角速度ωで回転している.後縁からの放出渦の個数をNuとすると,任意の位置における共役複素 速度は次式で得られる.

Fig. 2 Velocity fluctuation out of impeller and in front of stator

$$\overline{V}(Z) = \frac{1}{2\pi} \frac{q}{Z - Zq} + \sum_{k}^{N} \left\{ \sum_{j}^{Nb} \frac{i}{2\pi} \frac{\gamma_{b_{kj}}}{Z - Z_{b_{kj}}} + \sum_{jw}^{Nw} \frac{i}{2\pi} \frac{\gamma_{w_{kj}}}{Z - Zw_{kj}} \right\}$$
(1)

ただし,

$$\left| Z_{w_{kj}} \right| \le \frac{D_{casing}}{2} \tag{2}$$

ここで,Nは羽根枚数,N_bとZ_bは一枚の羽根に配置 した渦点数とその渦の位置,NwとZwは各翼から放出 された渦点数とその渦の位置である.ただし,ケーシ ングより外側の渦については除いている.また, 7_b と*rw*はそれぞれ翼面と後流せん断層に配置した微小 な渦の循環の強さである.

翼面上の渦点間の中点に参照点を設定する(図1中の×印).ここで流れが翼に沿う条件から翼表面の循環の強さが決定される.回転する羽根車に沿う流れの 条件は、次に示す相対速度の条件から得られる.

 $\overline{W}(Z) = \overline{V}(Z) + i\overline{Z}\omega$ (3) ここで、 \overline{W} は相対速度の共役複素数である.また、 式中の右辺第2項($-i\overline{Z}\omega = \overline{U}$)は羽根車の周速度の 共役複素数である.これが翼表面に沿う条件は、式(3) より翼面上の渦点間の中点に参照点を配置し、そこで

次式を満たすことで表わす.

数である.さらに渦の保存則を各翼について適応する ことによって,翼面に分布した渦の強さを決定できる. この条件は次式となる.

$$\sum_{jb}^{Nb} \gamma_{b}{}_{k,jb} + \sum_{jw}^{Nw_{\infty}} \gamma_{w}{}_{k,jw} = 0$$
⁽⁵⁾

ここで, Nw∞は放出されるすべての渦の個数である. 湧き出しは羽根車の入口において,流れが翼にスムー ズに流れ込む条件から求めた.すなわち,翼の入り口 角β₁の方向に相対流れが流入する.速度三角形から, 次式で湧き出しが与えられる.

$$q = \frac{D_1}{2} U_1 \tan \beta_1 = \frac{\pi D_1^2 N_{rotate}}{120} \tan \beta_1 \tag{6}$$

また,後流渦の毎時における位置は次の関係から定め られる.

$$Z(t + \Delta t) = Z(t) + V(t) \cdot \Delta t \tag{7}$$

ここで, *Δt* は微小時間間隔, *V*(*t*)は時刻*t* における複素速度である.

翼間の圧力の計算は,非定常流れのベルヌーイの式 により算出した.

$$\frac{P - Pr}{\rho} = -\frac{\partial(\phi - \phi r)}{\partial t} + \frac{U^2 - U_r^2}{2} - \frac{W^2 - W_r^2}{2}$$
(8)

ここで, 添え字rは羽根車回転中心近く(半径50mm) を示す.また, øは複素ポテンシャルである. ポテン シャルは理論的に求まるものではあるが, 多値であり 角度による不連続が生じることがある.したがって, ここでは Zr の位置から始めて, 次式により数値的に 求めた.

$$\phi(Z + \Delta Z) = \phi(Z) + \frac{d\phi}{dZ}\Delta Z = \phi(Z) + \frac{\overline{V}(Z + \Delta Z) + \overline{V}(Z)}{2}\Delta Z$$
⁽⁹⁾

また, 厚みがない渦点分布により翼を表わしている ので,式(8)による圧力の計算では翼面上の正圧面と負 圧面のそれぞれの圧力を求めることが難しい.そこで, ここでは局所の翼面循環分布をもとに,その点での相 対速度から局所揚力を求め,それが正圧面側と負圧面 側の圧力の差に相当することから求めた.すなわち, 翼面上の微小循環の強さを_{rj}とすると,微小距離dsjで の薄翼の両面の圧力差は次式となる.

 $(P_{\rm P} - P_{\rm S})_{\rm j} \cdot ds_{\rm j} = \rho W_{\rm j} \gamma_{\rm j} \tag{10}$

3.2 干渉騒音の解析

Sharland によると物体から発生する双極子騒音のエ ネルギーE は次式により表わされる⁽³⁾.

$$E = \frac{B}{12\pi\rho a_0^3} \int_A \left[\frac{\partial P}{\partial t} \right]^2 Sc \cdot dsdz \tag{11}$$

ここで, B は羽根枚数である.また, □²は観測点で 時刻 t に観測される音に関係する音源の圧力変動の時 間微分の自乗平均である.また, Se は音源の相関面 積である.この相関面積は一般に弦長方向とスパン方 向のそれぞれの相関長さk, kの積で表わされる.

 $Sc = l_C \times l_S \tag{12}$

弦長方向の相関長さkは,後述のように音源が翼の前 縁に集まっていることから,翼表面の圧力分布に関係 して,次式で与えた.

$$l_C = \frac{\int_0^C s \cdot \Delta P ds}{\int_0^C \Delta P ds} \tag{13}$$

sは翼表面の前縁からの距離である. ΔPは表面の変動 圧力の振幅で, 3.1節の離散渦法による流れの計算 結果から得られる.

また,スパン方向の相関長さんは,羽根車入口偏流 のスパン方向の分布が図3で実験的に与えられること から,それをもとに次式で与えた.

$$l_{s} = \frac{\int_{0}^{b_{1}} z \left(\Delta V_{in} / \overline{V}_{in} \right) dz}{\int_{0}^{b_{1}} \left(\Delta V_{in} / \overline{V}_{in} \right) dz}$$
(14)

ここで、 ΔV_{in} および \overline{V}_{in} はそれぞれ羽根車入口における変動速度と時間平均速度の大きさである.

式(11)中の圧力変動と相関面積は翼表面上に分布して

(15)

いるが, 翼全体に分布する圧力変動が翼に働く力すな わち揚力の変動と関係付けられることから⁽⁴⁾,式⁽¹⁰⁾を もとに翼全体にわたって積分すると次式を得る.

 $F = \int_0^C (P_{\rm P} - P_{\rm S}) ds = \int_0^C \rho W \gamma \cdot ds$

したがって、Fは翼に働く圧力差の総和であり、F/C が便宜上の平均圧力と考えることができる. 揚力およ び上述の翼前縁近傍に集中したときの相関長さの式(13) を用いることによって、音響エネルギーの式(11)は次式 となる.

$$E = \frac{B}{12\pi\rho a_0^3} \cdot K \left[\frac{\partial}{\partial t} \left(\frac{F}{C} \right) \right]^2 l_C l_S C b_1$$
 (16)

ここで,Kは圧力変動の自乗の分布と,揚力に基づく 便宜上の平均圧力 F/C の自乗との関係を表わす圧力分 布の形状に関する係数である.

$$K = \frac{\int_0^c \overline{[P_P - P_s]^2} \cdot ds}{[F]^2}$$
(17)

式(15)中の揚力Fは,翼まわりの循環に関係付けられる. $F = \rho W \Gamma$ から相対速度と翼まわりの循環に関係付け られる.そこで,変動成分が平均量に比べて小さいと すると,その時間微分は次のようになる.

$$\overline{\left[\frac{\partial F}{\partial t}\right]^2} = \rho^2 \overline{\left[\frac{W \frac{\partial \Gamma}{\partial t} + \Gamma \frac{\partial W}{\partial t}\right]^2}$$
(18)

ここで,相対速度Wと翼まわりの循環Γの変動が同位 相であると考えると,それぞれ次式で表わされる.

$$W = \overline{W} + \Delta W \sin(\omega t)$$

$$\Gamma = \overline{\Gamma} + \Delta \Gamma \sin(\omega t)$$
(19)

上式において、 ω は羽根車の回転の周波数に対応して おり、 $\omega = 2\pi N_{rotate}/60$ である.

式⁽¹⁸⁾に上式を代入すると,揚力の時間微分が循環と相対速度の微分に関係つけられる.

$$\overline{\left[\frac{\partial F}{\partial t}\right]^2} = \frac{(\rho\omega\overline{W}\overline{\Gamma})^2}{2} \left\{ \left(\frac{\Delta\Gamma}{\overline{\Gamma}}\right)^2 + 2\left(\frac{\Delta\Gamma}{\overline{\Gamma}}\right) \left(\frac{\Delta W}{\overline{W}}\right) + \left(\frac{\Delta W}{\overline{W}}\right)^2 \right\}$$
(20)

さらに,式(16)に代入すると最終的に音響エネルギーは 次式となる.

$$E = \frac{\rho \pi B}{6a_0^3 C} \cdot K \left(f \,\overline{W} \,\overline{\Gamma} \right)^2 \\ \times \left\{ \left(\frac{\Delta \Gamma}{\overline{\Gamma}} \right)^2 + 2 \left(\frac{\Delta \Gamma}{\overline{\Gamma}} \right) \left(\frac{\Delta W}{\overline{W}} \right) + \left(\frac{\Delta W}{\overline{W}} \right)^2 \right\} l_C l_S b_1 \quad (21)$$

ここで, fは循環変動の周波数であり, 羽根車の回転 数により決まる.上式は音響エネルギーが, 異まわり の循環の変動と相対速度の変動ならびにそれらの積に 関係つけられることを示している.

羽根から放出される騒音のエネルギーは上流と下流 に放出されるので,送風機の上流に距離Rだけ離れた 地点での騒音レベルは次式で与えられる.

$$SPL = 10 \log \left[\frac{\rho BK (f\overline{W}\overline{\Gamma})^{2}}{16a_{0}^{2}R^{2}CP_{0}^{2}} \times \left\{ \left(\frac{\Delta\Gamma}{\overline{\Gamma}} \right)^{2} + 2 \left(\frac{\Delta\Gamma}{\overline{\Gamma}} \right) \left(\frac{\Delta W}{\overline{W}} \right) + \left(\frac{\Delta W}{\overline{W}} \right)^{2} \right\} l_{C} l_{S} b_{1} \right]$$
(22)
ここで、Poは最小可聴音圧で 2×10⁻⁵Pa である.この

式における各量に離散渦法で得られる流れの諸量を用いることによって,音圧レベルが見積もられる.

4. 解析結果および考察

計算は既報の実験⁽²⁾で用いた No. 2 羽根車について 行なった.羽根車内径 D_1 =326mm,外径 D_2 =475mm, ケーシング直径 D_{casing} =730mmである.離散渦法によ る解析では翼表面に40点の渦点を配置した.また,流 れの計算は二次元の解析であり,実機のようなスパン 方向の三次元性がある場合とは流れの状態が異なって いる.本計算では,羽根車入口の条件を合わせるため に羽根車出口で流動状態が実機と異なっている.した がって,時間平均の循環量Tが実機と計算では異なっ ており,騒音の計算においては実機の圧力上昇のデー タに基づく翼まわりの循環を用いた.

$$\overline{\Gamma} = \frac{1}{N_{\rm b}} \left(\frac{\rho P_{\rm T}}{\pi D_2 \frac{N_{rotate}}{60}} \right) \tag{23}$$

ここで, P_r は羽根車出口での全圧上昇量である.羽 根車の回転数Nは1800rpmであり,計算の時間ステッ プは0.00025秒で,この時の回転角2.7°きざみとした. 図3は入口偏流 $y_q = 0$ と20mmの場合について,翼ま わりの循環の変動の計算ステップによる変化を示して いる.実線の $y_q = 0$ mmでは,繰り返しの増加とともに 振幅がしだいに減少し,500回程度でほぼ変動がゼロに なっているのがわかる.また破線の $y_q = 20$ mmの場合

Fig. 3 Variation of the circulation around the blade with iteration number

においても,繰り返し回数の増加とともに変動の振幅 が減少し,500回程度でほぼ一定の振幅の周期的変動 に移っている.繰り返し回数が約133回で羽根車は一 回転することから,4回転で規則的な周期運転状態に 移っているといえる.

図4 (a), (b) は,規則的な周期状態にある羽根車 入口での相対速度と翼まわりの循環の一周期の変化を 示している.図4 (a)の相対速度は湧き出し位置の ずれ量が大きくなると,それに対応して変動の振幅が

(b) Fluctuation of the circulation around blade

Fig. 4 Variation of the relative velocity at the inlet of the impeller and circulation around the blade with rotation angle

大きくなっている.また,若干のひずみはあるものの, ほぼ正弦的な変化をしていることがわかる.この変動 の一周期は羽根車の回転周期と対応している.図4 (b)の翼まわりの循環の変化では,湧き出しひずみ がないyq = 0の場合には,全く循環変動がなく準定常 な状態となっていることが確認できる.また,いずれ の湧き出しのひずみの場合も相対速度と同様な変化を している.両図より,式(19)で表わした相対速度と循環 の変動において位相のずれがないほぼ同位相の分布が 現れていることがわかる.

図5は羽根車内部の圧力分布を示している.図(a) のyq = 0mmでは,翼によらずどの翼間の分布も全く同 じ分布をしていることがわかる.また,等圧線が翼に ほぼ直交しており,流れが翼間をスムーズに流れてい ることがわかる.しかし,図(b)のyq = 10mmと大き くなると,流量が増加した羽根車の上半分の方で等圧 線の数が少なく羽根車出口での圧力上昇が小さくなる ことがわかる.翼間の圧力分布も翼前縁や負圧面側で 局所的な変化が見られ,流れがしだいにひずんでいく 様子がわかる.特に,入口部分で前縁近傍に局所的な 低圧部分が現れており,羽根車に入る流れがかなり曲 げられることがわかる.そのために羽根車の出口近く まで,等圧線が曲がり複雑になっている.さらに図5 (c)では圧力上昇が周方向にかなりひずんでおり, 湧き出しに近い羽根車の上側では圧力は低く,右下側

湧き出しに近い羽根軍の上側では圧力は低く,右下側 で高くなっている.これは,湧き出しひずみと羽根車 の循環の周方向への変化によって,羽根車に流入する 流れの方向が変化するためである.また,羽根の前縁 付近で流れの変化が特に著しい.

図6は湧き出しのずれ量に対する羽根車入口での相 対速度と絶対速度および翼まわりの循環の平均に対す る変動率を示している.湧き出しのひずみ量が増加す るにつれて変動率がいずれも比例して増加しているこ とがわかる.また,相対速度が循環や絶対速度に比べ

て多少大きくなっている.これは,翼に入る流れが大 きさばかりでなく方向も変化することによるものであ る.また,湧き出し流れのみによる羽根車入口での速 度のひずみは次式で与えられる.その結果を図6の点 線で示した.

Fig. 6 Variation of velocity fluctuation at the inlet of impeller and circulation around the blade

Fig. 7 Distribution of fluctuation of circulation on the blade

$$\frac{\Delta V}{V} = 1 - \frac{1}{1 - 2y_q / D_1}$$
 (24)

図より,湧き出しのみによる速度ひずみに比べ,△印 の羽根車に循環がある場合が変化は小さくなっている ことがわかる.このことから,羽根車による循環の影 響で羽根車に入る流れの偏流が多少押さえられる傾向 にあることがわかる.

図7 (a), (b) は,それぞれ循環変動の振幅の弦長 方向分布および,変動の時間微分の分布を示したもの である.羽根車へ入る流れに偏流がある時の変動が翼 前縁に集中していることがわかる.また,前縁から弦 長方向に急激に減少している.時間微分においてもほ とんど図 (a) と同様な分布をしている.このことか ら,騒音源が翼の前縁付近に分布していることが推察 できる.後縁でわずかに大きくなっているが,これは 後縁からの放出渦の変動によるものである.

図8(a),(b)は,翼表面の圧力変動の振幅および 変動の弦長方向の分布を示したものである.図7の循 環変動より,さらに前縁に変動が集中していることが わかる.図(b)の圧力変動の時間微分は直接遠距離 場の騒音の原因となる⁽⁵⁾.圧力変動,またその微分が

特に前縁で大きな値を取っていることから,騒音源が 前縁に集中している.すなわち,入口偏流による干渉 騒音の音源を翼の前縁に点音源と見なすことができる. これは,式(11)から式(16)への騒音のモデル化が妥当であ ることを示すものである.

この圧力変動の分布をもとに,式(13)と式(17)から弦長 方向の相関長さおよび形状の係数を求めると図9とな る.圧力の分布は湧き出し偏流の大きさで異なるのも のの,相関長さおよび形状係数はほとんど変わらない. この結果から,相関長さとしては*lc*/*C*=0.314,また, 形状係数は*K*=3.6のほぼ一定とできる.以下の干渉 騒音の計算においては,この一定値を用いた.

図10は、実験より得られた羽根車入口での絶対速度 の偏流をもとに⁽²⁾、式(14)により求めたスパン方向の相 関長さ ls の分布を示している.多少のばらつきはあ るものの、ほぼ一定の値を取っている.すなわち、 $ls/b_1 = 0.53$ である.

図11は式22による干渉騒音の算出結果で,羽根車入 口における偏流の割合ΔV/Vに対して示している. 図中の白抜きの□印は実験結果を示している.計算結

Fig. 9 Variation of the chord-wise correlation length with the inlet distortion flow

Fig. 10 Variation of the span-wise correlation length with the inlet distortion flow

果は実験結果に比較的良く合っている.ただ,偏流が もっとも小さいところで実験値が大きくなっているの は、実験値に共鳴の影響が入っているためである.偏 流が少なくなると干渉騒音のレベルの低下がしだいに 著しくなる.羽根車の入口偏流が6%程度のものは市 販のベルマウスの場合であるが,それに比べてベルマ ウス形状を変化させて偏流を2パーセント程度まで押 さえた場合,約10dBの減少がある.さらに,通常の 乱流騒音のレベル(55dB程度⁽¹⁾)まで押さえるため には、入口偏流を1%以下にまで押さえなければなら ないことがわかる.このことは、干渉騒音が発生する ような入口偏流の状況では、ベルマウス形状の多少の 修正ではそれを押さえることがかなり難しく、大幅な 変更を必要とすることを示している.

5. 結 論

遠心羽根車を円筒形のケーシングに入れたチューブ ラー送風機の入口偏流による干渉騒音の予測を,流れ 場について離散渦法を用い,圧力の変動場の予測をお こない騒音の予測を行なった.その結果,以下の結論 を得た.

- 1.入口偏流による翼面圧力変動は,翼の前縁に集 中する.この場合,相関長さ,形状の係数は入口 偏流の大きさによらずほぼ一定となる.
- 2. 翼面圧力変動に及ぼす翼まわりの循環と相対速 度の変動は、後者が若干大きい.また、循環変動 は絶対速度の変動とほとんど同じである.
- 3. 干渉騒音の予測は,実験値とよく一致して,騒 音の予測がよく出来ていることがわかる.
- 入口偏流による干渉騒音を押さえるためには、
 入口偏流は1パーセント以下程度とかなり小さく
 する必要がある.

終わりに、本研究を行なうにあたり当時大学院修士

Fig. 11 Variation of sound pressure level with the inlet distortion flow

課程2年であった脇山卓也君には実験データの提供な どでいろいろと助力をいただき,ここに感謝の意を表 わす.

文 献

- 1) 淵上,他4名,"チューブラー遠心送風機の空力 特性と騒音特性の実験的研究(羽根車入口と出口の 面積比の影響)",ターボ機械,27-8 (1999),pp 30-37.
- 2) 児玉,他4名,"チューブラー遠心送風機の入口 偏流による騒音への影響",長崎大学工学部研究報 告,20-54 (1999), pp 9-15.
- 3) I.J.Sharland, "Sources of Noise in Axial Flow Fans", J. Sound Vob., 1 3 (1964), pp302 322.
- 4)深野,"一様流中に置かれた平板から発生する離 散周波数騒音の発生機構に関する研究",九州大学 研究報告,44-4 (1984), pp.405-425.
- 5)秋下,"一様流中に置かれた翼による騒音(第2 報,周期性騒音)",日本機械学会論文集,47-424, B (1981), pp.2243-2250.